
Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. 
Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are 
multistep processes involving various growth factors and their ligands. Among these growth fac-
tors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation 
and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the in-
tercellular communication between HGF and other surface membrane receptors in gastric cancer 
cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new 
genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified 
their function within the HGF pathway. The HGF/N-methyl-N’-nitroso-guanidine human osteo-
sarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, 
urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell in-
vasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and me-
tastasis in gastric cancer. 
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Introduction 

Cancer initiation and progression involve a multistep process. 
Cancer initiation requires germline mutation, amplified onco-
gene, mutated suppressor genes, or hormone action, while cancer 
progression and metastasis require various growth factors, includ-
ing epidermal growth factor (EGF), hepatocyte growth factor 
(HGF), and vascular endothelial growth factors (VEGFs), as well 
as proteases and adhesion molecules (Table 1) [1-6]. Cell surface 
receptors can bind growth factors and other ligands, which acti-
vate the receptors and transduce the signals by activating a tyro-
sine kinase inhibitor, thereby regulating cell functions such as cell 
survival, cell proliferation, protein synthesis, and angiogenesis [7]. 

HGF, an effector on cells expressing the N-methyl-N’-nitro-
so-guanidine human osteosarcoma transforming gene (c-MET) 
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tyrosine kinase receptor, is produced by mesenchymal cells and 
acts on cells of epithelial origin in paracrine or autonomic fashion 
[8]. Studies have shown that overexpression or over-activation of 
HGF can lead to misplaced or inappropriately timed angiogenic 
and mitogenic signals. c-MET is a cell surface membrane receptor 
composed of a 50 kDa α-chain and a 145 kDa β-chain [9]. MET 
activity is observed during embryogenesis and organogenesis in 
normal cells and is also activated in degenerative diseases such 
lung and renal fibrosis and liver cirrhosis [10]. Although the 
HGF/c-MET axis plays a principal role in normal cell develop-
ment, aberrant activation of this axis is thought to be involved in 
cell invasion and metastasis in most types of human cancers [11]. 
We have studied the HGF/c-MET pathway and the associated tu-
mor invasion and proliferation in gastric cancer for several years 
and here, we review our experiment results.  
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Interaction of HGF and other molecular 
proteins in gastric cancer  

1. E-cadherin and β-catenin 
MET has been demonstrated to interact with other cell surface re-
ceptors, including integrins, human epidermal growth factor re-
ceptor, and FAS receptor, to enhance downstream signaling and 
tumorigenesis. We previously reported that the expression of 
E-cadherin (ECD) and urokinase plasminogen activator (uPA) is 
associated with the development of pancreatic cancer [12]. ECD 
is a transmembrane glycoprotein that is responsible for calci-
um-dependent intercellular adhesion by homotypic interaction 
and is one of the principal elements of the cytoskeleton. Decrease 
or loss of ECD is frequently associated with cell-to-cell disengage-
ment, tumor invasion, and metastasis [13,14]. ECD functions to 
dephosphorylate β-catenin, thus inhibiting the binding of intra-
cellular ECD to catenin proteins. It has been suggested that HGF 
reduces cell-to-cell adhesion by dephosphorylation of the ECD/
catenin complex and ECD shedding [15]. We hypothesized that 
HGF/c-MET may interact with ECD to promote tumorigenesis 
through the activation of matrix metalloproteinase-7 (MMP-7), 
which degrades many cellular matrix proteins and adhesion mole-
cules (Fig. 1). To confirm this hypothesis, we investigated the as-
sociation between HGF/c-MET, ECD, and MMP-7 in two stom-
ach cancer cell lines, NUGC-3 and MKN-28. Western blot and 
reverse transcription PCR analyses showed that treatment of 
these cells with HGF reduced the expression of ECD. These re-
sults suggested that HGF may stimulate the extracellular cleavage 
of ECD, thereby increasing the shedding of the soluble fragment 
and decreasing the 120-kDa full-length ECD in the total cell ly-

sates [16]. MMP-7, which is known to be expressed predomi-
nantly by tumor cells in various cancers, was increased by HGF 
treatment and knockdown of MMP-7 expression in the stomach 
cancer cell lines resulted in no extracellular cleavage of ECD as 
well as decreased in vitro cell invasion. These results suggest that 
HGF may interact with ECD, leading to the activation of the 
MMP-7 pathway and increased cell invasion. 

2. Urokinase plasminogen activator 
uPA is a member of the family of serine proteases and is known to 
participate in cell migration and tissue remodeling. uPA overex-
pression has been reported in lung, colon, and breast cancers [17-
19]. Many studies have shown that blocking the expression of 
uPA or inhibiting its binding to the uPA receptor (uPAR) sup-
presses tumor cell invasion and metastasis in various cancer cell 
lines [20,21]. We measured uPAR expression in 26 patients with 
stomach cancer before and after surgery and found that uPAR ex-
pression was significantly decreased after surgery (p < 0.05). We 
also found that the survival rate of patients with gastric tumors ex-
pressing uPAR was significantly lower than that of patients with 
tumors not expressing uPAR (p = 0.035) [22]. We hypothesized 
that uPA is also associated with tumor progression in gastric can-
cer and we explored the relationship between HGF and uPA in 
gastric cancer tumorigenesis. We found that HGF induced reac-
tive oxygen species generation, which regulates uPA production 
and tumor invasion via mitogen-activated protein (MAP) kinase 
[23]. Previous studies have also examined the connection be-
tween HGF and uPA. One study showed that histone deacetylase 
(HDAC) regulates HGF-induced expression of both uPA and 
MMP-9 through a protein kinase C (PKC) dependent pathway in 

Table 1. Gowth factors in cancer progression

Growth factor Property Receptor Study
Vascular endothelial growth factor Endothelial mitogen, survival factor, and per-

meability inducer produced by many types 
of tumor cells

Flk-1/KDR (VEGFR-2), Flt-1 (VEGFR-1) 
(both present on activated endotheli-
um)

Veikkola and Alitalo [1]

Transforming growth factor-α (TGF-α) Endothelial mitogen and angiogenesis induc-
er; inducer of vascular endothelial growth 
factor expression

Epidermal growth factor-R Schmitt and Soares [2]

Fibroblast growth factor Endothelial mitogen, angiogenesis inducer, 
and survival factor; inducer of Flk-1 expres-
sion

FGF-RI-4 Botta et al. [3]

Epidermal growth factor (EGF) Weak endothelial mitogen; inducer of vascu-
lar endothelial growth factor expression

Epidermal growth factor-R Mooradian and Diglio [4]

Hepatocyte growth factor/scatter fac-
tor (HGF/SF)

Endothelial mitogen, motogen, and angio-
genesis inducer

c-MET Lamszus et al. [5]

Interleukin-8 In vivo-acting, possibly indirect angiogenesis 
inducer

Interleukin-8R presence on endothelial 
cells remains uncertain

Desbaillets et al. [6]

VEGFR, vascular endothelial growth factor receptor; c-MET, N-methyl-N’-nitroso-guanidine human osteosarcoma transforming gene.
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gastric cancer [24]. Another study showed that survivin, a mem-
ber of the inhibitor of apoptosis family, increases HGF-induced 
uPA expression and seems to play a role in gastric cancer tumori-
genesis [25]. 

3. New HGF regulatory genes 
To find new HGF regulatory genes and identify their role in 
HGF-induced stomach cancer cell survival, we screened for genes 
induced by HGF using complimentary deoxyribonucleic acid 
(cDNA) microarray technology in the stomach cancer cell lines, 
NUGC-3 and MKN-28 (Fig. 2). We selected the genes that were 
up or downregulated by more than three-fold in NUGC-3 and 
MKN-28 cells during HGF treatment (Table 2) and determined 
their function in conjunction with HGF.  

Bcl-2 associated agonist of cell death (BAD), a BH3-only 
proapoptotic Bcl-2 family protein, has been found to be upregu-
lated in response to HGF treatment. BAD functions by inactivat-
ing anti-apoptotic Bcl-2 proteins [26]. cDNA microarray analysis 

results have confirmed that BAD is upregulated at the RNA and 
protein levels following HGF treatment. Our data showed that 
HGF induced BAD overexpression and enhanced BAD phos-
phorylation, thereby inhibiting apoptosis and promoting cancer 
cell survival [27].  

KiSS-1 was also upregulated in response to HGF treatment. 
KiSS-1 is a putative metastasis suppressor gene and its expression 
is increased in several human malignancies including melanoma 
[28] and breast cancer [29]. One study also reported that overex-
pression of KiSS-1 in breast cancer cells results in a more aggres-
sive phenotype [30]. Consistent with these results, we found that 
HGF induced the overexpression of KiSS-1 in a p38-dependent 
manner. In addition, KiSS-1 suppressed MMP-9 expression and 
decreased cell invasion in vitro, suggesting it may act as a metasta-
sis suppressor gene in gastric cancer [31]. 

Jun B was also upregulated in response to HGF treatment. Jun 
B belongs to the June gene family (c-Jun, JunB, and JunD), whose 
members encode the activator protein-1 (AP-1) family of tran-

Fig. 1. Schematic diagram of the relationship between hepatocyte growth factor and E-cadherin. APC, adenomatous synthase kinase-
binding protein; AKT, protein kinase B; c-MET, N-methyl-N’-nitroso-guanidine human osteosarcoma transforming gene tyrosin kinase 
receptor; GSK-β, glycogen synthase kinase β; MAPK, mitogen-activated protein kinase; MMP-7, matrix metalloproteinase-7; PDK1, 
phosphoinositide-dependent kinase-1; PI3K, phosphinositol-3 kinase; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein kinase 
C; TCF-1, transcription factor 1; TCF-4, transcription factor 4.
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scription factors. AP-1 is a dimeric transcription factor that is en-
hanced by the MAP kinase pathway in the presence of growth fac-
tors, hormones, or other environmental stresses [32,33]. Of the 
AP-1 components, c-Jun and c-Fos were first identified as viral 
oncoproteins; thus, their function in tumorigenesis has been es-
tablished. However, it is also known that some Jun and Fos pro-
teins can suppress tumor formation [34]. Accordingly, we exam-

ined the role of Jun B in gastric cancer. In our study, Jun B levels 
were decreased by inhibition of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), and cell proliferation and 
invasion were decreased in Jun B knockdown stomach cancer cell 
lines. Further, Jun B knockdown cells blocked the MMP-9 upreg-
ulation induced by HGF. MMP-9 is a matrix metalloproteinase 
protein that degrades the basement membrane, exposing cryptic 
sites within the matrix and resulting in cancer cell invasion 
[35,36]. These data suggest that Jun B expression induced by 
HGF can activate MMP-9 by the NF-κB pathway and thereby 
contribute to invasion and cell proliferation in gastric cancer [37]. 

We recently studied that lipocalin-2 (LCN2) is upregulated by 
HGF treatment. LCN2 is a member of the lipocalin family, which 
binds and transports small lipophilic molecules including leukot-
rienes, retinoic acids, and prostaglandins, and it was first identified 
as a modulator of the immune system [38]. In addition, LCN2 
binds MMP-9, forming a complex comprising LCN2 and MMP-9, 
promoting MMP-9 activation, and preventing its degradation 
[35,36]. HGF treatment upregulated the expression of LCN2 in 
gastric cancer cells, leading to increased activation of MMP-9. 
Knockdown of LCN2 in these cells decreased MMP-9 activation 
in response to HGF treatment and treatment of the cells with an 
NF-κB inhibitor prevented the HGF-mediated upregulation in 

Fig. 2. (A) Genetree showing genes up or downregulated by at least 2-fold after 1 hour, 6 hours, and 24 hours of hepatocyte growth 
factor (HGF) treatment. (B) Genetree of t-test.

Table 2. Genes induced by hepatocyte growth factor using 
complimentary deoxyribonucleic acid microarray

Gene otology Name Fold
Transcript variant 1 Homo sapiens Bcl-2 agonist of cell 

death (BAD)
3.71

Transcript variant 2 Homo sapiens histone diacetylate 
5 (HDAC5)

3.26

Metastasis suppressor KiSS-1 9.3
Single strand break repair Homo sapiens X-ray repair com-

plementing defective repair in 
Chinese hamster cell 1 (XRCC1)

3.1

Inflammatory response 
apoptosis

Homo sapiens interleukin 1, beta 
(IL-1β)

3.25

Oncoprotein Stathmin-like 3 7.27
Invasiveness Rho GDP dissociation 2 inhibitor 

(Rho GDI2)
3.11

H
G

F 
24

 h

H
G

F 
24

 h

H
G

F 
6 

hH
G

F 
6 

h

H
G

F 
1 

hH
G

F 
1 

h

H
G

F 
p<

0.
1

2X
 u

p 
or

 d
ow

n 
in

 1
...

A B

https://doi.org/10.12701/yujm.2019.0043776

Koh SA and Lee KH.  Function of hepatocyte growth factor in gastric cancer



LCN2 expression. Further, HGF-mediated cell proliferation and 
invasion was decreased in LCN2 knockdown cells compared to 
control cells [39]. These data suggest that HGF induces the upreg-
ulation of LCN2 expression, which activates MMP-9, and HGF 
may play a role in proliferation and invasion of gastric cancer. 

Conclusion 

Abberant activation of MET signaling occurs in a subset of ad-
vanced cancers, including gastric cancer. The HGF/c-MET axis 
interacts with several molecules including ECD, uPA, KiSS-9, Jun 
B, and LCN2. This pathway may affect cell invasion and metasta-
sis or cell apoptosis and is therefore associated with tumorigenesis 
and metastasis in gastric cancer, which maybe one of the import-
ant therapeutic targets. To validate our findings, further experi-
ments are warranted using in vivo knockout mouse models. 
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