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Purpose: This study aimed to develop a deep learning architecture combining two task models to 
generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) 
images to improve metallic marker visibility.

Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) 
were retrospectively enrolled, and images were acquired using both a computed tomography (CT) 
scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR 
images using a deformable registration, and the metallic dummy source markers were delineated 
using threshold-based segmentation followed by manual modification. The deformed CT (dCT), 
MR, and segmentation mask pairs were used for training and testing. The sCT generation model 
has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT 
images and segments the metallic marker. The performance of the model was evaluated with 
intensity-based comparison metrics.

Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of 
errors between the sCT and dCT. The structural similarity score difference was not significant.

Conclusions: Our study shows the two-task-based deep learning models for generating the sCT 
images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only 
workflow in high-dose-rate brachytherapy.

Keywords: Cervical cancer, Deep learning, Synthetic computed tomography, Magnetic resonance-
only radiotherapy, Intracavitary radiotherapy
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Introduction

Brachytherapy plays an essential role in cervical cancer 

treatment, as it can deliver a high dose to the tumor with-

out sparing the surrounding normal tissue. For locally ad-

vanced cervical cancer, the treatment with a combination 

of concurrent chemotherapy and external beam radiation 

therapy followed by intracavitary radiotherapy (ICR) has 

been used, and it improves the overall survival [1,2].

Traditionally, ICR based on two-dimensional (2D) X-ray 

images were standardized by International Commission 

on Radiological Units Report 38 [3]. However, this protocol 

does not represent the characteristics of individual patients 

because of the point-based dose prescriptions. Recently, the 

advantages of image-guided three-dimensional (3D) ICR 

have been reported as reducing the late complication rates 

for cervical cancer [4]. Guidelines have been published by 

the brachytherapy Group of the Groupe Européen de Curi-
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ethérapie and European Society for Therapeutic Radiology 

and Oncology (GEC ESTRO) [5,6]. For the 3D image-based 

plans, the target and organs at risk (OAR) are delineated, 

and the dose was prescribed to the outermost point that 

covered the target.

The 3D imaging usage in the high-dose-rate (HDR) 

workflow using magnetic resonance imaging (MRI) im-

age provides excellent soft tissue contrast, specifically in 

gynecologic diseases [7,8]. As the advantage in MR images, 

the images facilitate the target and OAR contouring during 

brachytherapy procedures. However, the actual localiza-

tion of the brachytherapy applicator and radiation source 

on MRI still remains a challenge because MRI does not 

directly delineate the source path [9,10]. Therefore, com-

puted tomography (CT) images are also required to define 

the source position and reconstruct the applicator using a 

metallic marker during treatment planning. This hybrid ap-

proach that needs both MR and CT images for the plan has 

limitations in the efficiency of brachytherapy, which is con-

ducted in the clinical workflow [11]. For this reason, there 

are efforts to translate the procedure into only MRI, which 

could decrease the number of scans and associated patient 

discomfort as well as reduce the planning-related costs. 

Also, the uncertainty due to image registration between CT 

and MR images was excluded. However, the main limita-

tion of migrating toward the MR-only workflow is that the 

implanted catheters are not reliably visualized on the MR 

images [12].

Several studies have been developed on the MR line 

marker, which is visualized on MR images. Shaaer et al. [11] 

proposed an MR line marker filled with a contrast agent 

and evaluated the robustness of visualizing the marker on 

the T1- and T2-weighted imaging MRI. Kim et al. [13] devel-

oped rubber-based MR markers with silicone oil to enhance 

the signal intensity in low-magnetic-field MRI. However, 

the markers have a limitation in representing a lower inten-

sity signal than distilled water.

Recently, another approach has been proposed to directly 

convert MR images into synthetic CT (sCT) based on deep 

learning techniques in radiotherapy [14-18]. Previous stud-

ies using the deep learning model for MRI-to-CT conver-

sion employed a supervised learning scheme [15]. The most 

commonly used neural network is the U-Net architecture, 

which is an encoder–decoder network with skip connec-

tions trained discriminatively. However, there are few stud-

ies of the sCT generation for 3D ICR.

In this study, we proposed a deep learning architecture 

combining two tasks (image generation and segmentation) 

to generate sCT images from MR images acquired from 

the low-magnetic-field MR scanner for improving metallic 

marker visibility.

Materials and Methods

1. Data acquisition

We retrospectively added patients treated with 3D ICR 

for cervical cancer in a single institution (Seoul National 

University Hospital, Seoul, Korea). This study was approved 

by the Institutional Review Board at our institution (1708-

051-876), and the requirement for informed consent was 

waived. Planning CT images were obtained using Brilliance 

Big Bore CT scanner (Philips, Cleveland, OH, USA) with 

a 1-mm slice thickness, a 512×512 matrix, a 120-kVp tube 

voltage, and a YA convolution kernel with iDose level 3. 

MR images were obtained using a 0.35-T MRI scanner in-

tegrated with the radiation therapy system of the MRIdian 

MRgRT system (ViewRay, Oakwood, OH, USA) 15 minutes 

after the CT scan. The true fast imaging with steady-state-

free precession (TRUFI) sequence was selected. The appli-

cator with metallic and line markers for CT and MR scans, 

respectively, were placed in the same patient setup.

2. Preprocessing

The overall procedure of the study is presented in Fig. 1. 

We conducted image registration from the CT image set to 

the MR image set using a deformable registration algorithm 

implemented in ViewRay treatment planning system. The 

CT images are resampled to the same resolution as the MR 

image dimension of 334×300×288 pixels with voxel size at 

≈1.5×1.5×1.5 mm3. For the CT image set, the connected-

component labeling method was applied to remove the CT 

couch that was not presented in the MR images. The inten-

sity of the CT image was normalized from [−1024 HU, 2048 

HU] to [0, 1]. The MR images were corrected for low-fre-
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quency intensities and non-uniformities using the N4 bias 

field correction method. Because the MR images have dif-

ferent intensity ranges for different patients, we conducted 

normalized imaging using the 0% to 99% percentile value of 

the intensity distribution of each image to stabilize network 

training. X-ray dummy source markers in CT images were 

segmented by an intensity-based threshold method fol-

lowed by a manual modification to provide marker position 

information to the deep learning model.

3. Synthetic computed tomography generation

The overall architecture of the proposed models is illus-

trated in Fig. 2. The architecture comprises two fully con-

volutional 3D convolutional neural networks. The first one 

(Generator) performs as a sCT generation from MR image, 

whereas the second one (Segmenter) was used as the seg-

mentation network. The Generator was based on the 3D U-

Net with residual blocks. Owing to the graphical processing 

unit (GPU) memory constraints, we adjusted the number 

of filters at each level. The filter numbers were 8, 16, 32, 64, 

and 128 in the encoder for reducing the spatial dimensions 

by a factor of two by each layer and 128, 64, 32, 16, and 8 in 

the decoder for upsampling. The Segmenter uses the same 

3D U-Net architecture as the Generator. This network per-

forms voxel-wise classification using the softmax function. 

The output of the network is the segmentation map of the 

input patch. We defined the loss function (lossgen) of the 

Generator as follows:

lossgen=lossL1+α∙ lossDice  (1)

where lossL1 is the mean absolute error (MAE) between the 

sCT and deformed CT (dCT) and lossDice is computed on the 

basis of the Dice coefficient between the predicted segmen-

tation result from the sCT and the ground truth annota-

tion. For the Segmenter, we chose the loss function as Dice 

loss between the dCT and the ground truth segmentation 

map. The weights and bias in the Generator layers as well 

as the Segmenter layers were jointly trained using adaptive 

stochastic gradient descent optimizers. The networks were 

trained for 2,000 epochs using 3,040 paired MRI–CT axial 

slices from 19 patients, defining the training cohort using a 

GPU NVIDIA GTX 1080Ti (11 GB). The remaining patients 

were considered the testing cohort.

...

... ...

...

Analysis

Synthetic CT

MAE

RMSE

SSIM

Deep learning network

Image pre-processing

Paired dCT-MR dataset

Training set
(n=19)

Test set
(n=4)

Deformable registration

CT simulation MR simulation

dCT Segmentation

Fig. 1. Schematic diagram of the overall procedure. CT, computed 
tomo graphy; MR, magnetic resonance; dCT, deformed CT; MAE, 
mean absolute error; RMSE, root mean square error; SSIM, struc-
tural similarity.
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4. Evaluation

The performance of the sCT generation models was eval-

uated quantitatively. We utilized three metrics to assess the 

accuracy of the image translation for the test set: the MAE, 

root mean square error (RMSE), and structural similarity 

(SSIM) between the sCT generated from the preprocessed 

MR images using the two deep neural networks and the 

dCT. The MAE and RMSE consider comparison of the pixel-

wise difference between two images. The MAE and RMSE 

may be calculated respectively as:

MAE = 1
N�|𝑥𝑥� − 𝑦𝑦�|

�

���
 

  

 (2)

RMSE = �1
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where i is a voxel within the body and N is the total number 

of voxels.

The SSIM represents a comparison of the luminance, 

contrast, and structure by computing a similarity score be-

tween two images. This metric may be calculated as:

SSIM = ��𝜇𝜇��𝜇𝜇�� + 𝑐𝑐����𝜎𝜎�� + 𝑐𝑐��
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where µx is the mean intensity of image x:
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σx is an estimate of the signal contrast:
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σxy is a correlation coefficient between image x and y:

σ�� =
1

𝑁𝑁 𝑁 1��𝑥𝑥� 𝑁 𝜇𝜇��
�

���
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and c1 and c2 are constants.

Results

The proposed method was applied to the low-tesla MR 

images, and their sCT images were produced. The repre-

sentative case of a patient with cervical cancer was selected 

in the test set shown in Fig. 3. Fig. 3 shows the original CT 

images and the generated sCT images using the 3D U-Net 

and the proposed model. The metallic marker in the im-

age of sCT generated using 3D U-Net was almost invisible, 

whereas it was visible in the sCT produced using the pro-

posed model. Additionally, sCTs show soft tissue and dense 

structure, such as the pelvic bones and spine. These sCTs 

present smoother boundaries than the original CT images.

The MAE, RMSE, and SSIM between the dCT and sCT 

images calculated from the test set are summarized in Table 

1. Generally, the sCT of our model showed smaller errors 

(MAE and RMSE) Generally, the sCT of our model showed 

MR Generator Synthetic CT Segmenter Segmentation map

Deformed CT Marker mask

loss
L1

loss
Dice

Fig. 2. Proposed architecture. First, a 
3D U-Net Generator network takes a 
3D MR patch and generates a synthetic 
CT patch. The synthetic CT patch is 
inputted to a second 3D U-Net Seg-
menter network for metallic marker 
seg mentation. MR, magnetic resonance; 
CT, computed tomography; 3D, three-
dimensional.
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smaller errors (MAE and RMSE) than the sCT of 3D U-Net. 

The MAE values were 7.94±2.31 HU and 7.49±2.10 HU for 

3D U-Net and our model, respectively. However, the simi-

larity score difference was insignificant.

Discussion

This study presented the feasibility of the sCT generation 

from the low-tesla MR image that improved the visibility 

of small metallic objects by employing the two-task-driven 

deep neural networks. Our method leverages a joint learn-

ing strategy that involves two networks: a Generator that 

converts MR images to CT images while preserving the 

region of interest and a segmentation network that predicts 

the segmentation mask of metallic dummy markers from 

the sCT images. Our findings show that the traditional U-

Net model with loss function of pixel-wise difference has 

limited performance for generating small objects, such as 

the marker. Even though the region with the metallic mark-

ers in the CT images causes a large error in loss, the error is 

only a small portion of the total loss. Without incorporating 

the segmentation task in the deep learning architecture, the 

small objects were not preserved in the synthetic images, 

as shown in Fig. 2. For the proposed architecture, we desig-

nated the generated image as an input of the segmentation 

model and calculated the segmentation loss of the metallic 

objects to provide additional information to the generation 

model. As a result, the metallic markers could be well deter-

mined in the synthetic images of the proposed model than 

those of the 3D U-Net model.

a b

c d

MR Deformed CT

Synthetic CT
(3D U-net)

Synthetic CT
(proposed model)

Fig. 3. Example slices of (a) magnetic 
resonance (MR) image, (b) deformed 
computed tomography (CT), and 
syn thetic CTs generated using (c) 3D 
U-Net and (d) the proposed model. 
The window settings were C/W 0/1000 
HU in (b–d).

Table 1. Errors (MAE and RMSE) and similarity (SSIM) relative 
between synthetic CT and deformed CT in the test group

Metrics 3D U-Net Proposed model

MAE (HU) 7.94±2.31 7.49±2.10

RMSE (HU) 44.72±8.99 42.85±7.88

SSIM 0.92±0.02 0.92±0.02

Values are presented as mean±standard deviation.
MAE, mean absolute error; RMSE, root mean square error; SSIM, 
struc tural similarity; CT, computed tomography; 3D, three-dimen-
sional.
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The hybrid procedure currently used in the clinic for in-

tracavitary gynecologic brachytherapy involves inevitable 

setup errors. To align the applicator position, rigid image 

registration was conducted between the CT and MR images 

to minimize the geometric distortion of the applicator. In 

this case, there is a disparity between the two images, such 

as on the location of internal organs. This effect could not 

be revealed in the dose calculation following the TG-43 pro-

tocol [19], which assumes a homogeneous water geometry. 

However, the influence might be emphasized when the 

model-based dose calculation according to TG-186 [20] is 

used, which assigns the tissue densities based on contoured 

organs. The MR-only workflow with sCT image can mini-

mize the geometric discrepancy while accurately assigning 

the tissue mass densities derived from the sCT image for 

dose calculation.

Our study still has several limitations. We generated the 

sCT images from only the 0.35-T MR images acquired with 

TruFISP sequence used in radiation oncology. The MR 

images obtained using a higher-tesla machine of radiol-

ogy could also be used for the 3D ICR treatment planning. 

The different image characteristics of the higher tesla MR 

scanners or other MR sequences affect the learning-based 

sCT generation model. Therefore, applying the proposed 

model to the MR-only ICR using other diagnostic MR im-

ages would be a valuable research endeavor in the future. 

Moreover, we evaluated the sCT images using only intensi-

ty-based comparison with original CT images. For clinical 

implementation, the sCT generation algorithm should be 

validated by comparing the dosimetric parameters between 

the ICR plans from original and synthetic images. The 

evaluation of the accuracy of the applicator reconstruction 

using the marker of sCT image is also necessary. These do-

simetric and geometric considerations remained in further 

studies. Recently, it has been reported that adversarial loss 

using a generative adversarial neural network could in-

crease the sharpness of the image compared with that using 

only the L1 or L2 loss. Therefore, the image quality of the 

sCT image might have the potential to be improved using 

other complex deep learning architectures or appropriate 

objective functions.

Conclusions

Our study presents the two-task-based deep learning 

models for generating the sCT images using low-tesla MR 

images for 3D ICR. This approach will be useful to the MR-

only workflow in HDR brachytherapy.
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