
I. Introduction

The purpose of biometrics is to identify individual physical 
or behavioral features based on their natural traits. Physical 
characteristics include fingerprints [1], the iris of the eye, the 
face, palmprints, and dorsal hand veins (DHVs) [2], while 
behavioral features consist of voice, gait, keystrokes, and 
signatures [3]. Given the lack of evidence and trust in the se-
curity of behavioral biometric information, most researchers 
have moved toward physiological characteristics. However, 
image quality and the surveillance angle are the major draw-
backs of facial biometric systems [4]. Similarly, the problems 
with iris recognition systems include the setting of light il-
lumination and eyeball movement while images are being 
captured [5]. Thus, many scholars have shifted their focus to 
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DHV recognition systems. 
	 DHV systems have several advantages over traditional rec-
ognition systems. The DHVs constitute a tree-like vascular 
network of blood located at the backside of the hand. The 
main benefit of using the DHVs as a biometric system is its 
high identification performance. The system detects only 
live hand veins, which have a low resemblance rate and high 
acceptability ratio [6]. The vein pattern is unaffected by hu-
midity and temperature, since veins are located beneath the 
skin. Furthermore, although the DHV pattern varies from 
infants to 15 years of age [7], it remains unchanged unless a 
major accident occurs [8]. 
	 Although studies have been conducted in the past for DHV 
recognition using images captured by devices such as near-
infrared (NIR) cameras [7], complementary monochrome 
metal-oxide-semiconductor (CMOS) cameras [9], and digi-
tal single-lens reflex (DSLR) cameras [10]. As benchmarks, 
the Bosphorus [11], North China University of Technology 
(NCUT) [12], Badawi [11], Indian Institute of Technology 
Delhi (IITD), and 11k Hands [13] databases are also freely 
available and publicly accessible. These public databases con-
tain a large number of images for training image recognition 
models, which may prevent overfitting the network. Other 
work [14] also reported using self-collected data from the 
authors’ laboratory for demonstration. 
	 It is very often necessary to obtain a region-of-interest 
(ROI) from an image for proper recognition. Hence, differ-
ent image segmentation techniques have been implemented 
with varying degrees of success. These techniques include 
manual cropping with a combined matched filter and a local 
binary fitting model to locate tiny boundaries (small veins) 
in images [15]. The image centroid technique is also used 
for the segmentation of DHVs [16]. The major drawbacks of 
these manual segmentation techniques are the loss of signifi-
cant information, they are time and labor-consuming, and 
there is high variability in the produced results because the 
process is based on judgments made using subjective intu-
ition.
	 Meanwhile, the automatic cropping technique is highly 
effective and time-saving in extracting DHV patterns. For 
instance, the determination of coordinates method has been 
adopted to achieve the ROI of an image [17]. A morpho-
logical operation (top-hat transformation) is another useful 
technique that adjusts the intensity values to increase the 
visibility of inconsistent image background pixels [18]. A hy-
brid technique combining the grayscale morphology method 
and local thresholding technique has been used for the simi-
lar task [19]. It was emphasized that image enhancement 

methods are necessary to improve the contrast of an image 
from its background [20]. Histogram equalization (HE) is 
the most widely used traditional enhancing method to im-
prove the intensity of an image globally rather than in the 
area of interest [21]. Among the variations in HE, contrast-
limited adaptive histogram equalization (CLAHE) has been 
found to be an effective method to enhance the targeted area 
of DHV images [16,17,22].
	 In addition to the machine learning (ML) techniques men-
tioned above, other related studies have adopted strategies, 
such as artificial neural networks [22] and the Mahalanobis 
distance method [23]. Other research [24] has used convo-
lutional neural network (CNN)-based model for segmenta-
tion. Unlike conventional ML methods, which can be time-
consuming for manually determining the features for DHV 
recognition [16], CNN is an increasingly popular tool for 
decision-making. A CNN model was first introduced by Le-
Cun et al. [25] to make recognition training simple and time-
efficient (in the automatic extraction of useful information). 
Many pre-trained CNN models are available for image pro-
cessing applications, such as AlexNet, VGGNet, GoogLeNet, 
DenseNet, ResNet, and SqueezeNet. While most of these 
models are used for classification, some CNN models have 
been adopted for image segmentation problems. Nonethe-
less, traditional ML techniques have advantages and perform 
better than CNNs [24], especially when texture features are 
the primary information sources for decision-making. The 
classification accuracy of CNN models depends upon tuned 
hyperparameters and the nature of the dataset. Previous 
studies [2,11-13,26] used CNN techniques to recognize the 
pattern of DHV. On that note, a study [11] recommended 
using AlexNet, VGG16, and VGG19 due to their high train-
ing accuracy (i.e., 99%), but efforts had yet to be made to test 
the trained model against unseen data. Even though another 
study [13] included the testing of the AlexNet model trained 
with augmented (randomly rotated) images, entire-hand 
images without an ROI extraction were used as input. Thus, 
instead of vein patterns, the model may have been trained 
to recognize the hand contour or image shape. Those prior 
studies have also not considered the false acceptance rate 
(FAR) or the false rejection rate (FRR) in their evaluations. 
A robust and secure biometric system has both low FAR and 
FRR [27]. In this study, we introduced a hybrid system com-
bining HE, thresholding, and morphological techniques for 
enhanced, effective, and time-saving segmentation of DHV 
regions as compared to the manual approach. This study 
compared the performance of AlexNet transfer learning us-
ing the manual and hybrid automatically segmented data 
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due to its time-efficiency. We analyzed the performance of 
the model trained with the enlarged dataset and compared it 
with previous research. 

II. Methods

This section describes the dataset and methods used in this 
study. All the simulations were carried out using MATLAB 
R2020b.

1. Dorsal Hand Vein Dataset 
The dorsal hand vein images used in this study are from the 
Bosphorus database (www.bosphorus.ee.boun.edu.tr). This 
is an open-access resource with a collection of 1,575 images 
from different experimental conditions. In our investigation, 
a total of 1,500 dorsal hand images from 100 subjects were 
selected from the original 1,575 images to balance the data 
size for each class. The considered images included 1,200 
left-hand images of the recruited subjects acquired under 
different activities, namely normal (or at rest), after carrying 
a 3-kg bag for a minute, after squeezing (closing and open-
ing) an elastic ball for a minute, and after placing a piece of 
ice on the back of the hand. The remaining 300 images were 
of their right hand in at-rest condition.

2. Manual Segmentation 
In the first experiment, the cropping process was performed 
manually. The main areas of interest were the center regions 
of the dorsal side of the hand. The identified regions were 
outlined and segmented from the original images one at a 
time by using the imcrop function available in MATLAB, as 
shown in Figure 1. By doing this, the background and fingers 
were removed from the original image, leaving the region 
containing the hand veins. The selection was intuitive, and 
the process produced different image sizes. These images 
were resized to a dimension of 227 × 227 × 3 to match the 
input size of AlexNet prior to training.

3. Hybrid Automatic Segmentation
The second experiment involved ML techniques to extract 
the ROI of DHVs. Since most ML techniques work in the 
grayscale color space, the first step was to convert the color 
image to gray using the rgb2gray function, as shown in Fig-
ure 2. The edges of the hand images were then enhanced 
with the CLAHE method. Next, all images were changed 
into binary versions by invoking the imbinarize function 
prior to performing morphological operations. In our study, 
morphological structuring elements (disks) with radii of 5, 
10, 15, and 20 were applied to binary images to define the 
mask for the regions of interest. The morphological bottom-
hat technique was also applied to the mask to filter the ROI 
of DHVs (vein portion) for this same purpose. This was fol-
lowed by color inversion of the image using the imcomple-
ment function and the pixel-difference method to locate 
the vein regions. The generated mask was overlaid on the 
original image to remove the fingers. The resulting image 
was thresholded by setting pixels with a value greater than 
0.7 as NaN (i.e., an invalid number). This value is arbitrarily 
chosen for better smoothing quality. A mask frame was then 
introduced on the left and right sides of the original images 
to block the edges with lower pixel values (due to shadow-
ing), which may have similar intensity as the vein’s region. 
The processed image was again converted to binary before 
applying the mask to remove the remaining background. 
CLAHE was then applied to further enhance the appearance 
of the vein region. In the final step, a thresholding opera-
tion was applied to the enhanced image to obtain a clearer 
visualization of the image, as shown in Figure 2. Finally, the 
produced images were resized to 227 × 227 × 3 before fur-
ther processing. Since this method is mainly based on hybrid 
histogram analysis and morphological operations, hereafter, 
we refer to this approach as the HHM method.

4. Data Augmentation
After segmentation, the training dataset was augmented 
and split into training, validation, and testing sets at an 8:1:1 

Figure 1. ‌�Manual cropping process: 
(A) defined boundary box of 
an image and (B) segmen
ted output.

A B

http://www.bosphorus.ee.boun.edu.tr
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ratio, and their distribution is shown in Table 1. We used a 
constant random seed number of 10 in the dataset division 
process to ensure consistency in our comparisons. The train-
ing dataset was enlarged through augmentation using ran-
domAffine2d and flip functions to improve the model per-
formance. This process was done by random rotation of the 
images in two different angle intervals, (–30°, 30°) and (–50°, 
50°), and random horizontal flipping, as shown in Figure 3.

5. Transfer-Learning AlexNet
Despite the lightweight and simple features of AlexNet, it 
produced comparable classification accuracy to its deeper 
counterparts, such as VGG16, ResNet-50, and SqueezeNet 
[26], suggesting its efficiency in extracting important infor-

mation. Thus, AlexNet was used for our experiments. This 
model was trained with the manually and automatically 
segmented dataset shown in Figure 4. In these experiments, 
we froze the entire network backbone, except the last three 
layers—that is, the fully connected layer was replaced with 
100 nodes corresponding to 100 users, softmax, and output. 
Stochastic gradient descent with momentum (SGDM) was 
employed as the solver due to its shorter computational time 
and high accuracy. The model trained with the manually 
segmented dataset was used as the gold standard for iden-
tifying the optimal training hyperparameters using the grid 
search approach. For this purpose, 50 trials were attempted. 
We adjusted the epoch, initial learning rate, and mini-
batch size while keeping the rest of the parameters fixed. 
The epoch number was varied from 10 to 90 at a step of 10; 
the batch-size number was adjusted from 21 to 211, and the 
learning rates ranged from 0.00009 to 0.1 at a resolution of 
0.00001. Our results showed that an epoch number of 50, an 
initial learning rate of 0.0008, and a mini-batch size of 128 
were the best hyperparameters that yielded the best training 
and validation accuracies. This combination was chosen for 
the remaining experiments using other strategies, as shown 
in Table 2. Since it was our intention to demonstrate the 
efficiency of the proposed HHM method, the best model 
trained with the HHM was chosen based on the highest test 
accuracy. The quality of this biometric verification system 
was then evaluated in terms of the FAR and FRR. We con-
sidered threshold values of 0.3 and 0.5 following a previous 
recommendation [28]. A decision threshold of 0.5 has been 
deemed the most optimal in many studies in the field.

III. Results 

This section presents the results obtained from training 
AlexNet, as well as a comparison of our results with the 
state-of-the-art.

1. Model Training 
The training accuracy (Tacc) and validation accuracy (Vacc) of 

Table 1. Distribution of images for training, validation, and test-
ing of the model

Dataset Without augmentation With augmentation

Training 1,200 3,600
Validation 100 100
Testing 200 200
Total image 1,500 3,900

Figure 2. Flowchart of hybrid automatic segmentation (i.e., the 
HHM method). CLAHE: contrast-limited adaptive histogram 
equalization, HHM: hybrid automatic segmentation method.

Image conversion:
RGB to gray

CLAHE

Conversion from gray
to binary version

Morphological operations

Pixel-difference method
(mask for finger)

After applying mask
on input image

Thresholding technique

Inserting frame

Conversion from gray
to binary (mask)

Selection of interested
area (final mask)

After applying final mask

CLAHE

Thresholding technique
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the model trained following the implementation of different 
strategies in Table 2 were obtained using the best combina-
tion of hyperparameters identified using the manual seg-
mentation approach on original-size data. The improvement 
in the classification results with the inclusion of augmenta-
tion data is consistent with the observations in many previ-
ous studies [7,13]. The proposed HHM technique produced 
100% Tacc compared to the manual method using both the 
original and augmented datasets. The computing time of the 
model trained with the inclusion of augmented data was ap-
proximately three times longer than the model trained with 

the original data.

2. �System Performance and Comparison with Existing 
Methods

The test accuracy of the AlexNet model trained using the 
datasets segmented via the different strategies in Table 2 is 
shown in Figure 5. The models trained with the augmented 
dataset produced higher accuracy than those without aug-
mentation. The manually segmented dataset achieved higher 
test accuracy than automatic segmentation. This difference 
was comparatively small with the augmented dataset. To fur-

Input Output

Training options

Epoch: 10 90, Batch-size: 2 2
and Learn rate: 0.00009 0.1

1 11

Segmentation

Automatic (HHM)Manual

Training (80%)

Validation (10%)

Model (AlexNet)
training

Optimized
trained model

Testing (10%)

Augmentation

Rotation ( 30 , 30 , 50 , 50 ), and flipping (horizontal)

Figure 4. ‌�Schematic diagram of the 
dorsal hand vein process-
ing and training workflow. 
HHM: hybrid automatic 
segmentation method.

Table 2. Training (Tacc) and validation accuracy (Vacc) of the model trained using the data processing strategies and training parameters 
adopted in this study

Strategy Tacc (%) Vacc (%) Training options

Manual method 98.44 93.00
Epoch = 50

Mini-batch size = 128
Learning rate = 0.0008

HHM method 100.00 69.00
Manual method with augmentation 99.22 95.00
HHM method with augmentation 100.00 84.00
HHM: hybrid automatic segmentation method. 

Figure 3. ‌�Example of data augmenta-
tion operations on a seg-
mented image.
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ther our research, we compared our results with the findings 
of published papers using AlexNet for the same problem 
[11,13,26]. Some of those studies used a different dataset 
and employed different strategies than ours in improving the 
test accuracy. Since the best model trained with the HHM 
method was the model that included augmentation, as 
shown in Figure 5, this model was used to test the efficiency 
of the biometric system. Our results showed mean FAR and 
FRR values of 0.00065% and 0.07% at a score threshold of 0.3, 
and 0.00035% and 0.095% with a 0.5 threshold.

IV. Discussion

In this study, we demonstrated the performance of AlexNet 
models trained using manually and automatically segmented 
datasets. We tested our models with an independent (unseen) 
dataset, and we did not consider a cross-validation (CV) 
scheme in the performance validation of the model because 
concerns have been raised about the grossly over-optimistic 
results from the CV method due to its lack of independent 
and external validation [29]. The manual method took 
nearly 20 working days using our CPU (Intel Core M-5Y71 
with a 1.40 GHz processor and 8 GB of RAM) in segmenting 
the 1,500 images. This was three times longer than the time 
required for the HHM model. Based on the pre-experiment 
results, we found that tuning the training hyperparam-
eters—namely, the mini-batch size, learning rate, and epoch 
number—was sufficient to enhance classification accuracy. 
We identified an epoch number of 50 as optimal for the 
employed model to learn important features using the seg-
mented image dataset and minimize underfitting. Similarly, 
the mini-batch size value was tuned to 128. A large mini-
batch size resulted in the training taking longer to reach 
convergence, while setting the value too low led to unstable 
learning problems that affected the overall classification per-
formance. The best initial learning rate of 0.0008 was identi-
fied after running the network multiple times with different 
values. A small value caused the training procedure to take 
a long time, while a large value caused an unstable training 
process. During these tuning processes, we noticed signifi-

Manual method HHM method
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Figure 5. Test accuracy of the model trained with datasets seg-
mented using the manual and HHM methods, and with and 
without an augmentation strategy. HHM: hybrid automatic seg-
mentation method.

Table 3. Comparison of classification accuracy between our method and the state-of-the-art

Study Dataset Segmentation/quality enhancement strategy Classification accuracy (%)

Al-johania and Elrefaei [11] Bosphorus - 95.51
Badawi 100

Lefkovits et al. [26] NCUT - 96.50
CLAHE 96.08
Coded 95.10
Coarse vein 91.67

Mohaghegh and Payne [13] 11k Hands Augmentation 93.70
IITD 80.10

Proposed Bosphorus Manual method 87.50
HHM method 76.50
Manuala 91.50
HHMa 88.00

NCUT: North China University of Technology, CLAHE: contrast-limited adaptive histogram equalization, HMM: hybrid automatic 
segmentation method.
aWith augmentation.
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cant changes in the training and validation accuracies, rang-
ing between 80% and 98.44% and between 38% and 93%, 
respectively, using the manually segmented dataset as the 
benchmark set. This combination was found to work accept-
ably well for other strategies. Even though the test accuracy 
from the HHM method (non-augmented case) shown in 
Table 2 was lower than that achieved with the manual meth-
od, the performance of the model improved considerably to 
84% with the inclusion of augmented data. Interestingly, in 
the manual method, it was found that the existing datasets 
may be sufficient for the network to learn all the important 
features. Hence, the inclusion of augmentation did not sig-
nificantly improve the classification performance. 
	 It must be mentioned here that there was evidence of 
model overfitting (Tacc = 100%) in the HHM method, which 
we attribute to the improper segmentation of certain im-
ages. The main cause of this was the highly consistent pixel 
values between the vein regions and undesired regions (i.e., 
background and fingers), resulting in either over-segmented 
or under-segmented results in certain images. The automati-
cally and manually segmented datasets combined with the 
augmentation method produced generally better test ac-
curacy values of 88% and 91.5%, respectively, as compared 
to those without augmentation (76.5% and 87.5%, respec-
tively), shown in Figure 5. This suggests the possibility of 
improved model learning of deeper representations with 
greater variation in the training data. We do not rule out the 
possibility that the results would improve with a deeper and 
wider network for the extraction of more complex and richer 
features. The test accuracy in Figure 5 is consistent with the 
validation accuracies observed in Table 2, wherein the infer-
ence accuracy showed a notable improvement of more than 
10% using the model trained with HHM-segmented data 
combined with an augmentation strategy. 
	 A comparison with earlier works [13,26], as presented in 
Table 3, showed consistency with our results regarding the 
efficacy of augmentation. One study [11] used the original 
(hand) images without segmentation; thus, the model may 
have been trained to recognize the hand shape, instead of the 
vein pattern, which may be inappropriate for authentication 
tasks.
	 It is found that a manually segmented dataset produced 
a generally higher classification accuracy at the price of a 
more laborious and time-consuming procedure. There was 
also substantial inconsistency in the judgment process. In 
contrast, our automatic strategy is time-saving, requires less 
effort during segmentation, and produces repeatable results. 
This method can be suitably used for practical purposes due 

to its relatively low FAR and FRR, which were 0.00035% and 
0.095% at a cutoff threshold of 0.5. These values were close 
to those obtained using a commercial biometric system [30], 
with a reported FAR and FRR of 0.0001% and 0.01%.
	 Nonetheless, there is still a need for a robust segmenta-
tion method to overcome the over-segmentation or under-
segmentation problems that occur in 20% of images. This 
may be achieved with the use of hybrid ML and CNN, which 
may be explored in the future.
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