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Background: Next-generation sequencing is increasingly used for taxonomic identification 
of pathogenic bacterial isolates. We evaluated the performance of a newly introduced 
whole genome-based bacterial identification system, TrueBac ID (ChunLab Inc., Seoul, 
Korea), using clinical isolates that were not identified by three matrix-assisted laser de-
sorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems and 16S 
rRNA gene sequencing. 

Methods: Thirty-six bacterial isolates were selected from a university-affiliated hospital and 
a commercial clinical laboratory. Species was identified by three MALDI-TOF MS systems: 
Bruker Biotyper MS (Bruker Daltonics, Billerica, MA, USA), VITEK MS (bioMérieux, Marcy 
l’Étoile, France), and ASTA MicroIDSys (ASTA Inc., Suwon, Korea). Whole genome se-
quencing was conducted using the Illumina MiSeq system (Illumina, San Diego, CA, 
USA), and genome-based identification was performed using the TrueBac ID cloud sys-
tem (www.truebacid.com). 

Results: TrueBac ID assigned 94% (34/36) of the isolates to known (N=25) or novel 
(N=4) species, genomospecies (N=3), or species group (N=2). The remaining two were 
identified at the genus level. 

Conclusions: TrueBac ID successfully identified the majority of isolates that MALDI-TOF 
MS failed to identify. Genome-based identification can be a useful tool in clinical laborato-
ries, with its superior accuracy and database-driven operations.

Key Words: Next generation sequencing, Genome-based identification, TrueBac ID, Per-
formance

Received: October 14, 2018
Revision received: January 8, 2019
Accepted: May 22, 2019

Corresponding author: 
Dongeun Yong, M.D., Ph.D.
Department of Laboratory Medicine and 
Research Institute of Bacterial Resistance, 
Yonsei University College of Medicine,  
50-1 Yonsei-ro, Seodaemun-gu, Seoul 
03722, Korea 
Tel: +82-2-2228-2802
Fax: +82-2-364-1583 
E-mail: deyong@yuhs.ac 

*�These authors contributed equally to this 
work. 

INTRODUCTION

Primary and nosocomial bacterial infections are significant causes 

of morbidity and mortality worldwide [1]. Identification of bacte-

rial isolates at the species level is the first and crucial step in 

routine clinical laboratories, as it provides essential guidance re-

garding treatment. Although conventional biochemical testing is 

still used, whole-cell matrix-assisted laser desorption ionization 
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time-of-flight mass spectrometry (MALDI-TOF MS) has been 

widely adopted for the routine identification of pathogenic bac-

teria [2]. MALDI-TOF MS can rapidly identify isolates by com-

paring the proteomic profiles of highly conserved and abundant 

proteins with an already compiled profile database of reference 

strains. Therefore, the accuracy of MALDI-TOF MS identification 

is heavily dependent on the software and spectral database/li-

braries [3]. MALDI-TOF MS is particularly useful for identifying 

frequently isolated pathogenic species because of better cover-

age of the spectral database. However, its ability to identify infre-

quently isolated species is questionable.

16S ribosomal RNA (16S rRNA) gene sequencing has been 

primarily used for cases, in which routine, conventional meth-

ods fail to identify the isolates. The 16S rRNA gene is a phyloge-

netic marker that is present in all bacteria and has played an 

essential role in the development of bacterial phylogeny and 

classification [4, 5]. Recently, the similarity cut-off for 16s rRNA 

gene sequence (98.7%) was proposed as a boundary for bacte-

rial species [6]. However, a 16S rRNA gene sequence similarity 

of ≥98.7% does not guarantee that the test isolate is a member 

of the species. Almost identical 16S rRNA gene sequences 

have been found in different species [6, 7].

Unlike 16S rRNA gene sequencing, whole genome sequenc-

ing (WGS) provides a clear-cut criterion for bacterial classifica-

tion. Furthermore, bacterial species is now defined by the relat-

edness of genome sequences [8]. A category of algorithms, 

named the overall genome-related index [4], has been devised 

to calculate the genomic similarity for taxonomic purposes, and 

a general guideline for bacterial identification using WGS data 

has been published [8]. WGS has considerable potential in clin-

ical diagnostics as it could provide accurate identification of the 

species, and resolution can be achieved up to the strain [9]. As 

the cost of WGS is continuously decreasing, its use as a routine 

test has been validated in large hospitals [10, 11].

If the genome sequences of the type strains representing all 

the known bacterial species are available, any isolate could be 

identified with high confidence. However, until a few years ago, 

the availability of such data was not satisfactory [4, 12]. The util-

ity of genome-based methods for clinical diagnostics requires 

re-evaluation in light of the recent expansion in the bacterial ge-

nome sequence database. This is the first study to evaluate True-

Bac ID (ChunLab Inc., Seoul, Korea), which is the first commer-

cial whole genome-based bacterial identification system. Its da-

tabase contains highly curated and taxonomically validated ge-

nome data of type and reference strains. We evaluated the per-

formance of TrueBac ID in identifying clinical bacterial isolates 

that could not be identified using commercial MALDI-TOF MS 

systems and 16S rRNA gene sequencing.

METHODS

Bacterial isolates
In this retrospective study, a total of 36 clinical isolates that were 

either unidentified or identified with low confidence by three 

commercial MALDI-TOF MS systems were collected from two 

institutes in Korea. Fifteen isolates were chosen from Severance 

hospital, Seoul, Korea, and 21 isolates were from Seoul Clinical 

Laboratories, Yongin, Korea. The isolates were recovered from 

clinical specimens (blood, pus, sputum, tracheal aspirate, urine, 

and wounds) from April 2017 to January 2018. Since this study 

focuses on the identification of the isolates, an approval from 

the Institutional Review Board was not required, and the demo-

graphic data of the patients were not included.

Initially, we used Bruker Biotyper (Bruker Daltonics, Billerica, 

MA, USA) for species identification at both institutes. 16S rRNA 

gene PCR and sequencing were carried out for the isolates that 

showed no possible identification (score value: <1.70) or low 

confidence identification (score value: 1.70–1.99) MALDI-TOF 

MS results. For isolates showing uncertain identification results, 

we employed two additional MALDI-TOF identification systems: 

the VITEK MS system (bioMérieux, Marcy l’Étoile, France) and 

ASTA MicroIDSys (ASTA Inc., Suwon, Korea). A colony grown 

on sheep blood agar was smeared and dried on the target plates 

of each instruments. Matrix solution (α-cyano-4-hydroxycinnamic 

acid) and 70% formic acid (Sigma-Aldrich, St. Louis, MO, USA) 

provided by the manufacturer were overlaid on the spot, and 

the peptide profile was acquired using Microflex with Biotyper 

Software 3.1 (Bruker), VITEK MS V3.0 (bioMérieux), and ASTA 

MicroIDSys 3.0.4 (ASTA Inc.). Mass spectra were analyzed ac-

cording to the manufacturers’ instructions. 

Genome-based identification 
Genomic DNA was extracted from the isolates using the FastDNA 

SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA), and 

550-bp long fragments were generated using the M220 Focused-

ultrasonicator (Covaris Ltd, Brighton, UK). The sequencing li-

brary was constructed using the TruSeq DNA Library LT kit (Illu-

mina, San Diego, CA, USA), according to the manufacturer’s 

protocols. WGS was performed on an Illumina MiSeq system (Il-

lumina) with a 300 bp paired-end reads sequencing kit (MiSeq 

Reagent Kit v3; Illumina).

The raw data from the MiSeq instrument in the FASTQ format 
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were directly uploaded to the TrueBac ID cloud system (www.

truebacid.com) and analyzed with the TrueBac ID-Genome sys-

tem. The current version of the system uses trimmomatic for fil-

tering low-quality reads [13]. The genome assembly was then 

carried out using the SPAdes software [14], as well as proprie-

tary software specifically designed for the assembly of the 16S 

rRNA gene from the raw data.

The main section of the TrueBac ID-Genome system consists 

of (1) the proprietary reference database, named the TrueBac 

database, which is curated to hold up-to-date nomenclature, 

16S rRNA gene, and genome sequences of type/reference strains, 

and (2) the optimized bioinformatics pipeline that provides the 

identification of a query genome sequence using the average 

nucleotide identity (ANI) [4, 8, 15]. We used TrueBac database 

version 2018-08, which contains 10,439 genomes representing 

10,152 species and 287 subspecies (7,702 with valid names, 

261 with invalid names, 138 with Candidatus names [16], and 

2,338 genomospecies). Genomospecies is defined as a hitherto 

unknown species that is supported by its genome sequences 

[17-19]. The database also contains 18,476 16S rRNA gene 

sequences representing each species/subspecies.

The algorithmic identification scheme using WGS was slightly 

modified from that of Yoon, et al. [5]. First, the most phyloge-

netically closely related pool of taxa was identified using a search 

of three genes—16S rRNA, recA, and rplC—which were extracted 

from the whole genome assembly [5]. The latter two genes were 

a part of the 92 recently defined bacterial core genes [20]. The 

taxonomically meaningful similarity of 16S rRNA gene sequences 

was calculated as previously described [21]. In addition to the 

gene-based searches, we used the Mash tool (https://github.

com/marbl/mash) for additional fast whole-genome based sear

ches [22]. The top-hits of the above four searches were then 

pooled, and the ANI was calculated using the MUMmer tool 

(http://mummer.sourceforge.net/) [15].

The algorithmic cut-off for species-level identification was set 

at 95% ANI [8, 15]. If the closely related taxa in a 16S rRNA 

gene comparison did not have the corresponding genome se-

quences in the database, the species assignment was made 

when the 16S rRNA gene sequence similarity to the best hit 

taxon was ≥99% with >0.8% separation between species [23]. 

Using these criteria, a genome sequence could be assigned to 

a species held in the TrueBac database, identified to the genus 

level (e.g. Bacillus sp.), identified as a novel species (e.g., Chry-
seobacterium sp. nov.), or regarded as unidentifiable.

In some cases, two or more species belonging to the same 

species were not yet formally reclassified. For isolates assigned 

to these species, the TrueBac ID system generated the final de-

cision as a “species group” instead of individual species.

RESULTS

Of the 36 isolates, TrueBac ID successfully identified 25 isolates 

as known species (Table 1). Four isolates were new species that 

had not been previously recognized. Three genomospecies, la-

beled CP015506_s, BBQM_s, and JHEL_s, were assigned. De-

tailed taxonomic information on these genomospecies is avail-

able at www.ezbiocloud.net [5]. Two isolates were identified as 

“species group” (Shewanella algae group and Tsukamurella 
tyrosinosolvens group). The remaining two isolates were identi-

fied at only the genus level because of the lack of relevant refer-

ence genome sequences. Isolate YUMC P471 was most closely 

related to Bacillus beringensis, with 98.91% 16S rRNA gene 

similarity, which is lower than the cut-off (99%) we used. Isolate 

YUMC R2593 was found to be closely related to Chryseobacte-
rium bernardetii and Chryseobacterium vietnamense with 99.65% 

and 98.92% 16S rRNA gene similarity, respectively. As the dif-

ference in 16S rRNA gene similarity between two Chryseobacte-
rium species was only 0.73%, which is lower than the cut-off 

(0.8%) set for the 16S rRNA gene-based identification scheme 

[23], the identification was made to only the genus level. Over-

all, TrueBac ID identified 94% (34 of 36) of the isolates at the 

species level or as a novel species.

Of the 34 isolates that were conclusively identified at the spe-

cies level, 26 were assigned to known species using the ANI 

calculation against the type strain genomes in the database, 

yielding a true or definitive identification. The remaining eight 

isolates were identified by 16S rRNA gene similarity, according 

to the CLSI guidelines [23].

Of the 25 isolates identified as known species by TrueBac ID, 

all three MALDI-TOF systems failed to identify 17 isolates. The 

MALDI Biotyper System identified nine (eight matched with True-

Bac ID and one mismatched), the VITEK MS identified seven 

(three matched with TrueBac ID and four mismatched), and the 

ASTA system identified seven (four matched with TrueBac ID 

and three mismatched). The detailed identification results with 

the genome assembly and gene sequences we reported are 

available at https://www.truebacid.com/genome/demo/clinical/

korea.

DISCUSSION

Overall, TrueBac ID performs well for isolates that MALDI-TOF 
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MS systems and 16S rRNA gene sequencing fail to identify. The 

ability to identify rare species is largely influenced by database 

coverage. The TrueBac ID system contains >10,000 species, 

whereas commercially available MALDI-TOF MS systems con-

tain only ~ 2,500 species [24].

Because of advances in DNA sequencing technologies and 

the introduction of genomics into bacterial taxonomy, numerous 

species have been newly described. On average, approximately 

100 new species were described every month in 2017 (data 

from www.ezbiocloud.net). The TrueBac ID system reference 

database is updated every month, enabling detection of recently 

described species. For example, isolate SCL P33 was identified 

as “Corynebacterium provencense,” which was recently discov-

ered in a human fecal specimen [25] and also associated with 

otitis in a cat [26]. Similarly, isolate SCL P174 was assigned to 

“Gemella massiliensis,” which was isolated from the sputum of 

a healthy individual in France [27]. Neither species could be 

identified by MALDI-TOF Biotyper previously [25, 27]. We could 

not identify isolate SCL P33 using any of the MALDI-TOF MS 

systems employed, whereas isolate SCL P174 was misidentified 

as Gemella bergeri using the MALDI Biotyper and VITEK MS, 

and as Gemella morbillorum using the ASTA system.

One of the major benefits of whole genome-based identifica-

tion is that it can provide a scientifically sound decision for the 

recognition of novel species. We confirmed four novel species 

and three genomospecies based on 16S rRNA gene or genomic 

evidence. Isolates YUMC P721, YUMC P647, and YUMC B11605 

were identified as genomospecies JHEL_s, CP015506_s, and 

BBQM_s, respectively. These species were never officially pro-

posed and only tentatively named by the EzBioCloud database 

[5], so they can be considered novel species. As genomospe-

cies represent previously isolated species, the use of this con-

cept can provide further insights into species ecology. For ex-

ample, the genomospecies CP015506_s included in this study 

is a species of the genus Bacillus, and there are three genome 

sequences in the EzBioCloud database from three different sour

ces: an oral swab of a patient (USA), seawater (Korea), and soil 

(India) (https://www.ezbiocloud.net/genome/list?tn=CP015506_

s). This additional information implies that the species is wide-

spread in nature and may be associated with human diseases.

Isolate SCL B79 showed high ANI values to Shewanella upe-
nei (98.19%), as well as to Shewanella algae (98.15%); both 

ANI values are clearly higher than the species boundary (95–

96%) [8]. The ANI value between the type stains of the two She
wanella species is 98.1%, indicating that they taxonomically rep-

resent a heterotypic synonym. Similarly, isolate YUMC B12492 

isolated from blood was assigned as “Tsukamurella carboxydiv-
orans group,” which consists of Tsukamurella tyrosinosolvens 
and Tsukamurella carboxydivorans; these two species share 

high genome sequence similarity (98.9% ANI). These potential 

synonyms are treated as a “species group” in the TrueBac ID 

system to avoid possible confusion in species-level identifica-

tion. We expect that all species groups we reported will eventu-

ally be combined to meet the currently accepted taxonomic 

scheme [8].

Overall, TrueBac ID could identify the species level for >90% 

of the isolates. Moreover, it demonstrated the ability to recognize 

new species with high confidence. This is a significant advan-

tage of genome-based ID over other methods, including MALDI-

TOF MS and biochemical tests. In addition to its superior accu-

racy, WGS is not influenced by media and growth conditions, in 

contrast to other methods based on phenotypes including MALDI-

TOF MS [28].

Although 16S rRNA gene sequencing has been widely used 

as the gold standard for bacterial identification [29], this method 

is not feasible for some clinically important species with highly 

similar 16S rRNA gene sequences [3]. We demonstrated that 

WGS exhibited sufficient taxonomic coverage to be employed as 

a scientifically sound gold standard when any new diagnostic 

method or commercial system is evaluated. 

This study has some limitations. We collected only those iso-

lates that were not properly identified by MALDI-TOF MS. How-

ever, the proportion of those isolates would be low in most labo-

ratories. In addition, the clinical significance of the isolates was 

not clearly defined. We assume that not all the isolates are true 

pathogens. Lastly, we did not examine how accurately identify-

ing the isolates can improve patient care.

In conclusion, TrueBac ID successfully identified the majority 

of clinical bacterial isolates that were not identified by commer-

cially available MALDI-TOF MS systems or 16S rRNA gene se-

quencing. TrueBac ID was more useful than other conventional 

diagnostic methods in recognizing new species. As the coverage 

of type strain-genome sequence database continues to grow and 

the cost of DNA sequencing continues to decrease, genome-

based identification can be a useful tool for diagnostic laborato-

ries, with its superior accuracy and database-driven operations.
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