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In 2015, the American College of Medical Genetics and Genomics (ACMG), together with 
the Association for Molecular Pathology (AMP), published the latest guidelines for the in-
terpretation of sequence variants, which have been widely adopted into clinical practice. 
Despite these standardized efforts, the degrees of subjectivity and uncertainty allowed by 
the guidelines can lead to inconsistent variant classification across clinical laboratories, 
making it difficult to assess the pathogenicity of identified variants. We describe the critical 
elements of variant interpretation processes and potential pitfalls through practical exam-
ples and provide updated information based on a review of recent literature. The variant 
classification we describe is meant to be applicable to sequence variants for Mendelian 
disorders, whether identified by single-gene tests, multi-gene panels, exome sequencing, 
or genome sequencing. Continuing efforts to improve the reproducibility and objectivity of 
sequence variant interpretation across individuals and laboratories are needed.
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INTRODUCTION

The number of genetic and genomic tests is rapidly increasing, 

and interpretation of sequence variants is challenging; now many 

sequence variants of unknown significance have been identified 

[1]. In response to the need for standardized and inter-commu-

nicable assessment, the American College of Medical Genetics 

and Genomics (ACMG) published guidelines for sequence vari-

ant interpretation in 2000 [2], 2007 [3], and 2015 [4].

The 2015 ACMG and Association for Molecular Pathology 

(AMP) guidelines described specific rules and evidence used 

for variant classification and interpretation [4]. These guidelines 

provide a framework for laboratories to evaluate the pathogenic-

ity of sequence variants in a consistent manner. They recom-

mend the classification of these variants into five categories: path

ogenic, likely pathogenic, variant of uncertain significance, likely 

benign, or benign. The classification is based on the strength of 

available evidence, which includes population data, computa-

tional and predictive data, functional data, segregation data, and 

other evidence detailed in the ACMG-AMP guidelines [4].

While the 2015 ACMG-AMP guidelines for the classification of 

Mendelian variants have advanced the field of clinical genetics, 

the degrees of subjectivity and uncertainty allowed by these gui

delines can lead to inconsistent classification across clinical mo-

lecular laboratories [5-8]. The discordance between classifica-

tions is caused by differences in how individual laboratories in-
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terpret the mapping of variant data according to the levels of ev-

idence and by inaccurate usage of the ACMG-AMP guidelines 

[9]. A previous study of 6,169 variants in the ClinVar database 

(http://www.ncbi.nlm.nih.gov/clinvar/) found a discordant inter-

pretation rate of 11.7% among four clinical laboratories [5]. An-

other study of 603 variants of cancer susceptibility genes re-

ported a discordance frequency of 26% [6]. Discordance can 

be as high as 66% [7] or 71% [8]. The variation in the rates of 

inconsistent classification between groups could be due to dif-

ferences in the number of participating laboratories, scope of 

variants and genes, data sharing practices among laboratories, 

etc. [5-8]. 

We describe the critical elements of variant interpretation pro-

cesses and potential pitfalls through practical examples and pro-

vide updated information from our review of recent literature. 

The variant classification described in this review is applicable 

to sequence variants for Mendelian disorders, whether identified 

by single-gene tests, multi-gene panels, exome sequencing, or 

genome sequencing. Classification of copy number variants and 

other structural variation is beyond the scope of this review.

Table 1. Useful databases for variant classification 

Database Characteristics URL

Population frequency of variants in whole-exome data

Exome Aggregation Consortium - 60,706 unrelated individuals http://exac.broadinstitute.org/

Exome Variant Server - 6,500 exomes of European and African American ancestry
- Includes healthy individuals as well as those with different diseases

http://evs.gs.washington.edu/EVS/

Population frequency of variants in whole-genome data

1000 Genomes Project - Final dataset contains data for 2,504 individuals from 26 populations https://www.ncbi.nlm.nih.gov/variation/
tools/1000genomes/

Genome Aggregation Database - 123,136 exome sequences and 15,496 whole-genome sequences from unrelated 
individuals

http://gnomad.broadinstitute.org/

Korean Reference Genome 
Database

- Whole genome sequencing project for 1,722 Korean individuals http://152.99.75.168/KRGDB/

Computational and predictive data

dbNSFP - Developed for functional prediction and annotation of all potential nonsynonymous 
single-nucleotide variants 

https://sites.google.com/site/jpopgen/
dbNSFP (freely downloadable)

- Compiles prediction scores from 20 prediction algorithms (SIFT, Polyphen2-HDIV, 
Polyphen2-HVAR, LRT, MutationTaster2, MutationAssessor, FATHMM, MetaSVM, MetaLR, 
CADD, VEST3, PROVEAN, FATHMM-MKL coding, fitCons, DANN, Geno, Canyon, Eigen 
coding, Eigen-PC, M-CAP, REVEL, MutPred), six conservation scores (PhyloP×2, 
phastCons×2, GERP++, and SiPhy), and other related information

dbscSNV - Splice site prediction that scores the likelihood that the variant affects splicing https://sites.google.com/site/jpopgen/
dbNSFP (freely downloadable)

- Includes all potential human single-nucleotide variants within splicing consensus 
regions (-3 to +8 at the 5´ splice site and -12 to +2 at the 3´ splice site)

Variant Effect Predictor - Prediction toolset using a population database and prediction algorithms https://www.ensembl.org/info/docs/tools/
vep/index.html

Variant type and gene-specific information data

ClinVar - Freely accessible, public archive of reports of relationships among human variations 
and phenotypes, with supporting evidence

https://www.ncbi.nlm.nih.gov/clinvar/

Human Gene Mutation Database - Provides comprehensive annotation for all published inherited disease mutations http://www.hgmd.org

ClinGen - Gene-disease validity, gene dosage sensitivity http://www.clinicalgenome.org

Abbreviations: CADD, combined annotation-dependent depletion; DANN, deleterious annotation of genetic variants using neural networks; dbNSFP, data-
base developed for functional prediction and annotation of all potential non-synonymous single-nucleotide variants; dbscSNV, database of SNVs in splicing 
consensus regions; FATHMM, functional analysis through hidden Markov models; FATHMN-MKL, FATHMN-multiple kernel learning; GERP, genomic evolu-
tionary rate profiling; LRT, likelihood ratio test; M-CAP, Mendelian clinically applicable pathogenicity; MetaLR, meta-analytic logistic regression; MetaSVM, 
meta-analytic support vector machine; Polyphen2, polymorphism phenotyping v2; PROVEAN, protein variation effect analyzer; REVEL, rare exome variant 
ensemble learner; SIFT, sorting intolerant from tolerant; SiPhy, site-specific phylogenetic analysis; VEST3, variant effect scoring tool 3.0.
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POPULATION DATA

Variant frequencies from large population datasets can provide 

powerful evidence for variant interpretation in individuals with 

rare Mendelian diseases [4, 10]. The 2015 ACMG-AMP guide-

lines contain three benign rules and two pathogenic rules to de-

termine the impact of population frequency on variant classifi-

cation: BA1 (allele frequency is >5%), BS1 (allele frequency is 

greater than expected), BS2 (observed in a healthy adult indi-

vidual for certain zygosity in a disease with full penetrance at an 

early age), PS4 (higher prevalence in affected individuals than 

controls), and PM2 (absent from controls) [4].

Considerations for using population data 
Many large-scale reference datasets have become publicly avail-

able for the wider biomedical community (Table 1). The 1000 

Genomes Project (1000G) includes individual-level genotype 

data from whole-genome and exome sequence data for 2,504 

individuals [11]. The Exome Variant Server, created as part of 

the National Heart, Lung, and Blood Institute Exome Sequenc-

ing Project (ESP), contains frequency information spanning 6,503 

exomes [12]. The Exome Aggregation Consortium (ExAC) com-

piled whole-exome sequencing data from 60,706 unrelated in-

dividuals and provides information on different human popula-

tions, as well as the presence of heterozygous, homozygous, and 

hemizygous individuals [13]. The recently released Genome Ag-

gregation Database (gnomAD) is a large source of variants that 

includes 123,136 exome sequences and 15,496 whole genome 

sequences from unrelated individuals, sequenced as part of 

various disease-specific and population-wide genetic studies 

(http://gnomad.broadinstitute.org/). 

The filtering of candidate variants by frequency in unaffected 

individuals is a key step for discovering causal variants in Men-

delian disease patients; there are several considerations for us-

ing the available population data. For example, PMS2 (NM_ 

000535.5) c.2007-4G>A is a variant absent from ExAC, which 

has weak coverage of intronic regions, but is present at 16.3% 

in 1000G and 16.0% in gnomAD. This example demonstrates 

that the absence of a variant from ExAC does not always indi-

cate that it is rare. At intronic loci, smaller datasets (such as 

1000G) or gnomAD, which has adequate coverage of intronic 

regions, may have more relevant information [14]. ExAC and 

gnomAD provide large-scale data with high-quality variant calls, 

but there are certain loci at which data quality problems occur, 

and these are represented as non-pass variants [10]. For exam-

ple, NF1 (NM_001042492.2) c.8133G>T (p.Leu2711Phe) is a 

missense variant present in ExAC at a high frequency of 4.8%; 

however, the variant is flagged as low quality. The ESP and 1000G 

data do not report a variant at this position. This example dem-

onstrates that the frequency information at the location of the 

quality flag should be used carefully [10]. In contrast, ARX (NM_ 

139058.2) c.1247C>G (p.Ala416Gly) is a quality filter-passed 

variant in ExAC, although it is present in <4% of the individuals 

in ExAC (the adjusted allele number was only 4,657), which may 

indicate low-quality data. Variant frequency with low total allele 

count may be unreliable at these loci because of the small sam-

ple size [10]. 

Variant frequency thresholds as an aid for determining 
pathogenicity 
A filtering approach based on removing variants in sequence 

data from unaffected individuals and those in the large-scale 

reference datasets maximizes variant classification accuracy 

and efficiency [10]. However, Harrison et al. [5] found that one 

of the major causes of persistently inconsistent interpretation 

was differences in the application of evidence associated with 

population data; specifically, BS1, BS2, and PS4. The 2015 

ACMG-AMP guidelines provide a single highly conservative thres

hold (5%) for BA1; thus, they do not adequately capture this 

variable likelihood of pathogenicity [4]. Furthermore, the guide-

lines provide no detailed guidance for determining the expected 

allele frequency of pathogenic variants.

Several studies have evaluated minor allele frequency (MAF) 

thresholds to aid in determining the pathogenicity of candidate 

variants [10, 15-18]. A study of 197 variants from 29 known di-

lated cardiomyopathy genes estimated that a median of 0.04% 

of variants captured in the ESP dataset had a frequency ranging 

from 0.02% to 1.33%, suggesting that a 0.04% cutoff may be a 

useful for lower penetrance alleles when filtering exome data 

[15]. Another study of 2,197 reported pathogenic deafness vari-

ants found >325 variants in a control dataset of 8,595, indicat-

ing a MAF >0.00006 [16]. Based on these results, they estab-

lished MAF thresholds of 0.005 for autosomal recessive variants 

(excluding some specific common pathogenic variants in GJB2, 

c.35delG, and c.167delT) and 0.0005 for autosomal dominant 

variants. A study on pathogenic variant burden in a set of 1,508 

variants from 79 disease genes (39 dominant and 40 recessive 

inheritance) found that 97.3% had an MAF <0.01% in the ExAC 

database [17]. According to the 2015 ACMG-AMP guidelines, 

the BS1 rule is that an “allele frequency greater than expected 

for a disorder” should be considered strong evidence for a be-

nign classification [4]. Based on the findings from the above 
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study, global ExAC allele frequencies >0.01% should be con-

sidered “greater than expected” for diseases with Mendelian in-

heritance, and this threshold may be lowered even further for 

certain genes [17]. Another study suggested five levels of MAF 

thresholds: very high, high, somewhat high, pathogenic range, 

and absent (quantitatively subdivided by the quality of popula-

tion data and inheritance mode) [10]. Furthermore, some stud-

ies have suggested a method for calculating MAF thresholds 

using a statistical framework that considers disease prevalence, 

genetic and allelic heterogeneity, inheritance mode, penetrance, 

and sampling variance in reference datasets [19, 20].

However, more stringent MAF thresholds may increase the 

risk of incorrectly classifying pathogenic variants with a high fre-

quency as benign [21, 22]. Well-known examples include RNF213 

(NM_001256071.1) c.14429G>A (p.Arg4810Lys), a variant 

observed at MAF 1.24% in the Korean population [21], and CFTR 

(NM_000492.3) c. 1521_1523delCTT (p.Phe508del), a variant 

observed at 1% frequency in the European population [22]. These 

high-frequency variants should not be classified as likely benign 

or benign without a thorough literature review; thus, careful con-

sideration is needed to assess pathogenicity [22].

Frequencies in affected and unaffected populations 
The 2015 ACMG-AMP guidelines recommend that the odds ra-

tio (OR) be calculated based on the occurrence of the variant in 

affected individuals and in the general population [4]; it is re-

garded as strong evidence of pathogenicity (PS4). To accurately 

calculate the OR of an identified sequence variant, it is impor-

tant to use an appropriate number of ethnicity-matched con-

trols. A study of 144 BRCA1 and BRCA2 variants in Korean pa-

tients found that the calculated ORs were falsely inflated when 

the authors used non-Korean population data as the control 

[23]. The use of relevant Korean controls related to the identifi-

cation of pathogenic variants is critical, given that the ORs re-

mained at abnormally high levels even when they used the East 

Asian controls from the ExAC cohorts [23]. In addition, they de-

termined that the minimal number of relevant ethnic controls 

needed for accurate variant classification was 820 for a variant 

existing in 1% of individuals [23]. The reference population da-

taset for the Korean population is the Korean Reference Genome 

Database (KRGDB), which includes 1,722 whole-genome sequ

ences from unrelated individuals (http://152.99.75.168/KRGDB/). 

For example, NOTCH3 (NM_000435.2) c.224G>C (p.Arg75Pro) 

is a pathogenic variant identified in 24.1% (7/29) of individuals 

with cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leucoencephalopathy (CADASIL) [24, 25], a signifi-

cantly higher allele frequency than in the controls (0.3%, 6/1,722), 

giving an OR of 91 (95% confidence interval, 28.3–292.8) for 

the 1,722 Korean controls.

COMPUTATIONAL AND PREDICTIVE DATA

The 2015 ACMG-AMP guidelines contain one benign and one 

pathogenic rule to determine the impact of computational pre-

diction on variant classification [4]. These rules are supporting 

evidence for multiple lines of computational algorithms that sug-

gest no impact (BP4) or deleterious effect (PP3) on a gene or 

gene product. The guidelines note the possibility of overestimat-

ing computational evidence and different predictive capabilities 

for different genes and algorithms. Therefore, these rules should 

be applied only when all prediction results agree [4].

However, the ACMG-AMP guidelines do not specify which al-

gorithms are recommended or how many agreements are re-

quired, and there is little consensus among laboratories [4, 26]. 

In general, BP4 or PP3 is the most available evidence in the 

ACMG-AMP guidelines; however, it is also a major source of dis-

cordance among different laboratories [7]. The reasons for dis-

cordance might be the subjective process of choosing certain 

criteria and different usage of in silico algorithms among labora-

tories [7]. For example, in-silico analysis of a novel variant iden-

tified in a Korean study for glucose-6-phosphate dehydrogenase 

deficiency [27], c.1153T>G (p.Cys385Gly) in G6PD (NM_0010 

42351.2), results in a tolerable prediction by the Polymorphism 

Phenotyping (PolyPhen) [28] and Sorting Intolerant From Toler-

ant (SIFT) [29] algorithms, which is suitable for the BP4 evidence. 

However, if the laboratory adds the deleterious result from Pro-

tein Variation Effect Analyzer (PROVEAN) [30], the evidence rule 

could not be applied because of a lack of concordance.

In addition, the accuracy of most algorithms has been ques-

tioned [26, 30-33]. There are vastly different predictive capabili-

ties for different genes, originating from the inherent bias in the 

datasets used for the development of algorithms [26]. Lack of 

concordance or false concordance among algorithms should be 

considered as well [34]. For example, c.3700A>G (p.Ile1234Val) 

in CFTR (NM_000492.3), which is a well-known pathogenic vari-

ant [35], demonstrates discordant results; it is tolerable accord-

ing to PolyPhen, SIFT, Combined Annotation-Dependent Deple-

tion (CADD) [36], and PROVEAN, but deleterious according to 

MutationTaster [30].

The five most commonly used algorithms in dbNSFP [37], in-

cluding PolyPhen, SIFT, CADD, PROVEAN, and MutationTaster, 

resulted in 79% (5,904/7,473) concordance for pathogenic vari-
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ants, but only 33% (2,464/7,346) for benign variants [26]. In ad-

dition, 10.5% (773/7,346) of variants classified as benign in Clin-

Var were predicted as pathogenic using the five algorithms, while 

0.8% (64/7,473) of pathogenic variants in ClinVar were predicted 

as benign [26]. The higher discordance for benign variants is 

due to algorithm prediction of protein domain disruption, not 

disease causality [26]. Therefore, clinical laboratories should 

consider different sets of algorithms for classification of benign 

or pathogenic variants. For pathogenic variants, the combina-

tion of MutationTaster, Mendelian Clinically Applicable Pathoge-

nicity (M-CAP) [38], and CADD or other algorithms revealed higher 

concordance rates [26]. For benign variants, Variant Effect Scor-

ing Tool (VEST3) [39], Rare Exome Variant Ensemble Learner 

(REVEL) [40], and Meta-analytic Support Vector Machine (Meta

SVM) [41] showed 81.3% true concordance rate and a 2.8% 

false concordance rate [26]. Furthermore, relatively newer algo-

rithms such as REVEL and VEST3 have better performance than 

older algorithms such as PolyPhen and SIFT. Ensemble predic-

tors, such as REVEL, VEST3, or Meta-analytic Logistic Regres-

sion (MetaLR) [41], are robust against technical artifacts, un-

derlying characteristics of variants or genes, and Mendelian in-

heritance pattern [26]. The development of gene-specific algo-

rithms using a well-characterized dataset and refinement of guide-

lines are required for better performance. 

VARIANT TYPE AND GENE-SPECIFIC 
INFORMATION DATA

The pathogenicity of a variant results from the effect of the gene 

product, which is related to the variant type and mechanism by 

which the gene product causes disease [10]. The ACMG-AMP 

guidelines suggest seven rules for the consequence of a variant: 

null variant in a gene with loss of function mechanism (PVS1), 

same amino acid change as an established pathogenic variant 

(PS1), in-frame indel in a nonrepeat region (PM4) or repeat re-

gion without known function (BP3), variant on a mutational hot

spot or functional domain (PM1), novel amino acid change in a 

previously reported different pathogenic missense variant (PM5), 

missense variant in a gene that rarely has missense changes 

(PP2) or missense variant in a gene where only truncation causes 

disease (BP1), and silent variant with non-predicted splice im-

pact (BP7) [4].

Loss-of-function variant classification: PVS1 rule
PVS1 is widely used as evidence for a loss-of-function (LOF) vari-

ant classification among the ACMG-AMP guidelines [7]. The 

guidelines outline considerations for the application of the crite-

ria [4]. First, the rule of evidence should be applied to only a 

gene with an LOF disease mechanism. Second, a gene product 

with a variant in the last exon or within the last 50 bp of the pen-

ultimate exon would escape nonsense-mediated decay. Third, 

even splice site variants that are predicted to have a null effect 

require confirmation through further functional studies such as 

RNA or protein analysis. Fourth, the isoform of a transcript should 

be considered because of differential tissue expression. An exon 

without any reported pathogenic variants could be spliced alter-

natively as a normal isoform, and an LOF variant in the exon 

should be carefully interpreted [4]. However, the ACMG-AMP 

guidelines do not provide alternative criteria to classify variants 

that partially fulfil these requirements; for example, an LOF vari-

ant in a gene with an unknown disease mechanism or a deep 

intronic variant likely to result in alternative splicing [4]. In addi-

tion, there are no suggested methods for molecular mechanism 

evaluation. Therefore, grade modification of PVS1 or stepwise 

criteria have been suggested for clarification of the ACMG-AMP 

guidelines [10].

First, a downgrade of strength from very strong to strong could 

be considered for LOF variants with minor retention of a wild-

type transcript or a deep intronic variant demonstrating an im-

pact on splicing [7]. Second, variable-weighted criteria have been 

proposed for modulation based on the relative location of the 

stop codon in the mRNA (nonsense-mediated decay versus trun-

cated proteins) and the molecular mechanism of the gene (con-

firmed versus unconfirmed LOF) [10]. Third, resources should 

be established to define the LOF mechanism for the gene. Clini-

cal reports of affected individuals with LOF variants from a litera-

ture review or ClinVar database and in vitro studies with knock-out 

models could be utilized as evidence. The gene-level evaluation 

refers to the gene-dosage sensitivity of ClinGen (http://www.clini-

calgenome.org) or ExAC pLI score, which indicates an LOF in-

tolerant gene with a score >0.9 [13]. Taking c.1090+1del of 

APP (NM_000484.3) as an example, this variant is located at a 

consensus splice site, where it critically impacts mRNA splicing, 

and it is absent from the gnomAD database, which contains more 

than 120,000 whole exome or whole genome sequences from 

unrelated individuals of various ethnicities. However, there is no 

reported pathogenic mutation LOF variant in Alzheimer’s demen-

tia from ClinVar or a literature review. Without supporting clinical 

observations, PVS1 evidence could not be applied for classifica-

tion of the variant.
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Other variant types for PS1, PM5, and PM1 rules
Conflicting usage of the PS1 (same amino acid change as an 

established pathogenic variant) rule could be invoked based on 

premature application of the ACMG-AMP guidelines [7]. This 

rule is intended for only a variant with different nucleotide chan

ges. The PM5 (novel missense at the same position) rule has a 

higher probability of being pathogenic when the novel variant 

results in a more conservative amino acid residue [4]. Various 

phenotypes could result from different amino acid substitutions 

[4]. The PM1 (mutational hot spot and/or critical and well-es-

tablished functional domain) rule redundantly describes the tar-

get region. Critical residues, motifs, and domains are designated 

on a gene-by-gene basis, and classification by rule should be 

applied conservatively. For example, NOTCH3, the causative 

gene for CADASIL, has a spectrum of mutational hot spots be-

tween exons 2 and 25 and the spectrum differs by ethnicity and 

geography [42]. Over 60% of NOTCH3 mutations are clustered 

in exons 2–6, with the highest frequency in exon 4 in European 

CADASIL individuals [24]. However, most mutations in Korean 

CADASIL individuals are found in exon 11, followed by exon 3 

[24]. In addition, most of these mutations are located within the 

extracellular domain that encodes the first five epidermal growth 

factor repeats and cause either gain or loss of a single cysteine 

residue [43]. Therefore, it is uncertain whether application of 

the PM1 rule to the NOTCH3 variant sparing cysteine residue or 

beyond exon 25 would constitute as pathogenic evidence.

SEGREGATION DATA

The ACMG-AMP guidelines include two rules for segregation 

data: PP1 (co-segregation with disease) and BS4 (non-segrega-

tion with disease) [4]. The evidence for pathogenicity should be 

carefully applied, because segregation signifies evidence for link-

age of a locus, rather than pathogenicity [4, 44]. In addition, the 

necessary number of family members required to determine 

segregation and the extent of the medical work-up needed for 

affected or unaffected individuals are unknown [4].

Performance evaluation of the ACMG-AMP guidelines revealed 

that PP1 was the most commonly available evidence [7]. There-

fore, a detailed threshold for the degree of segregation has been 

suggested for clarification of the lines of evidence. Quantifying 

segregation by the number of affected individuals and unrelated 

families has led to the proposal of three categories: weak (≥3 

affected individuals with a dominant condition, ≥2 with two rare 

variants in trans with a recessive condition), moderate (≥6 with 

a dominant condition or ≥3 with a recessive condition from at 

least two families), strong (≥10 with a dominant condition or 

≥5 with a recessive condition from more than two families) [10]. 

According to the quantifying segregation based on the number 

of affected individuals with sequence variant [10], the sample 

pedigree in the Fig. 1 shows weak segregation. In addition, a 

simplified calculation could be implemented in clinical laborato-

ries using the numbers of affected and unaffected individuals 

with dominant inheritance [44]. This method calculates the prob-

ability of observed co-segregation, N=(1/2)m, where m is the 

number of meioses of the variant of interest in a family. More-

over, the absence of the variant in affected individuals is also 

considered as co-segregation information. Therefore, the proba-

bility for such individuals should be multiplied by the probability 

for the affected events to determine the final probability. Sup-

porting, moderate, and strong evidence levels are determined 

for a given N; supporting (≤1/8 in a single family, ≤1/4 in >1 

family), moderate (≤1/16 in single family, ≤1/8 in >1 family), 

and strong (≤1/32 in single family, ≤1/16 in >1 family) [44]. 

The ACMG-AMP evidence level for the pedigree in Fig. 1 meets 

the 1/8 single family threshold for pathogenic support. 

FUNCTIONAL DATA

The 2015 ACMG-AMP guidelines contain two rules for deter-

Fig. 1. A sample pedigree used to quantify segregation. The arrow indicates the proband. A black symbol indicates a clinically affected 
family member. Positive (+) and negative (-) symbols indicate carrier status at the sequence variant under assessment. 

(A) �Three affected individuals (II-2, III-2, and III-3) with the variant 
=Weak segregation (≤3 affected individuals with a dominant condition)

(B) Two additional meioses (II-2 and III-2)=(1/2)2

      An unaffected individual (III-5)=(1/2)1

      Total=1/4×1/2=1/8
      =Supporting evidence (≤1/8 in single family)



Kim YE, et al.
Accurate and consistent interpretation of variants

https://doi.org/10.3343/alm.2019.39.5.421 www.annlabmed.org    427

mining functional studies: BS3 (well-established assay, no dele-

terious effect) and PS3 (well-established assay, deleterious ef-

fect) [4]. However, a recent study found that one of the most 

frequent differently applied ACMG-AMP criteria was functional 

data (48%) [5]. The value of functional data depends on the 

relevance of the measured property to disease biology, the qual-

ity of the experiment, the reproducibility of the results, and the 

amount of measured change [10]. Experimental models are 

more valuable if they directly mimic the predicted functional im-

pact of the candidate variants: for example, knock-out mice are 

better models of recessive loss of function than of dominant mu-

tations in a candidate gene [45]. In addition, gene-disease-spe-

cific guidelines for a single gene, gene family or set of genes im-

plicated in a single disease provided by experts could serve as a 

method for increasing concordance [7]. For example, in the gui

delines for MYH7-associated heritable cardiomyopathies, strong 

functional evidence can be provided by only a mammalian vari-

ant-specific knock-in model, while other in vivo models that alter 

the dosage of the normal protein (transgenic or knockout mice, 

zebrafish knock-downs) are not acceptable [20]. The RASopa-

thy expert panel determined that the mouse model for BRAF 

should be evaluated using five characteristics: congenital heart 

defect, lymphatic system, growth, ectodermal system, and cra-

niofacial anomalies for functional studies [46].

CONCLUSIONS

Although the ACMG-AMP guidelines were developed to enable 

consistent and reliable interpretation of variants, classification 

discrepancies and potential inaccuracies exist across clinical 

laboratories. In recent years, there have been many efforts to 

improve the interpretation of variants [47]. First, international 

collaborations to create gene-disease-specific guidelines have 

been published, specifically for MYH7-associated inherited car-

diomyopathy [20] and RASopathy [46]. These expanded guide-

lines are expected to reduce the subjectivity of variant interpre-

tation and increase inter-laboratory concordance through factors 

that explain specific rules such as allele frequency thresholds 

for assessing rarity, clinical validity of the functional assay, and 

the role of LOF variants [4, 7]. Similar efforts are underway for 

other disease-gene pairs through the ClinGen project, which is a 

central resource that defines the clinical relevance of genes and 

variants for use in precision medicine and research [48]. Sec-

ond, data sharing, exemplified by projects, such as ExAC and 

databases like ClinVar, provides a valuable opportunity for each 

submitter to address differences in variant interpretation across 

individuals or laboratories and to resolve those differences [5, 

49]. Third, there has been a push for the development of soft-

ware tools that automate the computable aspects of the 2015 

ACMG-AMP guidelines. Each program uses a different applica-

tion of automatic scoring rules for variant interpretation, so the 

choice of program should be carefully considered [50-52].

In conclusion, we reviewed the 2015 ACMG-AMP guidelines 

and recent literature to provide updated information and recom-

mendations for classifying sequence variants. Combined with 

our rapidly growing understanding of the genome, these efforts 

will improve our ability to make meaningful use of genomic vari-

ations in medical care.
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