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Over the last 5 years there have been many new developments in the management of diabetic kidney disease. Glucagon-like pep-
tide-1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter-2 (SGLT2) inhibitors were initially used for glycemic con-
trol, but more recent studies have now shown that their benefits extend to cardiovascular and kidney outcomes. The recent addition 
of data on the novel mineralocorticoid receptor antagonist (MRA) gives us another approach to further decrease the residual risk of 
diabetic kidney disease progression. In this review we describe the mechanism of action, key studies, and possible adverse effects re-
lated to these three classes of medications. The management of type 2 diabetes now includes an increasing number of medications 
for the management of comorbidities in a patient population at significant risk of cardiovascular disease and progression of chronic 
kidney disease. It is from this perspective that we seek to outline the rationale for the sequential and/or combined use of SGLT2 in-
hibitors, GLP-1 RA and MRAs in patients with type 2 diabetes for heart and kidney protection.
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INTRODUCTION

Until recently, glycemic control, blood pressure management, 
angiotensin converting enzyme (ACE) inhibitors or angiotensin 
receptor blockers (ARB) were the only available strategies to 
prevent diabetic kidney disease (DKD) progression. Older glu-
cose lowering therapies demonstrated efficacy with respect to 
achieving glycemic targets but lacked benefits for ‘hard’ kidney 
or cardiovascular (CV) outcomes [1]. Importantly, older glucose 
lowering therapies were also associated with potential harm re-
lated to heart failure (HF) hospitalizations with thiazolidinedio-
nes, as well as hypoglycemia and weight gain with therapies 
such as sulfonylureas and insulin [2].

Over the last 5 years, with the emergence of newer agents in-
cluding sodium-glucose cotransporter-2 (SGLT2) inhibitors, 
glucagon-like peptide-1 receptor agonists (GLP-1 RA) and nov-
el mineralocorticoid receptor antagonist (MRA), management 
of type 2 diabetes mellitus (T2DM) and DKD has since shifted 
away from a ‘glucose-centric’ focus towards one of ‘heart and 
kidney protection [3-5]. These newer agents have individually 
demonstrated CV and/or kidney benefits, and the combined use 
of these agents is particularly appealing due to potential mecha-
nistic and clinical synergies [6]. Accordingly, our aim was to re-
view the mechanisms and clinical benefits of these three classes 
of agents and outline the case for their combined use for heart 
and kidney protection in DKD. 
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SGLT2 INHIBITORS, CARDIOVASCULAR 
AND KIDNEY PROTECTION IN PATIENTS 
WITH T2DM

SGLT2 inhibition and mechanistic benefits
The precise mechanisms behind heart and kidney benefits of 
SGLT2 inhibitors are incompletely understood, though there are 
likely multiple complementary physiological effects [7,8]. Kid-
ney protective mechanisms of SGLT2 inhibitors are commonly 
considered according to hemodynamic versus non-hemodynam-
ic actions. By inhibiting proximal tubular sodium and glucose 
reabsorption, SGLT2 inhibitors increase distal sodium delivery 
to the macula densa and restore tubuloglomerular feedback, 
with the effect of decreasing intraglomerular pressure, shear 
stress, hyperfiltration and albuminuria [9-12]. The cardio-pro-
tective mechanisms linked with SGLT2 inhibitors also overlap 
with those associated with kidney protection. For example, be-
yond restoring glomerular pressure toward more normal physi-
ological levels, hemodynamic effects in the systemic circulation 
induced by natriuresis restore relative euvolemia, lower blood 
pressure and arterial stiffness, and may contribute to improving 
cardiac preload and afterload [13,14].

Independent of hemodynamic effects, from a metabolic per-
spective, SGLT2 inhibitors promote glucosuria and modestly 
improve glycemic control [15,16]. The associated caloric loss 
also contributes to reductions in body weight by 2 to 3 kg on 
average, another traditional CV risk factor [15,17]. Glucosuria 
also enhances gluconeogenesis and ketogenesis, part of an 
SGLT2 inhibitor induced shift to a ‘fasting state.’ Ketogenesis is 
hypothesized to be a direct mediator of cardioprotection with 
SGLT2 inhibition since ketone bodies are an efficient energy 
source with the potential to improve myocardial energy dynam-
ics and exert direct anti-inflammatory effects [18-20]. Alterna-
tively, ketones may simply be an indirect biomarker of heart and 
kidney protection, with SGLT2 inhibitors activating ‘nutrient-
deprivation pathways,’ leading to improved mitochondrial func-
tion and energy dynamics and less oxidative stress at the cellular 
level, with ketogenesis simply being a byproduct of this process 
[21-23]. These metabolic changes activated by ‘fasting state’ 
with SGLT2 inhibition may also ameliorate myocardial effi-
ciency and hypoxia. SGLT2 inhibitors also inhibit myocardial 
sodium-hydrogen exchange, with hypothesized downstream 
benefits to cardiac hypertrophy and fibrosis [13]. SGLT2 inhibi-
tors may also reduce energy requirements and hypoxia within 
proximal tubular cells, and may improve oxygen delivery by in-
creasing hematocrit [24]. This, combined with their modulation 

of neurohumoral pathways and reduction of glucose entry into 
tubular cells, likely contributes to suppression of kidney hypox-
ia, inflammation, and fibrosis [25-29]. Finally, improvements in 
kidney function itself may indirectly improve cardiac function 
through reductions in sympathetic nervous system activation, 
systemic inflammation and chronic hypervolemia that charac-
terize the chronic cardiorenal syndrome [30].

SGLT2 inhibition and clinical heart and kidney protection
The heart and kidney protective effects of SGLT2 inhibitors 
were first demonstrated in three large cardiovascular outcome 
trials (CVOT) exclusively comprising participants with T2DM. 
The Empagliflozin Cardiovascular Outcome Event Trial in Type 
2 Diabetes Mellitus Patients (EMPA-REG OUTCOME), Cana-
gliflozin Cardiovascular Assessment Study (CANVAS Pro-
gram) and Multicenter Trial to Evaluate the Effect of Dapa-
gliflozin on the Incidence of Cardiovascular Events-Thrombol-
ysis in Myocardial Infarction 58 (DECLARE-TIMI-58) trials 
included >34,000 patients and demonstrated significant reduc-
tions in the risk of major adverse cardiovascular events (MACE; 
composite of non-fatal stroke, non-fatal myocardial infarction 
and CV death) and/or hospitalization for heart failure (HHF) 
(Table 1 for a summary of effects) [31-33]. 

Secondary kidney composite outcomes were also consistently 
reduced across the three trials. In EMPA-REG OUTCOME, the 
kidney composite of albuminuria progression, doubling of se-
rum creatinine, end-stage kidney disease (ESKD), or renal death 
was reduced by 39%, with consistent benefits across multiple 
subgroups including those with chronic kidney disease (CKD) 
at baseline [34]. In the CANVAS Program, the kidney compos-
ite (doubling of serum creatinine, renal replacement therapy or 
renal death) was similarly reduced by 47% (hazard ratio [HR], 
0.53; 95% confidence interval [CI], 0.33 to 0.84) [35]. By de-
sign, DECLARE-TIMI-58 had the lowest CV risk cohort and 
the highest baseline mean estimated glomerular filtration rate 
(eGFR) of the three trials [32]. In this lower kidney risk cohort, 
dapagliflozin reduced the composite kidney endpoint, which in-
cluded a more modest 40% decline in eGFR, ESKD or renal 
death, by 47% (HR, 0.53; 95% CI, 0.43 to 0.66) [13]. Risk re-
duction for CV outcomes was similar across baseline levels of 
kidney risk, aside from a lower HR in the impaired eGFR with 
albuminuria group [36]. Post hoc analyses have demonstrated 
that observed CV and kidney benefits in the original CVOTs 
were largely independent of glycemic lowering [37-40].

Two subsequent CVOTs were published in 2020. Cardiovas-
cular Outcomes Following Ertugliflozin Treatment in Type 2 
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Diabetes Mellitus Participants with Vascular Disease (VERTIS-
CV), which compared ertugliflozin with placebo showed non-
inferiority in regards to its primary MACE outcome, as well as 
a 30% reduction in HHF [41]. For the key composite kidney 
endpoint, which used “doubling of serum creatinine” for the 
definition of significant kidney function loss, the impact of er-
tugliflozin was neutral [41]. However, as presented at the Euro-
pean Association for the Study of Diabetes 2020, with a more 
modest kidney endpoint comprised of a sustained 40% eGFR 
decline, a HR of 0.66 was observed (95% CI, 0.50 to 0.88) [42]. 
Additionally, when stratified by kidney risk in VERTIS-CV as 
determined by KDIGO risk categories, significant reductions in 
the HHF/CV death composite were observed in the moderate 
and high/very high risk categories (P=0.03 for interaction) [43]. 

In a second trial, Effect of Sotagliflozin on Cardiovascular 
and Renal Events in Patients With Type 2 Diabetes and Moder-
ate Renal Impairment Who Are at Cardiovascular Risk 
(SCORED), a dual SGLT2 inhibitor and gastrointestinal SGLT1 
inhibitor sotagliflozin was examined in patients with T2DM, 
CKD (eGFR from 25 to 60 mL/min/1.73 m2) and CV risk fac-
tors. Although the trial was stopped early due to a lack of fund-
ing, the trial investigators demonstrated a reduction in the pri-
mary cardiac composite endpoint (total number of deaths from 
CV causes, HHF and urgent visits for HF) of 26% (HR, 0.74; 

95% CI, 0.63 to 0.88) [44]. While the composite kidney out-
come including a 50% sustained decrease in eGFR was not sta-
tistically significant (HR, 0.71; 95% CI, 0.46 to 1.08), analyses 
with other kidney composites have not yet been published. So-
tagliflozin also demonstrated safety and efficacy in patients with 
worsening HF in Effect of Sotagliflozin on Cardiovascular 
Events in Patients With Type 2 Diabetes Post Worsening Heart 
Failure (SOLOIST-WHF), although this trial was also stopped 
early due to insufficient funding [45].

Analyses of kidney outcomes in the original CVOTs prompt-
ed dedicated kidney outcome trials, of which two are complet-
ed: Evaluation of the Effects of Canagliflozin on Renal and 
Cardiovascular Outcomes in Participants With Diabetic Ne-
phropathy (CREDENCE, NCT02065791) and A Study to Eval-
uate the Effect of Dapagliflozin on Renal Outcomes and Car-
diovascular Mortality in Patients With Chronic Kidney Disease 
(DAPA-CKD, NCT03036150). These trials were both stopped 
early due to clinical benefit. CREDENCE included patients 
with an eGFR from 30 to 90 mL/min/1.73 m2 and a urine albu-
min-to-creatinine ratio (UACR) of 300 to 5,000 mg/g. The kid-
ney specific outcome was a composite of ESKD, doubling of 
creatinine or death from a renal cause, and was reduced by 34% 
in the treatment group (HR, 0.66; 95% CI, 0.53 to 0.81) [46]. 
DAPA-CKD had broader inclusion criteria, dropping the eGFR 

Table 1. Overview of Clinical Outcomes of SGLT2i, GLP-1 RA, and MRAs

Class​
Kidney outcomes​ Heart outcomes​

Glycemic
control​

BP effect​
Weight

loss
Side effects/​precautions​Proteinuria

reduction​​
Kidney 

compositea ASCVD HF​

SGLT2i​ ↓↓​ ↓↓​ ↓↓​ ↓↓​
​

eGFR 30–45↔​
eGFR 45–59 ↓​
eGFR >60 ↓↓​

↓​
(3–5/1–2 mm Hg)​

↓ ​
(2–3 kg)​

Genital mycotic infection​
Diabetic ketoacidosis​

GLP-1 RA​ ↓​ ↔​ ↓​↓​ ↔​
​

↓↓​ ↓ ​
(2 mm Hg)​

↓↓​ GI side effects​
Worsening retinopathy​
History of medullary thyroid cancer​

GLP-1 RA 
and SGLT2i​

↓↓↓b​

​
↓↓b​

​
↓↓↓b​

​
↓↓b​

​
↓↓​
​

↓↓↓​
​

↓↓↓​ GI side effects​
Hypoglycemia (related to  

sulfonylureas or insulin)​

MRA​ ↓↓​ ↓​ ↓c​ ↓c​
​

↔​ ↓ ​
(2–3 mm Hg)​

↔​ Hyperkalemia​

↔, no significant difference; ↓, some reduction in risk; ↓↓, greater reduction in risk; ↓↓↓, greatest reduction in risk.
SGLT2i, sodium-glucose cotransporter-2 inhibitor; GLP-1 RA, glucagon-like peptide-1 receptor agonist; MRA, mineralocorticoid receptor antagonist; 
ASCVD, atherosclerotic cardiovascular disease; HF, heart failure; BP, blood pressure; eGFR, estimated glomerular filtration rate; GI, gastrointestinal 
symptoms. 
aVariable composite outcomes that include loss of eGFR, end-stage kidney disease, and related outcomes; bPossible outcome, studies are underway; 
cComposite secondary outcome of ASCVD and hospitalized heart failure which was significant.
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and UACR cutoffs and including participants without diabetes. 
This trial enrolled 4,304 participants with an eGFR of 25 to 75 
mL/min/1.73 m2 with a UACR of 200 to 5,000 mg/g. The pri-
mary outcome was a composite of a sustained decline in eGFR 
of at least 50%, ESKD, or death from renal or CV causes. Dapa-
gliflozin reduced the risk of the primary outcome by 44% (HR, 
0.56; 95% CI, 0.45 to 0.68) with a number needed to treat of 19 
and an overall mortality benefit (HR, 0.69; 95% CI, 0.53 to 
0.88). Importantly, 32.5% of patients enrolled did not have 
T2DM and 14.5% had an eGFR below 30 mL/min/1.73 m2, 
demonstrating the benefit of dapagliflozin across a range of kid-
ney function regardless of diabetes status [47]. Please see Table 
1 which summarizes the key findings. In addition to these com-
pleted trials, The Study of Heart and Kidney Protection With 
Empagliflozin (EMPA-KIDNEY, NCT03594110) is currently 
underway and is recruiting a broader group of participants with 
eGFRs as low as 20 mL/min/1.73 m2, without the requirement 
for albuminuria in patients with lower eGFR between 20 to 45 
mL/min/1.73 m2. Therefore, this innovative and important trial 
design feature has the potential to extend the use of this class of 
medication to those with normo- or microalbuminuria—a sub-
group of patients who have yet to be included in prior key kid-
ney protection trials.

Beyond clinical kidney benefits, CVOT and kidney outcome 
trials have consistently demonstrated benefits on HF outcomes, 
leading to dedicated HF outcome trials. The Study to Evaluate 
the Effect of Dapagliflozin on the Incidence of Worsening Heart 
Failure or Cardiovascular Death in Patients With Chronic Heart 
Failure (DAPA-HF, NCT03036124) and Empagliflozin Out-
come Trial in Patients With Chronic Heart Failure With Re-
duced Ejection Fraction (EMPEROR Reduced, NCT03057977) 
both demonstrated HF [48,49] and kidney benefits [50,51] in 
participants with HF and reduced ejection fraction with and 
without diabetes. Results of the Dapagliflozin Evaluation to Im-
prove the Lives of Patients With Preserved Ejection Fraction 
Heart Failure (DELIVER, NCT03619213) and Empagliflozin 
Outcome Trial in Patients With Chronic Heart Failure With Pre-
served Ejection Fraction (EMPEROR Preserved, NCT03057-
951) in participants with HF and preserved ejection fraction are 
awaited. 

SGLT2 inhibition and safety
Overall, clinical trials have reported lower rates of total adverse 
events with SGLT2 inhibition [32,33,46]. A secondary analysis 
of CREDENCE showed no differences in the rate of adverse 
events when stratified by GFR [52]. Mycotic genital infections 

remain among the most common side effects while diabetic ke-
toacidosis is an uncommon but serious complication [53]. An 
increased risk of amputations was reported in the CANVAS 
Program trial but has not been demonstrated in any other clini-
cal trial nor was there any signal of this issue in a meta-analysis 
involving 57,713 participants [54]. Similarly, despite theoretical 
concerns around an increased risk of acute kidney injury (AKI), 
SGLT2 inhibitors have been associated with lower rates of AKI, 
possibly due to prevention of ischemia in the kidney [55,56]. 

GLP-1 RAs, CARDIOVASCULAR AND 
RENAL PROTECTION IN PATIENTS WITH 
T2DM

GLP-1 RA and effects on metabolism
GLP-1 RAs increase insulin secretion, stimulate glucose uptake 
and delay gastric emptying, leading to significant reductions in 
glycated hemoglobin (HbA1c) and a greater likelihood of 
achieving an HbA1c of ≤7% [57]. GLP-1 RAs also increase 
self-reported post-prandial satiety, thereby reducing energy in-
take by 16% [58] and body weight by 2 to 4 kg [57]. Weight 
loss stems primarily from a reduction in body fat as opposed to 
lean mass and this weight change is sustained over long-term 
follow-up [59]. The mechanisms responsible for weight loss are 
in part due to GLP-1 RA effects on appetite and satiety control 
centers in the central nervous system [60]. 

GLP-1 RA and effects on natriuresis, blood pressure, and 
kidney function 
Although GLP-1 receptors are found in CV tissues [61], the ef-
fect of GLP-1 RAs on CV physiological parameters such as 
blood pressure and heart rate is modest. In randomized con-
trolled trials, GLP-1 RAs reduce systolic blood pressure by ap-
proximately 1 to 2 mm Hg, with lesser effects on diastolic blood 
pressure [62]. In addition, GLP-1 RAs did not reduce the inci-
dence of new onset hypertension compared to placebo [62] and 
increased heart rate by 2 to 3 beats per minute compared to pla-
cebo [62]. Based on these modest effects, it is not clear if blood 
pressure lowering with GLP-1 RAs contributes mechanistically 
for improved cardiorenal outcomes with these agents in pivotal 
clinical trials (discussed below).

Beyond effects on blood pressure, glucose homeostasis and 
metabolism, GLP-1 RAs have additional effects on the kidney 
and CV system (see Table 1 for a summary of effects). In the 
kidney, GLP-1 receptors are located at the afferent arteriole [63] 
and proximal tubule [64], which leads to divergent acute effects 
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on renal hemodynamics. For instance, in a non-randomized 
crossover study of healthy obese men who were administered 
exenatide, there was a 33% reduction in afferent arteriolar resis-
tance and no change in efferent arteriolar resistance compared 
to placebo after a single dose [65]. The net effects were increas-
es in renal blood flow and glomerular filtration rate [65]. Of in-
terest, these renal hemodynamic changes were attenuated by 
concomitant administration of exenatide and the nitric oxide 
(NO)-synthase inhibitor L-NG-monomethyl arginine [65], a 
finding which has been confirmed in subsequent experimental 
studies [66]. These observations suggest that the effects of GLP-
1 RAs at the afferent arteriole is in part mediated by NO. 

In addition to effects on NO, GLP-1 RAs may impact other 
vasoactive mediators such as the renin-angiotensin-aldosterone 
system (RAAS). In a crossover study of healthy men who re-
ceived a 2-hour infusion of synthetic human GLP-1, there was a 
19% decrease in circulating angiotensin II levels, but no change 
in plasma levels of renin or aldosterone [67], and no alteration 
in renal hemodynamic function [67]. This decrease in circulat-
ing markers of the RAAS has not been consistently observed in 
human mechanistic studies, possibly due to differences in the 
study cohorts involved in these trials [68]. Further work is re-
quired to elucidate the relationship between GLP-1 RAs and 
neurohormonal activation, including the RAAS, and whether 
there are any implications for renal or systemic hemodynamic 
function, or clinical endpoints.

Through interactions with GLP-1 receptors in the proximal 
tubules, GLP-1 RAs also have natriuretic and diuretic effects. 
Administration of GLP-1 RA increases the fractional excretion 
of sodium and urine volume [65,67,69,70]. Natriuresis induced 
by GLP-1 RA likely result in large part from blockade of the so-
dium-hydrogen exchange transporter isoform 3 (NHE3) at the 
proximal tubule. In vitro, the GLP-1 agonist exendin-4, inhibits 
NHE3 through modulation of protein kinase A and cyclic ade-
nosine monophosphate, culminating in downstream phosphory-
lation of the NHE3 transporter without changes in the surface 
expression within renal tubular cells [71]. This results in natri-
uretic effects [72] in a variety of animal models [73]. It would 
perhaps be anticipated that a proximal natriuresis should acti-
vate tubuloglomerular feedback at the macula densa, thereby 
causing afferent arteriolar vasoconstriction and a decrease in 
GFR. In contrast with this expected effect, eGFR does not 
change in patients with T2DM in response to GLP-1 RA in re-
sponse to chronic treatment. First, in pivotal trials of GLP-1 
RAs, there is no acute decrease in GFR that would be expected 
with proximal natriuresis, suggesting that there is minimal renal 

hemodynamic response to GLP-1 RAs. In the long-term, a me-
ta-analysis of CVOTs of available GLP-1 RAs did not demon-
strate a reduction in the incidence of worsening of kidney func-
tion (HR, 0.87; 95% CI, 0.73 to 1.03). However, to make mat-
ters more complex, there was moderate heterogeneity among 
the included trials, with an I2 of 43%. Notably, in the Research-
ing Cardiovascular Events With a Weekly Incretin in Diabetes 
(REWIND) trial comparing dulaglutide to placebo, there was an 
11% reduction in the incidence of a sustained decline in eGFR 
of ≥30% (HR, 0.89; 95% CI, 0.78 to 1.01) but further sensitivi-
ty analyses showed a 30% and 44% reduction in the incidence 
of a sustained decline of eGFR of ≥40% (HR, 0.70; 95% CI, 
0.57 to 0.85) and ≥50% (HR, 0.56; 95% CI, 0.41 to 0.76) re-
spectively [74]. The reason for modest, albeit highly variable, 
longer-term effects on GFR despite a proximal natriuresis is not 
known. Given the complex mechanisms at play, it may be that 
in the overall population of adults with diabetes, GLP-1 RAs 
have minimal effects on GFR but may be more beneficial with-
in specific subpopulations.

Beyond effects on GFR, GLP-1 RAs reduce albuminuria. For 
instance, liraglutide and semaglutide were associated with a 
26% reduction (HR, 0.74; 95% CI, 0.60 to 0.91) and 46% re-
duction (HR, 0.54; 95% CI, 0.37 to 0.77) in the incidence of 
new onset persistent macroalbuminuria compared to placebo in 
the Liraglutide Effect and Action in Diabetes: Evaluation of 
Cardiovascular Outcome Results (LEADER) and Trial to Eval-
uate Cardiovascular and Other Long-term Outcomes With 
Semaglutide in Subjects With Type 2 Diabetes (SUSTAIN-6) 
trials, respectively [75,76]. Likewise, dulaglutide was associat-
ed with a 23% reduction in new onset macroalbuminuria (HR, 
0.77; 95% CI, 0.68 to 0.87) compared to placebo in the RE-
WIND trial [74]. A Research Study to See How Semaglutide 
Works Compared to Placebo in People With Type 2 Diabetes 
and Chronic Kidney Disease (FLOW, NCT03819153) is cur-
rently recruiting, and its primary endpoint is a composite out-
come defined as persistent eGFR decline of greater than or 
equal to 50%, reaching ESKD, death from kidney disease or 
death from CV disease. 

The lack of a robust or consistent hemodynamic effect with 
GLP-1 RAs suggest that non-hemodynamic mechanisms could 
be responsible for the decline in albuminuria and possible eGFR 
preservation with these agents, including improvements in glu-
cose control and metabolic parameters. Potential non-glycemic 
factors that may be kidney protective with GLP-1 RA include 
suppression of inflammatory pathways by preventing macro-
phage infiltration and decreasing oxidative stress [77], as re-
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ported in experimental models. Finally, reductions in body 
weight and blood pressure may also be beneficial, although the 
impact of these modest changes is less likely to be clinically rel-
evant.

GLP-1 RA and effects on cardiovascular risk
From a CV perspective, GLP-1 RAs reduce CV risk compared 
to placebo in CVOTs. In a recent meta-analysis including all 
available CVOTs for GLP-1 RAs, all-cause mortality was re-
duced by 12% (HR, 0.88; 95% CI, 0.83 to 0.95), CV mortality 
by 12% (HR, 0.88; 95% CI, 0.81 to 0.96) and three-point 
MACE by 12% (HR, 0.82; 95% CI, 0.82 to 0.94) compared to 
placebo [78]. While there was moderate statistical heterogeneity 
for three-point MACE in these analyses, there was no evidence 
of subgroup differences based on the pharmacologic character-
istics of studied agents or the baseline characteristics of adults 
enrolled in the clinical trials. Importantly, the benefits for 
MACE were consistent in adults with and without DKD. 

Beyond effects on MACE and atherosclerosis, HF is an im-
portant source of morbidity and mortality in adults with diabe-
tes. HF is in part characterized by myocardial insulin resistance, 
which contributes to impaired calcium uptake and mitochondri-
al function within the heart [79,80]. Therefore, agents that alter 
insulin sensitization or release have been theorized as possible 
treatments for these metabolic abnormalities seen in the setting 
of HF. In contrast with SGLT2 inhibitors, GLP-1 RAs have only 
a modest effect on the risk of HF hospitalization. For instance, 
in meta-analyses, GLP-1 RAs were associated with a 9% reduc-
tion in the incidence of HHF (HR, 0.91; 95% CI, 0.83 to 0.99) 
[78]. Likewise, for acute decompensated HF, there was no evi-
dence of benefit with respect to HF re-hospitalization for lira-
glutide compared with placebo [81]. Therefore, combining 
GLP-1 RAs with SGLT2 inhibitors in clinical practice may be a 
strategy to leverage the benefits of each agent for MACE and 
HF respectively. Further research is needed to better ascertain 
the overall benefit-risk profile of this approach.

NON-STEROIDAL MINERALOCORTICOID 
RECEPTOR ANTAGONISTS, 
CARDIOVASCULAR AND KIDNEY 
PROTECTION IN PATIENTS WITH T2DM

The case for additional RAAS blockade in diabetic kidney 
disease
RAAS blockade is a pillar of DKD management, with benefits 
demonstrated in clinical trials for both primary and secondary 

prevention [82-86]. However, even when used in conjunction 
with SGLT2 inhibitors, patients with DKD continue to have sig-
nificant residual risk of progression [46,47]. After success in tri-
als with single agent RAAS blockade, interest shifted to dual 
RAAS blockade. The Ongoing Telmisartan Alone and in com-
bination with Ramipril Global Endpoint trial (ONTARGET) 
was one of the earlier trials of dual RAAS blockade, randomiz-
ing 25,000 participants with vascular disease or diabetes to 
ramipril, telmisartan, or both. Dual therapy did reduce protein-
uria to a greater extent, albeit in the context of increased rates of 
kidney function decline, dialysis, or death [87]. The Veteran Af-
fairs-Diabetes in Nephropathy Study (VA-NEPHRON-D) and 
Aliskiren Trial in Type 2 Diabetes Using Cardiovascular and 
Renal Disease Endpoints (ALTITUDE) trials similarly assessed 
combination RAAS blockade but were discontinued early due 
to increased rates of hyperkalemia, AKI, and hypotension 
[88,89]. A role for mineralocorticoid receptor antagonism in 
DKD has been appealing with a strong physiological rationale, 
since mineralocorticoid receptors are widely expressed in kid-
ney and cardiac tissue, and their activation by aldosterone leads 
to hemodynamic and non-hemodynamic effects culminating in 
inflammation, fibrosis, and progression of cardiac and kidney 
disease [90-97]. Until recently, clinical studies of MRA in CKD 
had not looked at ‘hard’ outcomes, although there is increased 
risk of hyperkalemia as demonstrated by a Cochrane review 
summarizing the literature up to but excluding Efficacy and 
Safety of Finerenone in Subjects With Type 2 Diabetes Mellitus 
and Diabetic Kidney Disease (FIDELIO-DKD) [98].

Novel mineralocorticoid receptor antagonists in diabetic 
kidney disease
Considering the uncertainty surrounding the use of traditional 
MRAs in CKD despite the establishment of their therapeutic 
role in HF with reduced ejection fraction, there has been grow-
ing interest in novel MRAs with higher selectivity, potency and 
with reduced risk of hyperkalemia [99]. FIDELIO-DKD was a 
phase 3 trial of finerenone, in addition to standard of care, in 
participants with T2DM, moderately advanced CKD (mean 
baseline eGFR was 44 mL/min/1.73 m2 with a median UACR 
of 852 mg/g) with the majority (87%) having macroalbuminuria 
[100]. The primary outcome was a composite kidney out-
come—kidney failure, sustained ≥40% decline in eGFR, or 
death from renal causes. A secondary composite kidney out-
come identical to the primary outcome but with a 57% decline 
in eGFR was also included. Finerenone significantly reduced 
the incidence of the primary and secondary kidney outcomes by 
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18% and 24% respectively, with a number needed to treat of 29 
patients for the primary outcome. Breaking down the compo-
nents of kidney composite outcomes, finerenone reduced the ≥
57% decline in eGFR outcome by 32% (95% CI, 0.55 to 0.82), 
and the kidney failure/ESKD by 13% (95% CI, 0.72 to 1.05). 
Examining the between-group eGFR differences, after consid-
ering a finerenone associated acute decline in eGFR of 2.5 mL/
min/1.73 m2 compared to placebo, the finerenone group de-
clined by 2.66 mL/min/1.73 m2/year versus a 3.97 mL/min/1.73 
m2/year decline in the placebo group, with a crossing of the 
eGFR curves occurring at approximately 24 months. Finere-
none additionally reduced UACR by 31% versus placebo within 
the first 4 months (95% CI, 0.66 to 0.71) and onwards, and was 
associated with small reductions in blood pressure (Table 1).

In keeping with established links between kidney and CV 
health, finerenone also reduced rates of the CV outcome com-
pared to placebo, an effect that was apparent within a month of 
starting the study drug [100]. Results of the ongoing Efficacy 
and Safety of Finerenone in Subjects With Type 2 Diabetes 
Mellitus and the Clinical Diagnosis of Diabetic Kidney Disease 
(FIGARO-DKD, NCT02545049) trial can be expected to shed 
further light on CV and HF outcomes.

Non-steroidal mineralocorticoid receptor antagonists and 
safety
FIDELIO-DKD did not show an increase in the anticipated ad-
verse events including AKI, breast hyperplasia, or gynecomas-
tia. While finerenone increased the risk of hyperkalemia, the 
risk of it leading to study drug discontinuation was low (2.3% 
with finerenone compared to 0.9% with placebo). Additionally, 
this rate of study drug discontinuation was numerically lower 
compared to rates in prior studies of dual RAAS inhibition (AL-
TITUDE 4.8% and VA-NEPHRON-D 9.9%). Finerenone also 
appears to be safer than steroidal MRAs as demonstrated in the 
ARTS trial where several doses were compared to spironolac-
tone and placebo [101]. While increases in serum potassium 
levels were observed compared to placebo, the increase was 
significantly lower compared to spironolactone at all doses of 
finerenone.

COMBINED USE OF NOVEL AGENTS FOR 
THE TREATMENT OF DKD

SGLT2 inhibitors, GLP-1 receptor agonists and non-steroidal 
MRAs are expected to be increasingly used together in the set-
ting of DKD on a background of single agent RAAS blockade. 

Studies examining the use of these agents together in the setting 
of clinical trials, real world analyses, or mechanistic trials will 
be important to characterize the nature of their combined heart 
and kidney benefits. There is some data on the combined use of 
SGLT2 inhibitors and GLP-1 receptor agonists. The 28-week, 
phase three, Evaluate Efficacy and Safety of Exenatide Once 
Weekly and Dapagliflozin Versus Exenatide and Dapagliflozin 
Matching Placebo (DURATION-8) trial demonstrated that dual 
therapy with dapagliflozin and exenatide had additive effects on 
lowering weight and blood pressure, though with a less than ad-
ditive effect on HbA1c [102]. Additive effects on weight loss 
were similarly demonstrated in the Efficacy and Safety of 
Semaglutide Once-weekly Versus Placebo as add-on to SGLT-
2i in Subjects With Type 2 Diabetes Mellitus (SUSTAIN-9) and 
Dulaglutide as add-on therapy to SGLT2 inhibitors in patients 
with inadequately controlled type 2 diabetes (AWARD-10) tri-
als [103,104]. The effect of such combination therapy on heart 
and kidney outcomes in DKD is unknown, though it is conceiv-
able that additive benefits on weight loss and blood pressure 
would confer additive benefits on harder clinical outcomes (Ta-
ble 1). A propensity-matched cohort from the Exenatide Study 
of Cardiovascular Event Lowering Trial (EXSCEL) trial dem-
onstrated that the addition of exenatide in patients on a back-
ground of SGLT2 inhibition resulted in modest improvements 
in MACE, all-cause mortality and slower rates of renal decline 
compared to patients not on an SGLT2 inhibitor [105]. Results 
of the FLOW trial (NCT03819153) are also anticipated as a 
larger proportion of participants will be expected to be on con-
comitant SGLT2 inhibition. Based on the study design of FIDE-
LIO-DKD, finerenone is intended to be used as add-on therapy 
to ACE inhibition or ARBs, and only a small proportion of par-
ticipants were treated with SGLT2 inhibition due to the era of 
the trial. There additionally exists a safety argument for using 
MRAs in combination with SGLT2 inhibitors to reduce the risk 
of hyperkalemia, since the latter medication class has a modest 
potassium lowering effect as suggested by a recent post hoc 
analysis of MRA use in DAPA-HF [106]. Only 4% to 11% of 
FIDELIO-DKD participants were on an SGLT2 inhibitor over 
the course of the study, and CREDENCE did not enroll partici-
pants taking an MRA at baseline, so there is limited evidence 
for the combined use of these two agents currently. See Fig. 1 
regarding the possible sequential or combined use of these three 
classes of medications, starting with the areas of strongest evi-
dence.
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CONCLUSIONS

The management of DKD has evolved over the last 5 years with 
a renewed emphasis on therapeutic agents associated with heart 
and kidney protection. SGLT2 inhibitors have established bene-
fits on kidney, CV and HF outcomes in the setting of DKD. 
GLP-1 RA therapies have also been noted to have heart and 
kidney protective effects, although benefits in the kidney at this 
time appear to be isolated to preventing the progression of pro-
teinuria, and CV benefits appear to be primarily anti-atheroscle-

rotic rather than on the basis of preventing HHF with SGLT2 
inhibitors. Finally, non-steroidal MRAs are the latest addition to 
the DKD armamentarium with evidence of kidney and CV ben-
efits. Further work is required to determine the impact of com-
binations of these therapies on heart and kidney endpoints in 
patients with diabetes.
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