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Rates of obesity and diabetes have increased significantly over the past decades and the prevalence is expected to continue to rise 
further in the coming years. Many observations suggest that obesity and diabetes are associated with an increased risk of develop-
ing several types of cancers, including liver, pancreatic, endometrial, colorectal, and post-menopausal breast cancer. The path to-
wards developing obesity and diabetes is affected by multiple factors, including adipokines, inflammatory cytokines, growth hor-
mones, insulin resistance, and hyperlipidemia. The metabolic abnormalities associated with changes in the levels of these factors 
in obesity and diabetes have the potential to significantly contribute to the development and progression of cancer through the 
regulation of distinct signaling pathways. Here, we highlight the cellular and molecular pathways that constitute the links between 
obesity, diabetes, cancer risk and mortality. This includes a description of the existing evidence supporting the obesity-driven 
morphological and functional alternations of cancer cells and adipocytes through complex interactions within the tumor micro-
environment.
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INTRODUCTION

The prevalence of obesity and diabetes has risen significantly 
for several decades and is expected to further increase gradual-
ly over the coming years [1]. Epidemiologically, individuals 
with obesity and diabetes are susceptible to an increased risk as 
well as a greater mortality rates for several types of cancers, 
such as endometrial, liver, pancreatic, colorectal, and breast 
cancer [2,3]. Therefore, understanding the molecular mecha-
nisms underlying the epidemiological and mechanistic associ-
ation between obesity, diabetes, and cancer has garnered sig-
nificant attention as a therapeutic area of interest. Growing epi-
demiological evidence is hinting at a causal link between obe-
sity, diabetes, and cancer [4-6]. Interestingly, it is the metabolic 
abnormalities associated with obesity and diabetes that may 
explain the link between metabolic dysregulation and cancer. 
Obesity leads to metabolic abnormalities of adipose tissue, af-
fects the release of various hormones, adipokines, inflammato-
ry cytokines, growth factors, enzymes, and free fatty acids 

[7,8]. These multiple metabolic substrates have been implicat-
ed as risk factors for cancer incidence and mortality [9-11]. In 
addition, the adipocyte-cancer cell crosstalk leads to morpho-
logical and functional changes in adipose tissue, resulting in 
changes to endocrine and paracrine signaling [10,12]. In turn, 
enhanced metabolic substrates released by altered adipose tis-
sue physiology play a role in proliferation, invasion and metas-
tasis of tumor cells [13]. Metabolic disturbances in type 2 dia-
betes mellitus (T2DM), such as hyperinsulinemia and dyslip-
idemia, have been proposed as causal links between diabetes 
and cancer [14,15]. High levels of insulin in hyperinsulinemia 
activate insulin/IGF-signaling and the subsequent activation of 
phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target 
of rapamycin (mTOR) and mitogen-activated protein kinase 
(MAPK) signaling pathways promote cancer cell growth, sur-
vival, motility, and drug resistance [16-19]. In addition, hyper-
lipidemia leads to increased levels of cholesterol and non-es-
terified fatty acids (NEFAs), which are responsible for activa-
tion of oncogenic signaling pathways, membrane synthesis, 
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and adenosine triphosphate (ATP) [14]. Here, we highlight the 
molecular mechanisms that point to a causal link between de-
velopment of cancer and metabolic abnormalities that are as-
sociated with obesity and diabetes.

DYSFUNCTIONAL ADIPOSE TISSUE AND 
CANCER DEVELOPMENT

Obesity alters the metabolic profile of adipose tissue and leads 
to the increased secretion of numerous hormones, adipokines, 
inflammatory cytokines, growth factors, enzymes, and free fat-
ty acids [7,8]. These adipose tissue-specific secreted factors 
contribute to the initiation and progression of several cancer 
types by driving metabolic reprograming of cells [20-22]. 
There is growing awareness of the essential role of adipocyte-
secreted factors from obese adipose for the development and 
progression of cancer. 

Altered adipokine secretion
As a major endocrine organ, adipose tissue produces and se-
cretes a variety of bioactive polypeptides, referred to as adipo-
kines [23,24]. More than 600 adipocyte-enriched secretory 
factors have been discovered to date and adipokines play a 
critical role in maintaining glucose and energy homeostasis, as 
well as a range of metabolic pathways through communication 
with other organs [25]. The excess expansion of adipose tissue 
in obesity alters adipokine secretion and promotes chronic 
low-grade inflammation, thereby contributing to the develop-
ment of metabolic disorders, including obesity and T2DM 
(Fig. 1) [26]. In addition, the dysregulation of adipose tissue-
specific adipokines has an impact on the cellular physiology of 
various tumor cells and affects cancer cell growth, proliferation 
[27], migration, invasion [28], epithelial-mesenchymal transi-
tion (EMT) [29], angiogenesis [29], metastasis [29], and devel-
opment of multidrug-resistance [9,21,30,31]. These altered ad-

Fig. 1. Proposed role of obesity-associated dysfunctional adipose tissue in tumor development and progression. Obesity-associat-
ed systemic metabolic disorders in adipose tissue contribute to the initiation and progression of cancer by producing endocrine 
and paracrine factors and alternation of tumor microenvironment. IGF, insulin-like growth factor; IGFR, insulin-like growth fac-
tor receptor; PI3K, phosphatidylinositol 3‑kinase; MAPK, mitogen-activated protein kinase; IKK, IkB kinase; STAT3, signal 
transducer and activator of transcription 3; IL, interleukin; PAI-1, plasminogen activator inhibitor 1; TNF-α, tumor necrosis 
factor-α; ECM, extracellular matrix.
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ipokine profiles are associated with an altered metabolic state 
and directly provide substrates to help cancer cells meet their 
energy demands for the various biological processes men-
tioned above. Two of the most abundant and well-studied adi-
pokines, adiponectin and leptin, have garnered significant at-
tention in the field of cancer [32]. A number of studies have 
shown that adiponectin plays a protective role against obesity-
associated cancer development and progression [33]. Adipo-
nectin, a 30-kDa adipokine encoded by the ADIPOQ gene, is 
involved in regulating insulin sensitivity, glucose levels, as well 
as fatty acid breakdown [34,35]. Low serum adiponectin levels 
are associated with chronic inflammation and metabolic disor-
ders, including T2DM, obesity, cardiovascular disease, and 
cancer development [35]. Several studies have shown that se-
rum adiponectin levels are inversely associated with the risk of 
developing several types of cancer [36-38]. For example, low 
levels of adiponectin are associated with increased cancer risk, 
while the higher adiponectin levels are linked to a decreased 
cancer risk, and reduced cancer progression [39]. However, 
these effects may be very indirect with high adiponectin levels 
being a correlate to lower body weight, thereby decreasing the 
risk of tumor development. Other studies have shown that 
once an oncogenic mutation has occurred within a tissue, adi-
ponectin can exert a positive effect on tumor growth [40]. Sev-
eral mechanisms have been proposed to explain how adipo-
nectin regulates cellular signaling pathways in cancer. Upon 
binding to its receptors, AdipoR1 and AdipoR2, and the possi-
ble engagement of the adaptor protein, phosphotyrosine inter-
acting with PH domain and leucine zipper 1 (APPL1), adipo-
nectin regulates multiple downstream signaling pathways, in-
cluding adenosine monophosphate-activated protein kinase 
(AMPK), mTOR, PI3K/protein kinase B (AKT), MAPK, per-
oxisome proliferator-activated receptor γ (PPARγ), signal 
transducer and activator of transcription 3 (STAT3), and nu-
clear factor-κB (NF-κB) [41-45]. Further studies are required 
to resolve the heterogeneous effect of adiponectin on tumor 
growth. Leptin is a 16-kDa multifunctional peptide hormone 
produced mainly by adipocytes and regulates food intake and 
energy expenditure to maintain body weight [46]. Plasma 
leptin concentrations increase in proportion to body fat mass, 
and elevated circulating leptin levels are a hallmark of obesity 
[32]. Growing evidence suggests that excess leptin and overex-
pression of its receptor (Ob-R) impacts the signaling pathways 
involved in cell proliferation, migration, invasion, metastasis, 
and EMT in breast cancer [47]. Leptin binds to Ob-R on breast 

cancer cells and within tumor tissue enhances several tumor 
cell responses via aberrant activation of multiple signaling 
pathways, such as the activation of the MAPK kinase (MEK)/
extracellular signal-regulated kinase (ERK)1/2, Jak/STAT3, 
and PI3K/Akt signaling pathways [47]. Leptin and Ob-R are 
known to be expressed in estrogen receptor (ER)-positive 
breast cancer types and enhance ERα-dependent transcription 
to promote cell proliferation [48]. Interestingly, recent studies 
have begun to reveal that Ob-R is also highly expressed in hor-
mone receptor-negative breast cancers, indicating that leptin 
and Ob-R may have a distinct role in the context of hormone-
receptor negative breast cancers [49]. The functional interac-
tions between leptin and Ob-R in the regulation of hormone 
receptor-negative breast cancers are highly intriguing and 
promise to be an excellent area of intervention in future stud-
ies. In addition, the generation and secretion of leptin also in-
creased in epithelial tumor cells and tumor-associated stromal 
cells, suggesting that the production of leptin is not limited to 
adipocytes in the tumor microenvironment [50]. Importantly, 
multiple clinical studies have highlighted that elevated serum 
leptin levels are associated with cancer progression, metastasis, 
and poorer prognosis in patients with various other cancer 
types [47]. Therefore, given their key roles in various cancers, 
leptin and Ob-R are attractive therapeutic targets. As such, the 
inhibition of the leptin/Ob-R interaction and their clinical ap-
plications have attracted substantial interest and opened an-
other avenue for treatment advances with the potential to dra-
matically impact breast cancer.

Insulin resistance
Insulin is a hormone that is produced by β-cells in the pancre-
as and is primarily responsible for stimulating glucose uptake 
and storage to regulate glucose levels in blood [51]. Insulin also 
is involved in evolutionarily conserved pathways, such as cell 
growth, proliferation, and differentiation as well as protein and 
lipid synthesis, RNA and DNA synthesis. Mechanically, insulin 
binds to the insulin receptor (IR), a tyrosine kinase, that stimu-
lates glucose uptake into metabolically active tissues such as 
skeletal muscle, adipose tissue and liver through enhanced 
translocation of the insulin-dependent glucose carrier 4 (glu-
cose transporter 4 [GLUT4]) to the plasma membrane. Insulin 
resistance is clinically defined as the state in which a given con-
centration of insulin exerts a biological effect lower than ex-
pected. Impaired insulin-stimulated glucose uptake as well as 
reduced glucose oxidation and glycogen synthesis are known 
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to be associated with insulin resistance [51]. Frequently, obesi-
ty is associated with development of insulin resistance (Fig. 1). 
Obesity may very well cause insulin resistance through pro-
moting chronic inflammation in adipose tissue, and by in-
creasing insulin secretion in the system, thereby activating 
multiple growth pathways [7]. However, insulin per se can also 
cause obesity due to its nature as a potently anabolic hormone. 
Chronic inflammation, excess insulin secretion and hyperacti-
vation of growth pathways are closely associated with tumor 
development and progression [52]. Thus, obesity-induced in-
sulin resistance plays a pathogenic role in contributing in-
creased higher cancer incidence and cancer‐specific mortality.

Increased inflammatory cytokines
Obesity-associated chronic low-grade inflammation is known 
to be major factor in the development of metabolic disease and 
several types of cancer [9]. Chronic low-grade inflammation is 
characterized by increased infiltration and activation of immune 
cells along with increased local and systemic cytokine levels, 
leading to subsequent immune dysregulation in adipose tissue, 
liver, pancreas, skeletal muscle, and brain. Activation of several 
metabolic signaling pathways including IKKβ/NF-κB and c-Jun 
N-terminal kinase (JNK) pathways by excess nutrients leads to 
initiation of obesity-associated inflammation and a subsequent 
chronic low-grade inflammatory response (Fig. 1) [9]. In 
healthy and lean adipose tissue, M2 macrophages secrete anti-
inflammatory interleukin 10 (IL-10) cytokines, and M2 marker 
genes such as arginase 1 (Arg-1), fizzled, and Ym1 to maintain 
adipose tissue homeostasis [7]. In contrast to lean white adipose 
tissue, macrophages are recruited and infiltrated to white adi-
pose tissue under obesogenic conditions and contribute to in-
sulin resistance through promoting the secretion of proinflam-
matory cytokines, such as tumor necrosis factor-α (TNF-α), IL-
6, IL-1β, interferon γ (IFN-γ). Obese white adipose tissue can 
also shift the polarization of macrophages. During the course of 
obesity, the levels of the broadly defined pro-inflammatory M1 
macrophages increase, leading to adipose tissue inflammation 
and insulin resistance by inhibiting IR signaling [7,53]. En-
hanced secretion of macrophage-derived pro-inflammatory cy-
tokines in obese adipose tissue is a major contributor to the 
pathogenesis of tumor development by activating several sig-
naling pathways, such as the JAK/STAT pathway [9-11,54].

Hormonal disorders 
Aromatase, belongs to cytochrome P450 family of monooxy-

genases, is an enzyme responsible for metabolism and choles-
terol/steroid synthesis including estrogen biosynthesis [55]. 
Obesity has been associated with abnormally high aromatase 
expression in mammary tissues, which is synthesized in undif-
ferentiated pre-adipocytes and adipose fibroblasts in post-
menopausal women (Fig. 1) [2]. Obesity is associated with ele-
vated expression and secretion of proinflammatory cytokines, 
such as TNF-α and IL-6 in adipose tissue, which contributes to 
increased aromatase expression in adipose tissue [56]. Elevated 
expression of aromatase in breast adipose tissue promotes the 
conversion of androgen to estrogen, leading to increased local 
estradiol concentrations and ERs activation [57-60]. Estrogens 
exert their biological functions via ERs that are ligand-depen-
dent transcription factors that activate genes that are involved 
in cell proliferation, differentiation, apoptosis, and cell migra-
tion [61]. Dysregulated actions of ERα signaling are associated 
with breast cancer initiation and development [61,62]. ER+ tu-
mors typically receive their growth signal from estrogen to 
promote cellular growth. In postmenopausal women, estrogen 
is mainly produced in peripheral tissues via the enzyme aro-
matase, thus inhibition of aromatase activity is often an effec-
tive treatment for ER+ tumors. Collectively, systemic and local 
estrogen production by aromatase in obese individuals con-
tributes to the risk of hormone-dependent cancers. Therefore, 
inhibition of aromatase activity in the breast tissue is an estab-
lished and effective treatment to curb the growth of estrogen-
receptor-positive breast cancers.

Alternations in the tumor microenvironment 
The mutual interactions between tumor cells and their adja-
cent microenvironment that result in a loss of tissue homeosta-
sis imposed by changes in tissue architecture and polarity 
[63,64]. The tumor microenvironment has been recognized as 
a key contributor to many aspects of cancer development [65]. 
The extracellular matrix (ECM) and hypoxia have been widely 
demonstrated to play a critical role in the regulation of the tu-
mor microenvironment. The main components of the ECM 
include various proteoglycans and fibrous proteins such as col-
lagens, fibronectin, elastin, hyaluronan, and laminin. The ECM 
is one of the essential components of the tumor microenviron-
ment, providing structural and mechanical support to tumor 
cells [66-68]. It is well established that tumor-driven ECM re-
modeling alters the biochemical and mechanical properties of 
the tumor microenvironment to create a favorable microenvi-
ronment for tumor cell growth, migration and metastatic pro-
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gression [69-71]. The high oxygen demand of rapidly prolifer-
ating cancer cells causes an insufficient oxygen supply to the 
tumor, which becomes hypoxic [72]. Hypoxia is a well-known 
characteristic of the tumor microenvironment and promotes 
tumor angiogenesis, metastasis, reprogramming of metabo-
lism, and resistance to therapy [73]. Emerging studies suggest 
that hypoxia also inhibits anti-tumor immune cells, which al-
lows tumor cells to evade the immune system, thus establish-
ing an immunosuppressive tumor microenvironment [74-77].

Obesity can influence the tumor microenvironment through 
dysfunctional adipose tissue and altered extracellular signals, 
thus promoting tumor growth, proliferation, angiogenesis, in-
vasion, migration, and metastasis in breast cancer (Fig. 1) 
[13,78]. During obesity, vascular dysfunction is impaired and 
creates pockets of hypoxia. Adipose tissue hypoxia establishes 
a highly proinflammatory microenvironment, which is a fa-
vorable microenvironment for tumor promotion [65]. Dys-
functional adipose tissue leads to dysregulated adipokine pro-
duction, preferentially releasing proinflammatory adipokines 
[23]. This adipokine imbalance is closely associated with insu-
lin resistance, lipolysis and pro-inflammatory signaling path-
ways, contributing to a favorable microenvironment for tumor 
growth and progression. In addition, macrophage infiltration 
into obese adipose tissues promote ECM remodeling through 
elevation of several ECM components, thereby providing a tu-
mor-friendly environment [21]. 

Activation of mitogenic signaling pathways 
Obesity induces multiple intracellular signaling pathways 
through elevation of various signaling molecules including in-
sulin, leptin and adiponectin (Fig. 1) [8]. Insulin and insulin-
like growth factor-1 binding to their receptors (IR/IGF-1R), 
activating the PI3K/AKT/mTOR pathway, driving cell prolif-
eration, invasion and metastasis [79-81]. Higher circulating 
levels of leptin secreted by obese adipose tissue binds to its 
cognate receptor (Ob-R), activating multiple signaling path-
ways, such as the JAK-STAT, PI3-kinase-AKT, and MAPK 
pathways, resulting in increased proliferation, migration and 
invasion of breast cancer cells [82,83]. In addition, bidirection-
al crosstalk between leptin and IGF-1 signaling plays an im-
portant role in obesity-associated breast cancer progression 
through epidermal growth factor receptor (EGFR) transactiva-
tion [84]. Adiponectin is known to inhibit tumor development 
and growth through activation of AMPK and subsequent 
downregulation of the MAPK pathway [36,85]. In addition, el-

evated glucose levels potentiate Wnt/β-catenin signaling 
through promoting the nuclear translocation of β-catenin [86]. 
Activation of the Wnt/β-catenin pathway enhances hypoxia-
inducible factor 1α (HIF1α)-activated gene expression, there-
by promoting cell survival and angiogenesis during hypoxia.

INTERACTION BETWEEN OBESITY AND 
CANCER

The crosstalk between adipose tissue and tumors in the 
obese state 
Altered adipose tissue homeostasis in obesity can provide fac-
tors such as hormones, adipokines, and cytokines that assist 
cancer cells in acquiring the increased metabolic and energy 
demands mentioned above (Fig. 2) [7,9,56]. The crosstalk be-
tween cancer cells and adipocytes within the tumor microen-
vironment leads to further morphological and functional al-
teration of both cell types [10,78,87]. During interactions with 
cancer cells, adipocytes acquire phenotypic changes, including 
delipidation through multiple bioactive factors released by the 
cancer cells, resulting in a significantly decreased the expres-
sion of adipocyte-specific genes such as adiponectin, leptin, 
fatty acid-binding protein-4 (FABP4) [56]. Compared to nor-
mal adipocytes, this fibroblast-like phenotype of adipocytes is 
referred to as cancer-associated adipocytes (CAAs) [78]. Con-
tinuous stimulation of CAAs by paracrine signals from cancer 
cells leads to secretion of free fatty acids, inflammatory cyto-
kines, adipokines, and growth factors, establishing a favorable 
tumor microenvironment which is an integral part of cancer 
development. Therefore, a greater understanding of functional 
crosstalk between CAA and cancer cell and new strategies for 
blocking this interaction may be an effective/attractive thera-
peutic target for treatment of cancer.

Cancer metabolic reprogramming by adipokines 
Cancer cells undergo reprogramming of glucose metabolism 
by increasing glucose uptake and glycolytic activity in the pres-
ence of oxygen (referred to as the Warburg effect) [88]. Grow-
ing evidence suggest that this glucose metabolic reprograming 
is driven by various adipose tissue-specific secreted factors. For 
example, leptin is known to promote glycolysis by stimulating 
key glycolytic enzymes and GLUTs, hexokinase, the M2 iso-
form of pyruvate kinase (PKM2), lactate dehydrogenase A 
(LDHA), and glucose-6-phosphate dehydrogenase (G6PDH) 
through PI3K/Akt activation [89-91]. Recent studies have re-
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vealed that p62 deficiency in adipose tissue supports nutrient 
availability for cancer cells through inhibition of energy-utiliz-
ing pathways in adipocytes [92]. Loss of p62 from adipose tis-
sue leads to increased levels of osteopontin, an adipokine that 
subsequently enhances tumor cell fatty acid oxidation. Fatty 
acid oxidation provides the energy necessary for cancer cells to 
support tumorigenesis and cancer progression. These observa-
tions indicate a central role of adipose tissue-specific secreted 
factors in the regulation of cancer cell metabolic reprogram-
ming (Fig. 2).

T2DM AND CANCER DEVELOPMENT

Diabetes mellitus (DM) is one of the most prevalent chronic 
metabolic disorder characterized by hyperglycemia [3]. Dys-
function of pancreatic insulin-producing β-cells and insulin 
resistance mainly leads to hyperglycemia, resulting in increased 
risk of T2DM development [93]. T2DM is most common form 
of DM, which accounts for around 90% of all cases of diabetes 
[93]. T2DM may be associated with increased risk, accelerated 
progression and greater mortality rates of several types of can-
cer such as liver, pancreatic, endometrial, colorectal, and breast 
cancer [3,94,95]. Anti-diabetic drugs, such as metformin, have 

recently attracted considerable interest and opened a promis-
ing avenue of research that has the potential for the treatment 
of breast and colorectal cancers due to their proposed anti-can-
cer properties [95-98]. In the following section, we discuss the 
various mechanism by which metabolic disturbances in 
T2DM, such as dyslipidemia, hyperinsulinemia, and hypergly-
cemia, may lead to the development of breast cancer.

Hyperinsulinemia 
Hyperinsulinemia is characterized by chronically elevated in-
sulin in the blood due to dysregulated insulin secretion and/or 
clearance [93]. Higher levels of the IR and increased circulat-
ing insulin are important factors that drive the risk of develop-
ing several cancers in T2DM patients (Fig. 3) [99-102]. Bind-
ing of insulin to IR leads to activating tyrosine kinase activity 
of the IR, resulting in tyrosine phosphorylation of IR substrate 
and subsequent activation of PI3K/Akt pathway which is re-
sponsible for most metabolic and mitogenic effects of insulin 
[103]. Activation of IR/PI3K/Akt signaling pathway directly 
phosphorylates and thus activates mTOR. mTOR then acti-
vates its downstream signaling pathway, which is involved in 
regulating cancer cell survival, proliferation, invasion, migra-
tion, differentiation, angiogenesis, and metastasis [103,104]. In 

Fig. 2. Adipocyte/cancer cell crosstalk in the obese state. Obesity increases the risk of developing of cancer by promoting multiple 
metabolic abnormalities of adipose tissue. In turn, cancer cells also induce morphological and functional changes in adipose tis-
sue, which promote invasive and metastatic phenotypes of cancer. ECM, extracellular matrix.
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addition, activation of IR/PI3K/Akt signaling pathway stimu-
lates β-catenin translocation into the nucleus, increases the 
levels of vascular endothelial growth factor (VEGF), thus im-
pacts the various tumor cell behaviors [105,106]. The IGFs are 
peptide hormones with high structural and functional similar-
ity to insulin [103]. Binding of IGFs to their receptors (IGFRs) 
activates the intrinsic tyrosine kinase activity of receptor and 
initiates an intracellular signaling cascade, thereby play impor-
tant roles in growth and development of many organs. Insulin 
and IGFs are able to bind to each other’s receptors, IR and IG-
FRs, and thus activate common downstream signaling includ-
ing PI3K/Akt pathway and MAPK pathway [103,107]. High 
levels of insulin can lead to binding and activation of IGFRs 
signaling as well as an increase in the levels of bioactive IGFs, 
thus playing an essential role in cancer cell growth, survival, 
motility, and drug resistance.

Hyperlipidemia 
Dyslipidemia is often observed in patients with obesity, 
T2DM, and cardiovascular diseases [108]. Hyperlipidemia is 
characterized by alterations in circulating lipids with elevated 

low-density lipoprotein cholesterol, high levels of triglycerides, 
and low high-density lipoprotein cholesterol. Increased levels 
of cholesterol and NEFAs can indirectly act as signaling mole-
cules involved in activation of intracellular signaling pathways 
such as the Akt/mTOR and Akt/glycogen synthase kinase 3β 
(GSK3β)/β-catenin oncogenic pathway (Fig. 3) [14]. 27-Hy-
droxycholesterol (27HC) is a primary metabolite of cholester-
ol, generated upon exposure to cytochrome P450 oxidase ste-
rol 27-hydroxylase A1 (CYP27A1), an enzyme involved in reg-
ulating cellular cholesterol homeostasis [18]. 27HC acts as an 
ER agonist to activate ER related signaling mechanisms, such 
as the Akt/mTOR pathway or Akt/GSK3β/β-catenin, thereby 
stimulating cell proliferation and protein synthesis in ER-posi-
tive breast cancers (Fig. 3) [109,110]. High levels of CYP27A1 
expression correlate with high-grade tumors in human breast 
cancer specimens, and inhibition of CYP27A1 reduces tumor 
growth in hormone-dependent breast cancers [111,112]. Inter-
estingly, the expression of 27HC is different in various obesity 
models such as diet-induced obesity, db/db mice, and ob/ob 
mice. Therefore, future studies should address the how the dy-
namic changes of 27HC expression under different obesity 

Fig. 3. Possible molecular mechanisms for a direct link between diabetes and cancer. Diabetes-associated metabolic disturbances 
including hyperinsulinemia and dyslipidemia have been proposed as a causal link between diabetes and cancer. MF, metformin; 
DM, diabetes mellitus; IGF, insulin-like growth factor; PI3K, phosphatidylinositol 3‑kinase; MAPK, mitogen-activated protein 
kinase; NEFA, non-esterified fatty acid; PKC, protein kinase C; mTOR, mammalian target of rapamycin; GSK3β, glycogen syn-
thase kinase 3β; ATP, adenosine triphosphate.
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conditions affect ER-positive breast cancer development [113]. 
The protein kinase C θ (PKCθ) is activated by elevated levels of 
serum NEFAs, which causes activation of Akt/mTOR and Akt/
GSK3β/β-catenin oncogenic pathway [114,115]. Therefore, re-
ducing the circulating levels of cholesterol and NEFAs and in-
terfering activity of CYP27A1 and PKCθ present potential 
strategies for curbing breast cancer growth. Cholesterol is an 
integral component of membranes and lipid rafts in highly 
proliferative cancer cells [116]. In addition to the regulation of 
cellular signaling pathways, cholesterol also serves as the pre-
cursor for steroid hormone synthesis, which drives the initia-
tion and progression of several cancers, indicating that cancer 
cells require cholesterol for tumor growth and survival [117]. 
Elevated NEFA levels in cancer are responsible for generation 
of ceramides. Ceramide glycosylation by glucosyl ceramide 
synthase (GCS) confers upon cancer cells multidrug resistance 
to cytotoxic anticancer agents [14,118]. In addition, NEFAs are 
also involved in ATP generation through the β oxidative path-
way as well as synthesis of signaling and membrane lipids to 
support cancer cell proliferation and tumor growth [14].

The potential effect of diabetes medication metformin in 
cancer prevention 
A series of studies have assessed whether the use of insulin-
sensitizing medications, such as metformin [95-98,119-124] 
and thiazolidinediones (TZDs) [119,120,125,126], may lower 
the incidence of cancer in diabetic patients (Fig. 3). Metformin 
is a first-line pharmacological treatment for T2DM and reduc-
es hepatic glucose production by decreasing hepatic gluconeo-
genesis, resulting in increasing insulin sensitivity [127]. Multi-
ple mechanistic studies with metformin in vitro and in animal 
models have elucidated the molecular mechanisms that under-
lie the action of metformin [127]. In particular, one major ef-
fect of metformin has been proposed to be the suppression of 
mTOR signaling pathway. Metformin reduces the circulating 
levels of insulin and IGF-1 in peripheral blood and activates 
liver kinase B1 (LKB1)/AMPK signaling pathways, leading to 
inhibition of the mTOR pathway, thus reducing cell prolifera-
tion, protein translation, and insulin levels [128]. However, the 
possible role of metformin as preventive agent against cancer 
in patients remains controversial and now is being extensively 
studied. A multiple population-based cohort study in patients 
with diabetes indicated that metformin therapy was not signif-
icantly associated with a reduced risk of cancer among patients 
with diabetes [129-131]. Further prospective mechanistic and 

large population-based cohort studies will be required to eval-
uate the effect of metformin therapy in cancer incidence.

Thiazolidinediones 
TZDs, PPARγ agonists, are insulin-sensitizing medications 
that reduce insulin resistance and decrease hepatic glucose 
production agents in T2DM [132]. In addition to their essen-
tial metabolic actions in T2DM, TZDs have been shown to ex-
ert anti-tumor effects by affecting the cell cycle, apoptosis and 
cell differentiation in several types of cancer including breast 
and colon cancer [133]. However, multiple clinical studies re-
vealed that treatment with TZDs was not associated with a sig-
nificantly anti-neoplastic effect in several cancers [134-136]. 
Therefore, further large-scale prospective studies will likely 
need to resolve these inconsistencies.

CONCLUSIONS

The growing prevalence of obesity and diabetes are closely 
linked to an increased incidence and mortality of many types 
of cancer [2-4,9,56,94]. The multiple metabolic factors and dis-
orders linking obesity and T2DM with cancer that are broadly 
discussed in this review may be important for determining the 
therapeutic potential of cancer treatment. Altered adipose tis-
sue metabolism in obesity results in altered levels of multiple 
factors, such as hormones, adipokines, inflammatory cyto-
kines, growth factors, enzymes, and free fatty acids to help 
cancer cells satisfy their metabolic and energy demands 
[7,13,24]. Adipocytes also acquire phenotypic changes through 
multiple bioactive factors released by surrounding cancer cells, 
resulting in significantly increased secretion of many metabol-
ic substrates [30,78,87]. This adipocyte/cancer cell crosstalk 
within the tumor microenvironment leads to further morpho-
logical and functional alterations of both cell types, which is 
gradually being recognized as an integral part of cancer devel-
opment and progression. However, many important questions 
remain regarding the molecular fingerprint and the biological 
roles of such a crosstalk in promoting cancer development and 
progression. Therefore, (1) a more in-depth understanding of 
how adipocytes interact with tumor cells and contribute to 
cancer development and progression is required; (2) identifica-
tion of specific targets that can serve as promising avenues to 
limit tumor proliferation need to be identified; (3) determina-
tion of new strategies to block this interaction could be an ef-
fective/attractive therapeutic strategy in the treatment of can-
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cers. T2DM is the most common form of diabetes that appears 
to be associated with an increased risk of several types of can-
cer due to its associations with multiple metabolic disturbances 
[94,95]. Various metabolic disturbances involved in the devel-
opment of diabetes, such as dyslipidemia and hyperinsu-
linemia, are well established to lead to the development of a 
cancer-conducive microenvironment. Based on these observa-
tions, a series of studies suggest that the use of anti-diabetic 
drugs, e.g., metformin, may have the potential to reduce the 
cancer incidence and/or mortality in diabetic patients. Mecha-
nistically, metformin reduces the circulating levels of insulin 
and IGF-1, thus inhibiting the mTOR pathway and subsequent 
cancer cell proliferation [128]. Given the potential of metfor-
min for cancer therapy, metformin has attracted increased at-
tention and opened new avenues in cancer treatment due to 
their proposed anti-cancer properties. In contrast, a recent a 
population-based cohort study indicated that metformin use 
was not associated with significantly decreased risk of cancer 
among patients with diabetes [129-131]. Based on large popu-
lation-based cohort studies, further insights into the potential 
utility of metformin will be required to evaluate the effect of 
metformin therapy in cancer incidence.
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