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Introduction
Since 1986, non-cardiac drugs, mainly terfenadine and as-

temizole, have been reported to cause QT prolongation and, 
in some cases, Torsade de Pointes (TdP).[1] Terfenadine and 
astemizole were withdrawn from the market in 1998 and 1999, 
respectively, because of the risk of cardiac arrhythmia.[2] There-
after, the drug-induced QT prolongation has become important 
in the drug development industry. This issue has been identified 
as a considerable public health problem and has received atten-
tion from the drug regulatory authorities. Regulatory authori-
ties have focused on identifying the risk of TdP during nonclini-
cal and clinical development of a drug.

International Council for Harmonization (ICH) has devel-

oped guidelines for safety pharmacology study of a new drug to 
assess cardiovascular safety to protect patients from the risk of 
adverse cardiovascular events. In 2005, ICH established guide-
lines; “The nonclinical evaluation of the potential for delayed 
ventricular repolarization (QT interval prolongation) by human 
pharmaceuticals (S7B)” for non-clinical evaluation and “The 
clinical evaluation of QT/QTc interval prolongation and proar-
rhythmic potential for non-antiarrhythmic drugs (E14)” for 
clinical evaluation.[3,4] These guidelines were recommended 
for adoption to the regulatory bodies of the European Union, 
Japan, and the USA. As described in ICH S7B and E14 guide-
lines, current paradigm to assess the risk of drug-induced TdP 
is performed on a prolongation of the QTc interval shown on 
the electrocardiogram (ECG) and blockade of human ether-à-
go-go-related gene (hERG) channel, which is considered as one 
of the important ion channels associated with rapidly activating 
delayed rectifier potassium current IKr.[5] The implementation 
of the ICH guidelines has been successful in preventing the in-
troduction of potentially torsadogenic drugs to the market, and 
thereafter, no drug has been withdrawn from the market due to 
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TdP risk.[6] However, by focusing on hERG blocks and QT pro-
longation as essential determinants of arrhythmic risk, drug de-
velopment can be restricted unexpectedly by increasing risk for 
drugs that may not actually be toxic. More mechanistic-based 
approach for assessing multichannel interactions was needed to 
determine the actual TdP proarrhythmic risk.[7]

The Comprehensive in vitro Proarrhythmia Assay (CiPA) ini-
tiative, a partnership between Food and Drug Administration 
(FDA) and several agencies and consortia, including Health 
Canada, the European Medicines Agency, and Japan’s National 
Institute of Health Sciences, is an effort to overcome limita-
tions of the current assessment model.[8] The objective of CiPA 
initiative is to facilitate the adoption of a new paradigm for as-
sessment of the clinical potential of TdP that is not measured 
exclusively by the potency of hERG block and not at all by QT 
prolongation. Because of the complexity of the task proposed, 
four work streams that focus on each component of the project, 
ion channel, in silico, myocyte and early phase human ECG, 
have been established.[9] For the ion channel work stream, 
seven important ionic currents playing important roles in 
generation of action potential were selected - the rapid inward 
sodium current (INa), the late sodium current (INaL), L-type 
calcium channel (ICaL), multiple outward potassium currents 
comprising the transient outward current (Ito), the slow (IKs) 
and rapid (IKr) components of the delayed rectifier potassium 
channels, and the inward rectifier channel (IK1)[9] – and volt-
age clamp protocols for the core set of cardiac ion channel types 
have been developing. For the in silico workstream, a consensus 
in silico model has been developed to reconstruct electrophysi-
ologic activity within a heart cell. For the myocyte work stream, 
capabilities of human stem-cell derived cardiomyocyte assays 
have been investigated to confirm findings from in vitro and 
in silico assays. For the early phase human ECG work stream, 

phase I ECG working group investigated new ECG biomarkers 
to determine if there are unexpected ion channel effects in hu-
mans compared to the preclinical ion channel data.[7,10] 

The CiPA paradigm will be driven by a suite of mechanisti-
cally based in vitro assays coupled to in silico reconstructions of 
cellular cardiac electrophysiologic activity, with verification of 
completeness through comparison of predicted and observed 
responses in human-derived cardiomyocytes and early phase 
human ECG data.[10] Hence, the component of CiPA is to 
develop a standardized and reliable in silico model and a metric 
that can quantitatively evaluate cellular cardiac electrophysi-
ologic activity and ultimately assess the risk of cardiotoxicity.

Basic principles of CiPA in silico study
There have been several attempts to assess TdP risk using in 

silico models, but they were limited to simulating drug effects 
using the half-maximal blocking concentration (IC50) for dif-
ferent drugs, which assumes simple pore block of the ion chan-
nels and neglects any intricacies of drugs ion channel interac-
tions that may be important factors in predicting relative TdP 
risk.[11,12] In CiPA, in silico ventricular action potential (AP) 
model and a mechanism-based metric for TdP risk stratifica-
tion were investigated for a more physiologic and pharmacody-
namic assessment model. Twenty-eight drugs with well-known 
characteristics were selected and divided into 12 training drugs 
and 16 validation drugs for development and validation of an in 
silico model (Table 1).

The CiPA AP model was developed through a series of modi-
fications to the O’Hara-Rudy (ORd) human ventricular AP 
model (Fig. 1).[13] A novel hERG/IKr dynamic model was 

Table 1. CiPA drugs selected for model development by the clinical 
transitional working group. The drugs are divided into 12 training drugs 
and 16 validation drugs with well-known Torsade de Pointes risk (high/
intermediate/low risk)

Type High TdP risk
Intermediate  

TdP risk
Low TdP risk

Training Bepridil Chlorpromazine Diltiazem

Dofetilide Cisapride Mexiletine

Quinidine Terfenadine Ranolazine

d, l-Sotalol Ondansetron Verapamil

Validation Azimilide Astemizole Loratadine

Ibutilide Clarithromycin Metoprolol

Vandetanib Clozapine Nifedipine

Disopyramide Domperidone Nitrendipine

Droperidol Tamoxifen

Pimozide

Risperidone

Figure 1. Schematic diagram of O’Hara-Rudy human ventricular myo-
cyte model. Among various ion currents in the model, in silico studies 
in CiPA focus on the seven major ion currents: IKr, IKs, ICaL, INaL, 
INa, Ito and IK1. IKr/hERG, rapid delayed rectifier potassium current 
that flows through the hERG channel; IKs, the slow rectifier potassium 
current; ICaL, the L-type calcium current; INa, the peak sodium current; 
INaL, the late sodium current; Ito, transient outward potassium current; 
IK1, inwardly rectifying potassium current. Adapted from ref. 13.
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developed by combining a Markov model of the hERG chan-
nel that includes temperature-sensitive gating pharmacological 
components representing open (IO, O) or closed (IC1, IC2, 
C1, C2) state of hERG channel and a pharmacodynamic model 
applying drug binding (IO* and O*) and trapping (C*) compo-
nents (Fig. 2). The hERG/IKr model was then incorporated into 
the ORd AP model to produce the IKr-dynamic ORd model. 
Optimization of the model was conducted by scaling ionic cur-
rent conductances to better reflect changes in AP duration ob-
served in human ventricular myocytes when ionic currents were 
blocked. The optimized IKr-dynamic ORd model was adopted 
as a CiPAORdv1.0 model for validation.[14] From this model, 
in silico biomarker for TdP risk, qNet metric, was derived.[15] 
As CiPA in silico model aims to assess the integrated effects of 
multiple ion channel block on TdP risk, uncertainty in drug ef-
fects on ion channels to account for variations in experiments is 
characterized by incorporating uncertainty quantification into 
modeling predictions.[15,16] 

Simulating drugs’ influence on action potential in human 
ventricular cells takes three steps: 1) Finding drug binding 
kinetics parameters of the hERG channel gating model. The 
non-parametric bootstrap method is used to obtain the joint 
sampling distribution of drug-hERG parameters. 2) Finding the 
joint probability distribution comprised of sample’s parameter 
estimation and confidence interval using Markov-chain Monte 
Carlo (MCMC) simulation in Hill Equation for the remaining 
six ion currents. 3) Simulating AP in CiPAORdv1.0 model with 
the joint distributions attained from the previous steps. This 
software is written in R programming language except for dy-

namic hERG model and CiPAORdv1.0 model equation parts, 
which are written in C programming language to improve com-
puting performance. Note that because step 3, AP simulation, 
uses the results of the prior steps, it must be done after both step 
1 and 2 is conducted. Step 1 and 2 are interchangeable.

hERG fitting step
The dynamic hERG model has 51 parameters. Only five 

parameters among them are estimated, and the others are 
fixed. The estimated parameters are Kmax (maximum drug 
effect at saturating concentrations), Ku (rate of drug unbind-
ing), n (Hill coefficient of drug binding), halfmax (EC50n, 
nth power of the half-maximal drug concentration), and 
Vhalf-trap (membrane voltage at which half of the drug-bound 
channels are open) (Table 2).[17] The hERG model is defined 
by ordinary differential equations and solved with lsoda solver 
that selects automatically between stiff and non-stiff methods 
to solve problems. CMA-ES (Covariance Matrix Adaptation-
Evolutionary Strategy) algorithm, which is a stochastic and 
derivative-free global optimization algorithm for non-linear or 
non-convex continuous optimization problems, was selected 
for fitting the hERG model. Model optimization was performed 
with a population size of 80 and 10–3 of stopping tolerance to 
minimize objective function value. All parameters to be esti-
mated are encoded logarithmically from their selected ranges [a, 
b] to the range [0, 10], with the equation below:

𝑓𝑓(𝑥𝑥) = 10 ∗ log10
(𝑥𝑥 𝑥𝑥⁄ )

log10(𝑏𝑏 𝑏𝑏⁄ ) 

Figure 2. Structure of the hERG Markov model and equation of transition rate affected by temperature. The transition between adjacent states is a 
first order reaction dependent on membrane voltage, temperature and three free parameters A, B, and q. Each state transition has a different set of 
free parameters that are fixed and distinguished from each other by numeric suffixes. R, state transition rate; V, membrane potential (electrical field 
across the channel); A and B, energy barrier height in the absence and presence of electrical field, respectively; T, temperature; q, commonly used 
temperature extrapolating Q10 value defined as the change in rate for each 10°C change in temperature. The hERG Markov model in CiPA in silico 
assay includes a saturating drug binding component (IO* and O*) and a drug trapping component (C*). The fitted drug parameters are Ku (drug 
unbinding rate), Kmax (maximum drug effect), n (Hill coefficient of drug binding), halfmax (EC50n, nth power of the half-maximal drug concentration), 
and Vhalf-trap (membrane voltage of half of drug-bound channels opening). Emax is a sigmoid model describing the concentration-response of each 
drug and D is the drug concentration in nM containing. The trapping rate (Kt) of channel closing with drug bound was manually fixed at 3.5×10-5 ms-1. 
Modified from ref. 14 and ref. 17.
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The hERG channel in vitro data used to the model fitting 
should have columns of time, time in milliseconds (ms) during 
the sweep; frac, fractional current; conc, drug concentration 
in nM; exp, experiment (cell) number; sweep, the sweep num-
ber. A sweep is equivalent of a single pulse of heart and it also 
equates to one episode in modeling. The data is resampled by 
non-parametric bootstrapping in order to characterize uncer-
tainty to the parameters of hERG model. In the software devel-
oped by Kelly Chang et al., the number of bootstrap samples 
can be manually set. Prior to performing model fitting for the 
bootstrap datasets, optimal parameters must be predicted using 
original data by running the hERG fitting code without any op-
tions. The optimal parameter is used as initial values of model 
parameters for the bootstrap samples.

Objective function used to optimize the model comprises of 
components comparing differences between observed value and 
predicted value of the fitted dynamic hERG model. The objec-
tive function formula used for model fitting can be described as 
below.

𝐎𝐎𝐎𝐎𝐎𝐎 𝐎 𝐎𝐎𝐎𝐎𝑶𝑶𝑶𝑶𝑶𝑶𝒊𝒊 − 𝒚𝒚𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒊𝒊 )
𝟐𝟐

𝑵𝑵

𝒊𝒊𝒊𝒊𝒊
+ 𝟎𝟎𝟎 𝟎𝟎 𝟎 𝑵𝑵

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ∗∑  (𝒚𝒚𝑶𝑶𝑶𝑶𝒔𝒔𝒋𝒋,   𝒓𝒓𝒓𝒓𝒓𝒓(𝟏𝟏𝟏𝟏𝟏𝟏𝟏) − 𝒚𝒚𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒋𝒋,   𝒓𝒓𝒓𝒓𝒓𝒓(𝟏𝟏𝟏𝟏𝟏𝟏𝟏))
𝟐𝟐

𝒏𝒏

𝒋𝒋𝒋𝒋𝒋
+

𝟎𝟎𝟎 𝟎𝟎 𝟎 𝑵𝑵
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ∗∑  (𝒚𝒚𝑶𝑶𝑶𝑶𝒔𝒔𝒋𝒋,   𝒓𝒓𝒓𝒓𝒓𝒓(𝟏𝟏𝟏𝟏𝟏) − 𝒚𝒚𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒋𝒋,   𝒓𝒓𝒓𝒓𝒓𝒓(𝟏𝟏𝟏𝟏𝟏))

𝟐𝟐
𝒏𝒏

𝒋𝒋𝒋𝒋𝒋
+ 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞

N: the total number of data points used across all doses and all 
episodes

conc: the total number of drug concentrations

n: the number of drug concentrations where at least 50% block 
were achieved

rel(peak1, peak2): relative reduction between peak currents in 

the episodes (
peak1-peak2

peak1
)

N is the total number of selected data points across all of doses 
and episodes. yobs are mean values of bootstrap samples at the 
specific time points at the same drug concentration and epi-
sode, and yPred are predicted values at the same time points of 
the model fitted by yobs. Small n is the number of examined drug 
concentrations, and the second and third components in the 
formula describe the relative reduction of ion current through-
out the sweeping procedure to add trapping errors in the func-
tion.[17] yObs,rel(1,10) in the second term are relative reductions of 
the first peak currents between the observed mean values of 1st 
episode and 10th episode at the specific drug concentrations, 
and yPred,rel(1,10) are relative reductions of the first peak currents 
between corresponding simulated values of 1st episode and 
10th episode. yObs,rel(1,2) in the third term are relative reductions of 
the first peak currents between the observed mean values of the 
1st episode and 2nd episode at the specific drug concentrations, 
and yPred,rel(1,2) are relative reductions of the first peak currents 
between corresponding simulated values of 1st episode and 2nd 
episode. The two components weigh 0.2*N/conc. Negative error 
term imposes a penalty to the negative ion current for the nega-
tive constraint violation at the same drug concentration.

As the model fitting of several parameters and large samples 
is computationally intensive, using the computing resource in 
parallel is recommended. It is the reason for using bootstrap 
fitting that the method is easier to use parallelization. Optimal 
parameters and bootstrap parameters for joint sampling distri-
butions are generated as the result data of hERG fitting. A post-
process that combines the parameters for an AP simulation step 
is included in the hERG fitting step.

Hill fitting step
For non-hERG ionic currents, Hill equation representing the 

drug-response curve is used for the model. Non-hERG channel 
in vitro data includes variables of drug names, conc (drug con-
centration in nM), channel (name of ionic current tested) and 
block (amount of block (%)). Two parameters IC50 and h (Hill 
coefficient) are estimated by Hill fitting. 

The uncertainty of these parameters is characterized using a 
Bayesian inference approach. MCMC simulation with the de-
layed rejection and adaptive Metropolis algorithm is performed 
to estimate uncertainty in Hill equation parameters using the 
FME R package.[15] Simulations are performed using model 
residual function and initial values. The residual function of the 
model is below:

Residual =  yObs − 100 ∗ ( conch

conch + IC50h ) 

Table 2. Parameters of dynamic hERG model. A total of 51 parameters 
with 46 fixed parameters (Five parameters in bold style are estimated 
in hERG fitting step)

Parameters

A1 = 0.0264 B1 = 0.00004631 q1 = 4.843

A2 = 0.000004986 B2 = –0.004226 q2 = 4.23

A3 = 0.001214 B3 = 0.008516 q3 = 4.962

A4 = 0.00001854 B4 = –0.04641 q4 = 3.769

A11 = 0.0007868 B11 = 1.535E-08 q11 = 4.942

A21 = 0.000005455 B21 = –0.1688 q21 = 4.156

A31 = 0.005509 B31 = 7.771E-09 q31 = 4.22

A41 = 0.001416 B41 = –0.02877 q41 = 1.459

A51 = 0.4492 B51 = 0.008595 q51 = 5

A52 = 0.3181 B52 = 3.613E-08 q52 = 4.663

A53 = 0.149 B53 = 0.004668 q53 = 2.412

A61 = 0.01241 B61 = 0.1725 q61 = 5.568

A62 = 0.3226 B62 = –0.0006575 q62 = 5

A63 = 0.008978 B63 = –0.02215 q63 = 5.682

Kmax = 0 halfmax = 1 T = 37

Ku = 0 Kt = 0.000035 timeout = 30

n = 1 Vhalf-trap = 1 starttime = 0
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yObs: observed percentage block
conc: drug concentration
h: Hill coefficient

The initial values are predicted by the optimal nonlinear least 
squares fit of the Hill equation with the Levenberg-Marquardt 
algorithm. The initial proposal covariance was set to the scaled 
parameter covariance matrix of the fitted model. The prior 
mean of the error variance σ2 (a nuisance parameter) was set 
to the variance of the fitted residuals, and the prior accuracy 
parameter was set to give equal weight to the prior and current 
error variance. By default, the first 10,000 of simulations are 
discarded as burn-in, and simulation results are saved every 
10th iteration over the next 20,000 iterations. The number of 
burn-in iterations saved simulation results and the intervals can 
be changed manually. Convergence of parameters is evaluated 
with the Geweke diagnostic test using version 0.18-1 of coda 
R package. If the Geweke test comparing the first 10% and the 
last 50% of the saved iterations indicated a lack of convergence 
at the 95% confidence interval, then the burn-in for the adapta-
tion period is increased by additional burn-in iterations and the 
entire MCMC simulation is rerun. This process is repeated until 
the absolute value of z is greater than 1.96. Optimal parameters 
and simulated parameters with joint distributions are generated 
as the result data of Hill fitting.[15]

AP simulation step
The CiPAORdv1.0 model is used to simulate action potential, 

and the base state in the AP simulation code is a slow pacing 
rate of 2000 ms cycle lengths to mimic bradycardia known as 
a risk factor for the TdP. If the AP simulation code is run with 
the default values, it produces action potential at the control 
states without a drug. Otherwise, defining certain drug name 
and concentrations without specific sample number can induce 

simulation with optimal parameters of the drug and concentra-
tion. To generate action potential with uncertainty, the number 
of samples must be defined. Then the sample parameters ob-
tained in the two previous model fitting parts are combined by 
samples and integrated to simulate action potential. From the 
simulation results, qNet metric, the net charge carried by ionic 
currents, are evaluated at each concentration.[18] As this ac-
tion potential simulation process is computationally intensive 
similar to the bootstrap fitting process in hERG fitting, it is also 
recommended to run using the computing resource in parallel.

The qNet metric is computed by integration of the sum of 
six major currents (IKr, ICaL, INaL, Ito, IKs, and IK1, except 
INa.) from the start of the stimulus to the end of the beat within 
the CiPAORdv1.0 model using differential equation solver.
[15,18,19] The value of seven important ionic currents were de-
fined as 1 in the default parameter data, so that the membrane 
voltage and qNet metric can be calculated even if some currents 
have no in vitro data. After cross-validations to assess TdP risk 
stratification performance using 12 CiPA training drugs, CiPA 
in silico working group redefined the optimal metric to assess 
the TdP risk, as torsade metric score which is an averaged qNet 
value across 1–4 × free Cmax for each drug with drug effect on 
the four essential currents – IKr (rapidly activating delayed rec-
tifier potassium current), INaL (late sodium current), ICaL (L-
type calcium current), and INa (peak sodium current).[15,20]. 
The measures for model prediction performance were defined 
as thresholds calculated using data sets of 12 training drugs with 
ordinal logistic regression. As one of the objectives of CiPA is to 
use the high throughput patch clamp systems (HTS), “hybrid” 
data sets collected in both manual and automated were used 
to validation.[5,20] Thresholds for the “hybrid” data set were 
defined by 0.0671 μC/μF for separating low from intermediate/
low risk and 0.0581 μC/μF for separating high from intermedi-
ate/high risk (Fig. 3).[20]

Figure 3. The finalized TdP risk metric of average qNet for 1-4 × Cmax of 28 CiPA drugs. Results shown are for the 12 training drugs (a) and 16 vali-
dation drugs (b), respectively. The 95% confidence interval and median point of the torsade metric scores for each drug are shown as horizontal er-
ror bars. Two dotted lines represent the thresholds of the risk category (Threshold 2 has a value of 0.0581 and Threshold 1 has a value of 0.0671). 
The metric was plotted using data obtained from “hybrid” data set which combined manual data of hERG current with high-throughput data of the 
other three currents (INaL, INa, and ICaL). The data was provided by Dr. Zhihua Li at FDA.



Vol. 27, No.1, Mar 30, 2019
17

TCP 
Transl Clin Pharmacol

Jin-Sol Park, et al.

Current CiPA studies
In vitro studies with human induced pluripotent stem cell-

derived cardiomyocytes (hiPSC-CM) and clinical phase I ECG 
studies were performed to compare whether in silico model 
integrated with in vitro data well-reflects the response of actual 
human ventricular cardiomyocytes. In the hiPSC-CM study, 
sites variability of the assessment of electrophysiology effects of 
the drugs using either microelectrode array or voltage-sensing 
optical techniques was characterized, and important hiPSC-CM 
assay endpoints that had been used to predict drugs for high, in-
termediate, and low TdP risk categories using linear regression 
models were identified. The in vitro study was conducted with 
28 drugs classified by proarrhythmic risk under the CiPA initia-
tive, using two commercial human cardiomyocyte lines and 5 
devices, across the 10 sites. The study showed fairly consistent 
results across the sites despite the variations in the experimental 
protocols, and two regression models with the three most use-
ful predictors were constructed predicting the clinical TdP risk 
well with area under the receiver operating characteristic (ROC) 
curve values greater than 0.8.[21] The three useful predictors 
identified in the study were that: 1) ability of a drug to induce 
“mild” or “severe” arrhythmia-like events at any concentration, 
2) the extent of drug-induced repolarization prolongation at any 
concentration, and 3) the extent of drug-induced prolongation 
at the clinical Cmax. 

The latest clinical phase I ECG study was conducted for 
validation of an ECG biomarker, a heart rate corrected J-Tpeak 
(J-Tpeakc) interval, identified at the prior study to differentiate 
predominant hERG blockers from balanced blockers. For bal-
anced blockers, which is predicted to be low risk by qNet, the 
CiPA initiative proposes to use ECG analysis in early phase I 
clinical trials to determine if there is evidence of unexpected 
ion channel effects in humans compared to the preclinical 
data. The study showed that concentration-response analysis 
of QTc and J-Tpeakc can differentiate QTc prolonging drugs with 
predominant hERG block from drugs that have balanced ion 
channel block.[22] Results of the latest validation studies sug-
gested that the hiPSC-CM assays can be useful when combined 
with other CiPA nonclinical assessment strategies, and the ECG 
data should be interpreted with the nonclinical ion channel data 
and in silico torsade metric score for more confident assessment. 
To the extent of the successful validations, the steering team of 
CiPA is preparing to amend the regulatory requirements for 
proarrhythmia assessment of the International Council for Har-
monization (ICH) S7B and E14 guidelines in compliance with 
the proposition from ICH S7B/E14 working group.[10,23,24]

Summary
The CiPAORdv1.0 model developed under CiPA initiative al-

lows quantitative evaluation of a drug’s proarrhythmic risk. Be-
yond traditional IC50 prediction model confined to hERG/IKr 
ion channel blockade assessment, the new model is more of a 
physiologic and pharmacodynamic model that takes account of 

multiple major ion currents. In vitro data of seven ionic currents 
– IKr, IKs, ICaL, INaL, Ito, IK1, and INa – is used as model in-
puts. With the data, in silico model yields a qNet metric which 
is calculated by six important ionic currents – IKr, IKs, ICaL, 
INaL, Ito, IK1, except INa. The metric optimized for the assess-
ment of TdP risk is defined as the torsade metric score, which 
is a mean qNet value averaged across 1–4 × Cmax for each drug 
with in vitro data of drug effects on the four essential currents 
– IKr, INa, INaL, and ICaL – as model inputs. Comparisons 
with the hiPSC-CM assays and the clinical ECG study were 
conducted for validation of the CiPA in silico model. Eventually, 
CiPA endeavor will modify the ICH guidelines on assessments 
of drugs’ proarrhythmic risk for more precise and quantitative 
evaluations.
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