
I. Introduction

Chronic renal failure (CRF) is an irreversible kidney condi-
tion that leads to end-stage renal disease (ESRD) [1]. ESRD 
patients require replacement interventions, such as kidney 
transplant or hemodialysis. Globally, ESRD is a substantial 
issue in the medical field. In the absence of replacement 
interventions for these patients, ESRD leads to death [2]. 
There were about 3,730,000 patients in ESRD by the end of 
2016. Taiwan, Japan, and the United States have the highest 
ESRD prevalence in the world [3]. In Iran, ESRD prevalence 
is 610 per million people, which is greater than the global 
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average (580 per one million people) [3]. Seventy percent of 
ESRD patients receive hemodialysis treatment. Due to the 5% 
to 6% annual increase in ESRD incidence and 1.1% increase 
in the global population, ESRD has become a major global 
health issues [3].
	 There is no indication in the early stages of CRF, and most 
of patients are identified in the end stage, in which the 
performance of the kidney has been totally disturbed. The 
accumulation of metabolic waste products occurs in CRF 
patients, which leads to changes in blood factors, such as se-
rum creatinine. One way to diagnose patients with CRF is to 
check the serum creatinine [4,5].
	 In most clinical research, the outcome variable is collected 
longitudinally (multiple observations over time) for each 
patient or subject. For a longitudinal outcome, such as cre-
atinine in CRF patients, the prediction of the actual values 
and checking their trend over time may be important. In 
longitudinal responses, due to unknown factors, the baseline 
value and the time trend of each patient may be different. 
Therefore, to predict and analyze these responses, methods 
should be used that consider the differences in baselines and 
time trends. In other words, there is a correlation structure 
among the observations of the subject that needs to be con-
sidered in the modeling.
	 There are several methods for analyzing longitudinal re-
sponses, including the linear mixed-effects model (LMM), 
generalized liner mixed-effects model (GLMM), and gen-
eralized estimation equation (GEE) [6-8]. The most widely 
used method for continuous outcomes is LMM. This model 
is an extension of linear regression (LR) that considers the 
differences of baseline values and time trends using random 
effect terms. Linear or limited nonlinear relationships be-
tween covariates and response can be considered in LMM. 
Therefore, LMM may not be useful in the presence of com-
plex nonlinear relationships between outcome and features.
	 Recently, machine learning approaches have often been ap-
plied to various prediction problems as classification or re-
gression [9-11]. The least-squares support vector regression 
(LS-SVR) method is a machine learning approach that can 
be used for the prediction of continuous responses [12,13]. 
Complex nonlinear relationships between response and co-
variates can be considered in LS-SVR by using a kernel tech-
nique [12,14]. There have been a few studies that used the 
LS-SVR technique to predict longitudinal responses [14-17].
	 In this study, we used an LS-SVR method that takes into 
account random effects, in addition to complex relations. 
We used a mixed-effects least-squares support-vector regres-
sion (MLS-SVR) method presented for longitudinal data sets 

[15,16]. The aim of this study is to evaluate the prediction 
performance of LMM and MLS-SVR for serum creatinine. 
To the best of our knowledge there has been no study that 
has used the LS-SVR method for CRF patients. Also we in-
vestigated the efficacy of random effects in the prediction of 
creatinine in hemodialysis patients. Obtaining the important 
variables in prediction of creatinine using the MLS-SVR 
method is another objective of this paper.

II. Methods

1. Data and Setting
We used a longitudinal dataset related to a study on hemo-
dialysis patients in the hemodialysis department of Shahid 
Beheshti Medical Education Center of Hamadan city (Iran) 
between 2013 and 2016, which was collected for a master of 
science thesis [18]. There were 3,492 observations regarding 
158 hemodialysis patients in the dataset. Some laboratory 
variables were collected longitudinally in the dataset, such as 
creatinine, fasting blood sugar (FBS), hematocrit (HCT), he-
moglobin (HB), calcium (Ca), potassium (K), phosphorous 
(P), and blood urea nitrogen (BUN). Also, there were mul-
tiple fixed factors, such as the number of dialysis sessions in 
a week, gender, age, diabetes (yes or no), and hypertension 
(yes or no) in the dataset. We used the serum creatinine as 
the longitudinal response and the other variables as the fixed 
effects covariates. Also, the random intercept and trend were 
considered in the LMM and MLS-SVR methods as the ran-
dom effects.
	 To evaluate the performance of the methods in the predic-
tion of creatinine, the data was divided into two subsets, 
training and testing samples. Thus, because of the longitudi-
nal nature of the data, the first 70% of observations related 
to each patient were considered as the training sample and 
the remainder were considered as the testing set. We fitted 
the LMM and MLS-SVR methods to the training and test-
ing samples by considering the random intercept and trend 
in the models. Also, the LR model and ordinary LS-SVR 
were fitted to the data to assess the influence of taking into 
account random effects terms in the performance of the 
models in prediction of outcome. The data preprocessing is 
shown in Figure 1.

2. Classical Methods
LR and LMM are two classical models that were used in this 
study. The LR model is the most commonly used method for 
analyzing a continuous response variable with normal distri-
bution. The effect of multiple covariates can be evaluated on 
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the response variable in LR models [19]. For a N × p covari-
ate matrix (x0), the prediction function of LR is expressed as

		  y(x0)= βˆ  0 +         i x0i  
         		     

∑
p

i 1=

ˆ

β  (1)

where (β0, βi) are the regression parameters.
	 LR may not be useful when the dataset has a multilevel 
or longitudinal structure. There is a correlation structure 
in longitudinal data that needs to be taken into account in 
analysis. The LMM is an extended form of the LR model. 
Random effects terms have been added to the LR for consid-
eration of the correlation structure of the longitudinal data. 
The LMM prediction function for a given data of (x0, z0) is 
obtained as

		  ŷ  (x0, z0) = βˆ  0 +        i x0i + v̂  '		           	         
∑

p

i 1=

ˆ

β  z0 (2)i

Here, (β0, βi) are the model’s fixed parameters related to the 
N × p covariate matrix (x0), and vi~N(0, ∑v) are the random 
effects parameters related to z0 which are the random effect 
variables.

3. Machine Learning Approaches
We used the ordinary LS-SVR and the MLS-SVR methods to 
predict serum creatinine. The LS-SVR model was explained 
by Suykens et al. [12] for regression problems in linear or 
nonlinear forms. The basic property of nonlinear LS-SVR is 

the use of the kernel technique. The input data are mapped 
into a higher-dimensional space with kernel functions. Al-
though a linear fitting is done in the new high-dimensional 
space, the fitting in the original input space is non-linear 
[20]. There are multiple kernel functions; the one that is 
most commonly used is the radial basis function (RBF) [12]. 
We used the RBF as the kernel function in this study. The 
prediction function of nonlinear LS-SVR for a given N × p  
matrix (x0) is introduced as

		  y(x0) =       

b̂

α̂

 

iK(x0, xi) + b̂

α̂

 
		             

∑
N

i 1=

 (3)

where (α,b) are the model parameters, and K(xi, xo) = φ'(xi)
φ(x0) is the kernel function. Here, φ(.) is the nonlinear map-
ping function, which is used in LS-SVR for nonlinear fitting 
of the data [12].
	 The MLS-SVR is the extended model of ordinary LS-SVR 
in which random effect terms are added for consideration of 
the correlation structure of the longitudinal data [16]. The 
MLS-SVR has the following prediction function for a given 
(x0, z0):

		  y(x0, z0) = b̂

α̂

  +             

b̂

α̂

 

ijK(xij, x0) + v̂  '
		                         

∑
N

i 1=

 ∑
n

j 1=  
z0 (4)i

Here, vi~N(0,∑v) are the random effects parameters related 
to the random-effects covariate matrix, and x0 is the fixed-
effects covariate matrix, and K is the kernel function. Also, 
xij is the jth observation of the ith patient for j = 1, 2,…, ni 
and i = 1, 2,…, N.
	 The parameters in the Equations (3) and (4) are estimated 
by constructing the Lagrange function and solving a linear 
system [12,14].

4. Evaluation Criteria
We evaluated the generalization performance of each model 
in the training and testing samples. Some criteria were used 
to compare the performance of the models, such as mean 
squared error (MSE), mean absolute error (MAE), mean 
absolute prediction error (MAPE), and determination coef-
ficient (R2) as follows:

MSE =
∑

N

i 1=  
 (yi– ŷ

 
i)

2 (5)
N

MAE =
∑

N

i 1=  
 |yi– ŷ

 
i| (6)
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Figure 1. ‌�Framework of data pre-processing. LR: linear regres-
sion, LMM: linear mixed-effects model, LS-SVR: least-
squares support vector regression, MLS-SVR: mixed-
effects least-squares support vector regression.
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MAPE =
∑

N

i 1=  
 |yi– ŷ
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(7)yi

N

R2 = The square of correlation coefficient between y and ŷ
 

 (8)

5. Variable Importance
Evaluating the variable importance (VIMP) was another 
aim of this study. We used a permutation procedure with 
100 iterations to specify the importance of each variable in 
predicting creatinine [21,22]. In the permutation procedure, 
one variable was permuted, and the others were fixed. The 
original MAE was obtained from the prediction of creatinine 
in the original dataset. Then each variable was permuted 100 
times, and the new MAE was obtained from each permuta-
tion for each variable. The mean of differences between the 
new and the original MAEs was considered as the impor-
tance criterion.

III. Results

Among 158 hemodialysis patients in the study, 53.8% were 
male, 43% were hypertensive, and 39.9% were diabetic. Also, 
58% of the patients were given dialysis three or four times 
in a week. The descriptive statistics of some variables of the 
patients are shown in Table 1.
	 The results of fitting the LMM for serum creatinine are 
displayed in Table 2. All of the independent variables were 
significant except the FBS and diabetes variables.
	 We used serum creatinine as the response variable. After 
dividing the longitudinal dataset into training and testing 
sets, we fitted the LR, LMM, LS-SVR, and MLS-SVR meth-
ods to the training set and investigated the fitting perfor-
mance of each model. Then we evaluated the generalization 
performance of the models using the testing set. The results 

are shown in Table 3.
	 As seen in Table 3, the MLS-SVR method achieved the best 
generalization performance based on all criteria. Also, there 
was a decrease in the prediction performance by ignoring 
the random effect terms in both LMM and MLS-SVR meth-
ods. 
	 Figure 2 shows the observed versus predicted values of 
training and testing sets of 3 patients to compare the predic-
tion performance of the MLS-SVR and LMM methods. As 

Table 1. Descriptive statistics of hemodialysis data

Variable Male Female p-value

Creatinine 7.45 ± 3.13 6.99 ± 2.45 0.302
Blood urea nitrogen 130.06 ± 48.67 123.00 ± 43.08 0.335
Hematocrit 31.20 ± 5.79 32.00 ± 4.93 0.355
Hemoglobin 9.83 ± 2.05 10.01 ± 1.77 0.567
Fasting blood sugar 112.80 ± 50.11 108.71 ± 42.09 0.578
Potassium (K) 4.83 ± 1.00 4.93 ± 0.96 0.501
Phosphorous (P) 5.08 ± 1.65 5.09 ± 1.46 0.965
Calcium (Ca) 8.61 ± 1.28 8.95 ± 0.98 0.058
Age 59.19 ± 15.87 61.63 ± 14.93 0.321
Values are presented as mean ± standard deviation.

Table 2. Regression coeficient of covariates of fitting the linear 
mixed-effects model to serum creatinine

Variable Coefficient (standard error) p-value

Time 0.036 (0.010) 0.0002
Blood urea nitrogen 0.019 (0.001) <0.001
Hematocrit –0.038 (0.012) 0.001
Hemoglobin 0.208 (0.036) <0.001
Fasting blood sugar –0.001 (0.001) 0.312
Potassium (K) 0.129 (0.040) 0.001
Phosphorous (P) 0.172 (0.029) <0.001
Calcium (Ca) 0.086 (0.035) 0.015
Age –0.049 (0.023) <0.001
Diabetes (yes) 0.119 (0.256) 0.644
Gender (male) 0.616 (0.247) 0.014
Number of weekly dialysis 0.630 (0.216) 0.004
Hypertension (yes) 0.587 (0.254) 0.022

Table 3. Performance of the models in predicting creatinine for 
training and testing sets

MLS-SVR LMM LS-SVR LR

Training data
   MSE 1.280 1.525 3.720 4.001
   MAE 0.833 0.921 1.480 1.545
   MAPE 0.129 0.142 0.230 0.241
   R2 0.805 0.766 0.426 0.381
Testing data
   MSE 3.275 3.885 6.646 6.865
   MAE 1.319 1.495 2.008 2.072
   MAPE 0.159 0.171 0.238 0.244
   R2 0.654 0.648 0.349 0.345

MLS-SVR: mixed-effects least-squares support-vector regres-
sion, LMM: linear mixed-effects model, LS-SVR: least-squares 
support vector regression, LR: linear regression, MSE: mean 
squared error, MAE: mean absolute error, MAPE: mean abso-
lute-prediction error, R2: determination coefficient.
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seen, the prediction performance of the MLS-SVR method 
was better than that of LMM for both the training and test-
ing data (the points in the MLS-SVR method were closer 
than those in the LMM method to the bisector line).
	 Finally, we obtained the VIMP (the mean of changes in 
MAE after permutation in each variable) in the prediction 
of creatinine using the MLS-SVR method (Figure 3). BUN, 
time, age, FBS, and HCT were the top rank variables among 
other variables. Indeed, there were more changes in the 
MAE criterion after the permutation of these variables. 

IV. Discussion

In this study we compared the performance of four models 
in predicting the serum creatinine of hemodialysis patients 
by various random and fixed-effects approaches. The per-
formance of both random effects models (MLS-SVR and 
LMM) was better than that of their fixed-effects counterpart 
models (LS-SVR and LM) in terms of generalization. It was 
demonstrated that random effect terms were effective in the 
prediction of creatinine and that they must be considered in 
the modeling process.
	 The MLS-SVR method achieved better performance than 
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the LMM for both the training and testing datasets based 
on all criteria (Table 3). Figure 2 confirms this result, where 
the MLS-SVR achieved better performance for both training 
and testing samples for all 3 patients (the points are closer 
to the bisector line). Also, the prediction performance of the 
LS-SVR was better than that of the LR in the fixed-effects 
models (Table 2). Therefore, it is possible that there are com-
plex or nonlinear relationships between some covariates and 
creatinine which the LMM and LR could not take it into ac-
count.
	 Limited studies have used support vector machine (SVM) 
approaches in the prediction of longitudinal continuous 
or categorical responses. In a study that compared several 
SVM methods for classification problems using simulation 
and real longitudinal data, the mixed-effects SVM achieved 
better performance than the other SVM models [23]. For a 
regression problem, Seok et al. proposed a mixed-effects LS-
SVR. They used their proposed method for pharmacokinetic 
(PK) and pharmacodynamic (PD) datasets and compared 
their proposed model with the standard approach for the 
analysis of population PK and PD data. It was shown that the 
proposed MLS-SVR achieved the best performance for both 
training and testing data [16]. In another study that used the 
LS-SVR technique for longitudinal data, the LS-SVR method 
achieved better prediction performance than LMM in two 
real data examples and two simulation studies [14]. In a 
study on a three-level brucellosis frequency data, the MLS-
SVR method achieved better prediction performance than 
the ordinary LS-SVR and classical models [15].
	 According to the variable importance that was calculated 

using the random effects MLS-SVR, BUN was the most im-
portant variable in the prediction of the creatinine. Time, 
age, and FBS were the other variables that were important 
for creatinine prediction. Also, as seen in Table 2, BUN, 
HCT, HB, K, P, Ca, age, gender, number of weekly dialysis 
sessions, and hypertension had a significant effect on the 
value of serum creatinine. The age factor has been reported 
as a variable that affects serum creatinine [24,25].
	 In conclusion, our study showed that the MLS-SVR 
achieved the best performance in terms of generalization 
and that it could produce more accurate predictions of se-
rum creatinine. Also, random effect terms had an impressive 
positive effect on prediction performance. Finally, in the 
presence of high dimensional or/and complex data-sets SVM 
approaches may be more useful than classical methods.
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HB: hemoglobin, Ca: calcium, K: potassium, MLS-SVR: mixed-effects least-squares support-vector regression, MAE: mean 
absolute error.
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