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Objectives: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-
drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological 
susceptibility testing requires at least 24 hours, automated machine learning (AutoML) techniques could be used as clinical 
decision support tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment. Methods: An 
antimicrobial susceptibility dataset of 11,496 instances from 499 patients admitted to the internal medicine wards of a public 
hospital in Greece was processed by using Microsoft Azure AutoML to evaluate antibiotic susceptibility predictions using 
patients’ simple demographic characteristics, as well as previous antibiotic susceptibility testing, without any concomitant 
clinical data. Furthermore, the balanced dataset was also processed using the same procedure. The datasets contained the 
attributes of sex, age, sample type, Gram stain, 44 antimicrobial substances, and the antibiotic susceptibility results. Results: 
The stack ensemble technique achieved the best results in the original and balanced dataset with an area under the curve-
weighted metric of 0.822 and 0.850, respectively. Conclusions: Implementation of AutoML for antimicrobial susceptibility 
data can provide clinicians useful information regarding possible antibiotic resistance and aid them in selecting appropriate 
empirical antibiotic therapy by taking into consideration the local antimicrobial resistance ecosystem.
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I. Introduction

As the spread of antibiotic-resistant infections has increased 
in recent years, a global health crisis has emerged with severe 
health and economic implications [1]. A study from the UN 
Interagency Coordinating Group on Antimicrobial Resis-
tance cautioned that if no new major developments are made 
by 2050, mortality could rise to 10 million deaths globally 
each year [2]. A critical threat is posed in healthcare facilities 
from rising drug-resistant infections, as effective treatments 
are lacking [3].
	 A recent study [4] presented the resistance levels of mul-
tidrug-resistant isolates between the intensive care unit and 
other hospital wards in a public tertiary hospital in Greece. 
Feretzakis et al. [5] proposed a methodology that enables 
clinicians to select the most appropriate antibiotic therapy 
based on statistically significant sensitivity results from data 
available in the laboratory information system (LIS). The use 
of unit-specific local antibiograms within hospitals is highly 
recommended by the Infectious Disease Society of America 
(IDSA) as a principal guideline for the prescription of effec-
tive empiric treatment [6]. 
	 Artificial intelligence (AI) tools are increasingly applied in 
healthcare, potentially changing many aspects of patient care 
as well as administrative processes within hospitals. Several 
researchers suggest that AI can work in key healthcare ac-
tivities, such as diagnosis and treatment, with equal or even 
greater accuracy than clinicians. A recent study [7] reported 
that AI outperformed experts by identifying cancers that ra-
diologists missed in the images while ignoring features they 
falsely identified as possible tumors. The potential for AI in 
healthcare has been described in detail [8]. A recent review 
article [9] presented the opportunities offered by automated 
machine learning (AutoML) platforms for healthcare. 
	 The current literature shows great interest in implement-
ing machine learning (ML) techniques as clinical decision 
support tools for the prediction of antimicrobial resistance 
(AMR) [10-12] and the selection of appropriate empirical 
antibiotic treatment. Still, ML techniques are not widely im-
plemented in clinical practice in this particular domain since 
clinicians take into account several patient-specific factors to 
choose an empirical therapy. Predictive models for antibiotic 
susceptibility can be an additional tool for decision support 
regarding early empirical therapy [13].
	 In this study, we assessed the effectiveness of AutoML-
trained models to predict AMR based only on data available 
in the LIS of the clinical microbiology laboratory, such as the 
type of sample, the Gram stain, and the antibiotic suscepti-

bility results together with simple patient demographics (age/
sex). Age and sex have been reported in research studies 
[14,15] as factors influencing AMR.

II. Methods

We retrospectively analyzed the antimicrobial susceptibility 
data of the biopathological laboratory from 499 patients ad-
mitted to the internal medicine wards of a public hospital in 
Greece from January until December 2018. This study was 
approved by the Institutional Review Board of Sismanogleio 
General Hospital (No. 6682/2020). The dataset consisted of 
11,496 instances and contained the attributes of sex (binary), 
age (numerical), sample type (categorical), Gram stain (posi-
tive or negative; binary), 44 antimicrobial substances (cat-
egorical), and the antibiotic susceptibility result (sensitive or 
resistant; binary). The different types of clinical samples that 
were taken into consideration for the antibiotic susceptibility 
analysis, together with simple summary statistics of the data-
set, are presented in Table 1. 
	 AutoML automates the application of various ML tech-
niques and enables researchers to develop large-scale and 
effective predictive models. Traditional ML model develop-

Table 1. Summary statistics of the dataset

Proportion (%)

Agea) (yr) 78.65 ± 14.94
82 (19–101)

Sex
   Male 44
   Female 56
Gram stain
   Positive 20.13
   Negative 79.87
Class
   Resistant 33.32
   Sensitive 66.68
Type of samples
   Blood 19.05
   Tissue 16.08
   Catheters 2.30
   Sputum 2.41
   Tracheobronchial 9.86
   Urine 50.30

a)Data are expressed as mean ± standard deviation and median (range).
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ment is resource-intensive, as it needs significant domain 
knowledge and time to build and compare the performance 
of many models. For our experiments, we used the AutoML 
of the Microsoft Azure ML platform, and the ML algorithms 
during the automation and tuning process have been fully 
described [16]. In AutoML experiments, automatic scaling 
and normalization techniques are applied to all data by de-
fault. Since the purpose of our research paper is to present 
an easy-to-apply procedure that can be communicated to 
and even used by non-technical experts, we kept all the de-
fault parameters and avoided applying custom settings at all 
stages, including the feature selection process. Our proposed 
approach is summarized in Figure 1. 
	 For the same reason, we chose to use a 10-fold cross-vali-
dation approach to evaluate the performance of the deduced 
models instead of using custom settings to split the data into 
training and testing sets. Cross-validation is an ML tech-
nique that uses all available instances for training and test-
ing. It mimics the use of training and test sets by repeatedly 
training the algorithm K times with a fraction 1/K of train-
ing examples left out for testing purposes [17]. 
	 Due to the imbalance of our dataset, we also examined the 
performance of AutoML algorithms by applying an overs-
ampling method since we wanted to keep all the intrinsic 
value of our dataset and avoided dropping any possible valu-
able instances by using an undersampling method. Synthetic 
minority oversampling technique (SMOTE) is a statistical 
method for uniformly increasing the number of cases in a 
dataset in order to make it balanced. The new instances are 
not just duplicates of existing minority instances. Instead, 
this method takes feature space samples for each target class 
and its nearest neighbors. After that, new instances are pro-
duced that combine features of the target case with those 

from its neighbors [18]. 

III. Results

The performance metrics [19] we used in our analysis are 
briefly presented below: 
	 (1) �A receiver operating characteristic (ROC) [20] curve is 

a plot of the correctly classified classes versus the incor-
rectly classified classes for a particular model. The area 
under the curve-weighted (AUCW) is the arithmetic 
mean of the score for each class, weighted by the num-
ber of true instances in each class. The AUCW was set 
as the target metric for the AutoML procedure.

	 (2) �The average precision score-weighted (APSW) summa-
rizes a precision-recall curve as the weighted mean of 
precisions achieved at each threshold, with the increase 
in recall from the previous threshold used as the weight. 

	 (3) �The F1 score-weighted (F1W) is the harmonic mean of 
precision and recall. 

	 (4) �Accuracy is the percentage of predicted classes that ex-
actly match the true class.

	 The results of the four top-performing techniques with 10-
fold cross-validation are shown in Table 2. 
	 The best overall results were achieved by a stack ensemble 
technique with an AUCW metric of 0.822, an APSW of 0.834, 
an F1W of 0.761, and an accuracy of 0.770. The feature im-
portance was 0.660 for the antibiotics, 0.348 for sex, 0.305 
for age, 0.294 for the type of sample, and 0.112 for the Gram 
stain. Feature importance values vary between zero and one, 
with higher values indicating a stronger association with 
predictions. The sensitivity (recall) of the best model was 
0.539, and the specificity (precision) was 0.896.
	 Ensemble learning [21,22] is an ML approach where mul-
tiple models are trained to solve the same problem. Stacking 
is an ensemble ML technique that combines multiple clas-
sifications via a meta-classifier. The default meta-classifier 
of the stack ensemble algorithm in Microsoft Azure Au-
toML for classification tasks is logistic regression. Decision-
making based on the feedback of many experts is a common 

Table 2. Four indicative metrics in the four top-performing AutoML models (raw dataset)

Algorithm name AUCW APSW F1W ACC

StackEnsemble 0.822 0.834 0.761 0.770
VotingEnsemble 0.821 0.834 0.755 0.767
MaxAbsScaler, LightGBM 0.819 0.831 0.756 0.766
SparseNormalizer, XGBoostClassifier 0.812 0.826 0.749 0.760

AutoML: automated machine learning, AUCW: area under the curve-weighted, APSW: average precision score-weighted, F1W: F1 
score-weighted, ACC: accuracy.

Raw antimicrobial
susceptibility data

from LIS
AutoML

Prediction models
of antimicrobial

resistance

Figure 1. The three-step proposed process. AutoML: automated 
machine learning, LIS: laboratory information system.
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practice that serves as the foundation of human civilization. 
In recent decades, AI researchers have studied schemes that 
share a joint decision-making mechanism of this type. These 
schemes are commonly called ensemble learning and tend 
to reduce the variance between classifiers and improve the 
decision-making system’s robustness and accuracy. In prac-
tical terms, we also seek advice from various experts when 
we make a decision that has significant implications. For 
example, we consult with many physicians before agreeing to 
undergo a major medical procedure [22]. 
	 As shown in Figure 2, we can visualize the confusion ma-
trix for our best-performing model (stack ensemble). A con-
fusion matrix is a n × n matrix used to describe the perfor-
mance of a classifier, where n is the number of classes. Each 
row in a confusion matrix represents the instances of the 
actual class in the dataset, and each column represents the 
instances of the class that was predicted by the classification 
model [18]. 
	 None of the metrics that are presented above can be a one-
off solution for the model’s evaluation, but all of them can 
help healthcare professionals to get a better picture of the 
overall performance of the classification models through the 
targeted guidance from data scientists. 
	 It is worth noting at this point that a portion of the same 
dataset was processed in previous research [23], where five 
AI algorithms were evaluated. Those results suggested that 
the multilayer perceptron classifier could serve as a suitable 
model, taking into account evaluations using both the F-
measure (0.721) and the area under the ROC curve (0.746). 
The corresponding results of the best model (stack ensem-
ble) in this research are an  F1 score-weighted (F1W) of 0.761 

and an area under the curve-weighted (AUCW) of 0.822. 
These results are consistent with previous findings, and the 
results improved because using the AutoML platform en-
abled us to test and compare several models with different 
configurations in a time-efficient manner.
	 The results presented above are based on raw data without 
considering the balance of the target binary class (i.e., in our 
case, antimicrobial susceptibility). In the examined dataset, 
the class attribute (antimicrobial susceptibility) contained 
66.68% positive cases (sensitive to a specific antibiotic) and 
33.32% negative cases (resistant to a particular antibiotic).
	 In previous articles [24-26], researchers investigated the 
task of monitoring and detecting hospital-acquired infec-
tions, a topic related to AMR. In these studies, a significant 
issue was class imbalance, a problem that can be noticed in 
many classification tasks in the medical domain. This means 
that, in general, the prevalence of one class in the examined 
dataset is much higher than that of another one. However, 
most ML techniques provided better generalization when 
the number of samples is similar for both classes. In the lit-
erature, several methods have been suggested [27] to solve 
the issue of imbalance. In this study, we utilized an oversam-
pling approach that aims to increase the number of minority 
samples according to the majority class. 

1. Synthetic Minority Oversampling Technique
SMOTE is a common oversampling method that was pro-
posed to improve random oversampling, and its efficacy on 
high-dimensional data has been investigated in an earlier ar-
ticle [28]. After applying the aforementioned technique, the 
resulting dataset had 15,326 instances (an increase of about 
33.3%), while the class attribute (antimicrobial susceptibil-
ity) contained 50.0% positive cases (sensitive to a specific 
antibiotic) and 50.0% negative cases (resistant to a specific 
antibiotic). The results of the four top-performing tech-
niques in the transformed dataset after SMOTE processing 
are shown in Table 3.
	 The stack ensemble technique also achieved the best re-
sults, with an AUCW metric of 0.850, an APSW of 0.849, 
an F1W of 0.769, and an accuracy of 0.769. We observed an 
improvement in all four metrics’ values compared to the best 
model of the corresponding raw dataset presented above in 
Table 3. The feature importance was 0.551 for the antibiot-
ics, 0.334 for sex, 0.269 for age, 0.256 for the type of sample, 
and 0.100 for the Gram stain. The sensitivity (recall) of the 
best model (stack ensemble) was 0.766, which was greater 
than the corresponding value of the best model (0.539) that 
was deduced from the imbalanced dataset in the previous 
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Figure 2. Confusion matrix for the stack ensemble technique.
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subsection. However, the specificity (precision) of 0.772 was 
lower than that of the previously presented model (0.896).
	 The confusion matrix of the best-performing technique is 
presented in Figure 3.
	 In Figure 4, apart from the aforementioned metrics, we 
also present the AUC_macro and AUC_micro for the two 
best performing models (stack ensemble) in both datasets, 
respectively. The AUC_macro is the arithmetic mean of the 
AUC for each class, and the AUC_micro is calculated by 
combining the true positives and false positives from each 
class.

IV. Discussion

The decision to start antibiotic therapy is faced in daily prac-
tice by clinicians and depends on complex clinical patient 
data and local epidemiology factors, as well as the informa-
tion available at the time; the widespread dissemination of 
AMR further complicates empiric therapy decisions and 
raises the risk of therapy failure. Timely and appropriate ini-
tial therapy is of the utmost importance for sepsis outcomes. 

Molecular AMR diagnostics significantly reduce the time to 
achieve results compared to classical phenotypic tests, but 
aside from the high setup costs, the need for technical infra-
structure, and staff training in bioinformatics, their major 
drawback is that they can detect only known resistance genes 
or mutations [29].
	 ML techniques, such as whole-genome sequencing, seem 
to be useful in AMR surveillance projects; however, the ex-
isting evidence does not support their use in guiding clinical 
decision-making for most bacterial species, according to the 
European Committee on Antimicrobial Susceptibility Test-
ing [30]. 
	 The ML-based methodology proposed in this paper could 
empower physicians in decision-making while anticipating 
definitive results from the clinical microbiology laboratory 
on specific pathogen identification and antibiotic suscepti-
bility testing, even in limited-resource settings. First, early 
recognition of patients at a high risk of being colonized or 
infected by strains resistant to one or more antibiotic classes 
leads to crucial patient and hospital ecosystem knowledge 
and subsequent improvement in healthcare resources man-
agement. More importantly, such systems may serve as a 
useful clinical decision support tool for physicians in select-
ing the appropriate empirical therapy. Thus, patient-tailored 
therapy can limit antibiotic misuse and, over time, reduce 
the prevalence of antibiotic-resistant bacteria.
	 Additionally, the proposed methodology is consistent with 
the practices of patient cohorting (placing patients who 
have been exposed to or infected with the same pathogen in 
the same inpatient room) or staff cohorting (assigning spe-
cific healthcare providers to care only for patients/residents 
known to be colonized or infected), which constitute an 
effective surveillance measure for multidrug-resistant infec-
tions that may prevent inadvertent patient-to-patient dis-
semination.
	 In this research, the clinical data of patients, such as the 
source of infection acquisition and the presence of active in-
fection or colonization, were not included, as these were not 

Table 3. Four indicative metrics of the four top-performing AutoML models (balanced dataset - SMOTE)

Algorithm name AUCW APSW F1W ACC

StackEnsemble 0.850 0.849 0.769 0.769
VotingEnsemble 0.850 0.849 0.768 0.768
SparseNormalizer, XGBoostClassifier 0.842 0.841 0.762 0.762
SparseNormalizer, LightGBM 0.837 0.835 0.756 0.756

AutoML: automated machine learning, SMOTE: Synthetic minority oversampling technique, AUCW: area under the curve-weight-
ed, APSW: average precision score-weighted, F1W: F1 score-weighted, ACC: accuracy.
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readily accessible through the central hospital information 
system. Of course, if the antimicrobial susceptibility datasets 
also included the patient’s clinical details, the efficiency of 
the techniques that we present in this study could be con-
siderably improved, even allowing for any final decision to 
be more explainable. Still, any inclusion of such information 
must incur the cost of retrieving the relevant data. This may 
involve a variety of hospital departments, thereby elevat-
ing the costs of communication and complicating the need 
to align protocols across different departments. After pay-
ing those costs, one would also need to review the extent 
to which the additional information gained (e.g., improved 
accuracy metrics) can be effectively incorporated into the 
practice of the hospital physicians, who may need to rethink 
the way they review their decisions in the light of confirm-
ing or opposing recommendations from a decision support 
system. This relates to the actual attitudes of physicians, who 
may need to consider modifying their practices, and the ex-
tent to which such considerations may also be triggered by a 
change in protocols or the extent to which such recommen-
dations can be made within the prescribed time limits. All in 
all, we consider this study as a point in the spectrum of cost-
effectiveness investigations that ML techniques are bound to 
trigger in the healthcare domain.
	 This study evaluated the results of applying AutoML of the 
Microsoft Azure platform to two internal medicine depart-
ments’ antimicrobial susceptibility datasets. In this article, 
we propose the use of AutoML as a decision tool for phy-
sicians since it can be more readily applied even by non-
experts (e.g., a data scientist may be needed for a full-blown 
investigation, but a physician can gain some insight with a 
relatively smooth learning curve) and, as we showed, the de-
duced models have good performance.
	 AutoML platforms can be a beneficial tool for healthcare 

professionals with limited knowledge of the ML domain 
that can offer fast and reliable results. Ideally, data scientists’ 
participation could be important, especially in the stages of 
data pre-processing, by drawing actionable insights from the 
data, feature selection, and finally, evaluating the results. 
	 Despite certain limitations of the study, our primary goal 
was to create an inexpensive ancillary tool to help clinicians 
rapidly identify patients carrying antibiotic-resistant strains 
and guide appropriate antibiotic treatment with greater con-
fidence. In future work, dataset enhancement with clinical 
attributes will probably improve the AutoML algorithms’ 
performance.
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