
© 2022 Korean Society of Cardiovascular Disease Prevention, Korean Society of Cardiovascular Pharmacotherapy
   This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cardiovascular Prevention
and Pharmacotherapy

13www.e-jcpp.org

INTRODUCTION 

Precision medicine for common chronic diseases entails 

the customization of patient care based on genetic, clinical, 

and environmental information sourced from large pop-

ulations [1]. Risk prediction models for chronic diseases 

are useful tools for classifying high-risk groups that require 

educational or clinical therapeutic interventions. However, 

traditional risk factors for common chronic diseases do 

not typically appear early in life, making it difficult to fully 

identify individuals at high-risk. Genome-level analyses are 

attractive in that they provide predictive information about 

the entire trajectory of a disease at an early stage of life; pre-

vious studies have reported that around 40% to 50% of phe-
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Genetic information is one of the essential components of precision medicine. Over the past decade, substantial progress has been 
made, such as low-cost, high-throughput genotyping arrays, advances in statistical techniques, and progressively larger discovery 
datasets, enabling the discovery of alleles contributing to common diseases, such as coronary artery disease and type 2 diabetes. 
The polygenic risk score (PRS) represents the aggregate contribution of numerous common genetic variants, individually conferring 
small to moderate effects, and can be used as a marker of genetic risk for major chronic diseases. PRSs can be obtained from early 
childhood, and only one measurement is needed to determine the score. PRSs can potentially be used for triage of further investiga-
tions to confirm disease susceptibility and to optimize individualized preventive strategies for high-risk disease groups. We provide 
an overview and commentary on important advances in deriving and validating PRSs, as well as the implementation of PRSs for 
clinically useful purposes. 
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notypic variance in susceptibility to chronic diseases such 

as coronary artery disease (CAD) or type 2 diabetes (T2D) 

can be explained by genetic factors [2,3]. However, over the 

last decade, genome-wide association studies (GWAS) have 

demonstrated that each individual genetic variant generally 

has only a small or modest effect. Thus, from the current 

perspective, the most common complex diseases that pose 

public health concerns are highly polygenic in nature, with 

hundreds or thousands of small-effect genetic variants in-

fluencing the development or progression of the disease [4]. 

This situation has led to the development of models 

for polygenic risk scoring, which aggregate the effects of 

multiple single-nucleotide polymorphisms (SNPs) into a 

single score. More specifically, polygenic risk scores (PRSs) 



represent a method of aggregating an individual’s genetic 

information, weighted by the associations of genetic vari-

ants with disease outcomes as identified from GWAS, into 

simplified scores that capture an individual’s susceptibility 

to disease and can therefore be used for risk prediction 

[5]. Previously, PRS models were based on a small num-

ber of SNPs identified through candidate gene studies and 

scores calculated simply by summing an individual’s risk 

allele burden for a handful of disease-associated variants, 

all weighted equally regardless of the underlying strength 

of association. Recent advances in the organization of 

large-scale consortia and biobanks have enabled the brisk 

discovery of genetic variants associated with common 

complex diseases [6–8]. In addition to these large datasets 

becoming available, computational and statistical advances 

have allowed easier derivation, calculation, and validation 

of PRS models [9]. This has led PRSs to be widely applied in 

research studies, consequently confirming the genetic con-

tributions of common variants to disease status [3,10]. This 

review aims to briefly introduce the methods of calculating 

a PRS, examples of clinical utility for cardiometabolic PRSs, 

and considerations for the application of PRSs in clinical 

practice. 

THE PROCESS OF CREATING POLYGENIC RISK SCORES 

Before discussing the clinical utility of PRS profiling, we 

briefly introduce the process by which PRSs are developed 

and evaluated. PRSs are calculated through statistical mod-

els, which are constructed via the five-step process outlined 

below [11]. 

1) Selection of base and target datasets 

2) Single-nucleotide polymorphism selection and weight 

calculation: First, a base GWAS dataset is needed that pro-

vides summary statistics, including beta coefficients and 

the P-values of genotype and phenotype associations. This 

dataset is used to identify disease-associated SNPs and their 

effect sizes. Weighting parameters that affect the calibration 

and predictive ability of the final model are also determined 

from the base dataset. In addition, a target dataset consist-

ing of genotypes and phenotypes is required, which should 

be independent of the base dataset as it is used for calculat-

ing individual PRSs and checking the overall performance 

accuracy. 

3) Dataset quality control: To ensure high accuracy and 

validity when performing a PRS analysis, quality control 

of both the base and target datasets is very important. Re-

garding genotype and phenotype data, the quality control 

process includes addressing missing SNPs and individuals, 

checking for sex discrepancies, including only SNPs above 

an appropriate minor allele frequency threshold, and ex-

cluding individuals on the basis of relatedness and high or 

low heterozygosity rates. 

4) Shrinkage of GWAS effect size estimates and controlling 

linkage disequilibrium: Since not all SNPs influence the 

trait under study, using the unadjusted effect size estimates 

of all SNPs could lead to poor prediction outcomes with 

high standard error. To avoid this problem and control for 

linkage disequilibrium, two methods for shrinking the effect 

size estimates are broadly used: (1) statistical shrinkage/

regularization techniques such as Lasso or ridge regres-

sion, or Bayesian approaches that perform shrinkage via 

prior distribution specification, and (2) a P-value selection 

threshold with clumping. In some cases, using a threshold 

below that for genome-wide statistical significance may 

improve performance, often at the expense of generalizabil-

ity. PRSs can be readjusted with consideration of effect size 

biases, including the effect size inflation typical in a base 

dataset, the presence of multiple linked variants within 

each disease-associated locus, subphenotypes of interest, 

and ethnic or demographic factors that may influence gen-

eralizability. 

5) Generation and validation of PRSs: PRSs can be gener-

ated by a mathematical algorithm that combines selected 

SNPs, assigns weighting based on effect size, and deter-

mines the best-performing SNPs in the population of the 

independent target dataset. Separate populations should 

be used to confirm the validity of a PRS, and considerations 

that should be taken into account include the PRS unit, 

population genetic structure, PRS distribution, and overfit-

ting. 

GENETIC EFFECTS OF COMMON VARIANTS ON 
COMMON COMPLEX DISEASES 

The clinical utility of GWAS-based inherited risk estimates 

has mainly been assessed in terms of discriminative ability 

as described by the area under the curve, sensitivity, and 

specificity [5,12,13]. The area under the curve is a pop-

ulation-level metric reflecting the overall probability of 
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discriminating individuals with a given disease from those 

without [14]. This metric cannot provide information re-

garding the absolute predictive risk conferred to a single 

individual or subgroup. In contrast, a PRS can identify a 

subset of individuals whose absolute risk of disease is sig-

nificantly higher than that of the average individual in the 

general population. One of the major utilities of PRSs may 

be the comprehensive stratification of an overall population 

through accounting for each individual’s or subgroup’s re-

spective genetic susceptibility [15]. 

In previous papers, PRSs have demonstrated considerable 

performance in predicting target diseases. Khera et al. [5] 

showed that, in five common diseases, including CAD and 

T2D, genome-wide PRSs could identify a larger fraction of 

the population than could carrier status for rare monogenic 

mutations, while considering a comparable risk level. With 

respect to CAD in particular, individuals in the top 1% of the 

PRS distribution had 4.8-fold higher risk than the remaining 

99%. In addition, relative to the carrier frequency of familial 

hypercholesterolemia, which is caused by a rare monogenic 

mutation, the PRS identified 20-fold more individuals at 

comparable risk. Those high-risk individuals could benefit 

from tailored health management strategies, which may 

include intensive screening or more invasive preventive in-

terventions. Another study suggested that, compared to in-

dividuals with average PRSs, those in the top 2.5 percentile 

experienced the onset of common diseases 4.3 to 6.6 years 

earlier [13]. They also evaluated the effect of adding the PRS 

to clinical risk scores on discriminative and reclassification 

performance and found that the addition of PRS significant-

ly enhanced both the concordance index and net reclassifi-

cation improvement. 

Genetic risk may be modifiable through adherence to 

a favorable lifestyle or medication. Previous studies have 

demonstrated the effects of PRSs, lifestyle factors, and their 

interaction on the risk of chronic metabolic diseases. In 

particular, Khera et al. [16] suggested that genetic and life-

style factors are independently associated with CAD risk. 

Even in individuals at high genetic risk, a favorable lifestyle 

reduced the relative risk of CAD by nearly half relative to an 

unfavorable lifestyle. The log additive effects of combined 

genetic composition and lifestyle behaviors on disease risk 

have also been reported in atrial fibrillation, stroke, hyper-

tension, and T2D [17]. 

CLINICAL UTILITY OF POLYGENIC RISK SCORES 

Combining PRSs with traditional clinical risk factors can 

further refine prevention strategies by enabling more so-

phisticated risk stratification (Fig. 1). Although PRSs are not 

yet routinely used in clinical practice, they are proposed 

to have several advantages. First, PRSs can be ascertained 

Fig. 1.  Risk stratification using polygenic risk scores and the selection of preventive strategies according to risk groups.
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from birth, and only one measurement is needed to de-

termine the score. Cardiovascular risk captured by PRSs 

appears to be largely independent of traditional risk factors, 

which usually manifest in middle-aged adults [18]. Thus, 

lifestyles can be optimized from infancy and genetic in-

formation can potentially influence motivation for disease 

prevention from very early in a patient’s life. Second, PRSs 

may be appropriate for screening common metabolic dis-

eases in large community populations, especially in young 

adults. Several results have demonstrated their utility in 

decisions for early or late initiation and the interpretation 

of disease screening (e.g., for breast, colorectal, or prostate 

cancer) [19–21]. Third, PRSs can affect the disease course 

or progression as well as disease incidence. We previously 

demonstrated that individuals with high PRSs for CAD and 

T2D had significantly higher risk of cardiovascular mortali-

ty, the most progressive manifestation of CVD [22]. Fourth, 

PRSs can factor in target selection for interventions to treat 

or prevent disease. Individualized treatment is central to 

precision medicine, and applying PRSs to improve individ-

ual patient care would benefit the decision-making process 

for diagnosis and treatment and thereby guide therapeutic 

interventions. A high PRS may assist in triaging individuals 

in a borderline risk group. In the context of cardiovascular 

disease, there has been considerable debate as to whether 

PRSs are appropriate as interventions for primary pre-

ventive treatments, such as antiplatelet drugs and statins. 

For example, in individuals with borderline low-density 

lipoprotein cholesterol levels, a CAD PRS in addition to 

traditional risk factors may permit a more detailed categori-

zation of risk, thus influencing the decision to initiate statin 

therapy [23,24].  

FUTURE DIRECTIONS 

PRSs offer a valuable opportunity to improve the early iden-

tification of actionable cardiovascular risk. Nonetheless, 

despite encouraging findings, the clinical utility of PRS risk 

estimation remains limited. Most studies have primarily 

focused on individuals of European ancestry, and general-

ization to other ancestries might be difficult due to linkage 

disequilibrium. In addition, evidence relating to PRS ap-

plication is still lacking, and many models based on a PRS 

alone still have much lower area under the curves than 

traditional multivariate models, as expected from the use of 

a single risk factor due to several limitations. Thus, further 

research should be conducted, especially more large-scale 

prospective studies examining the clinical utility of PRSs, 

and caution remains needed when interpreting PRS results 

and applying them to the general population. The dissem-

ination of false deterministic beliefs should be rejected. As 

methodological advances increase the accuracy of PRS de-

terminations and so continue to improve PRS estimates, it 

is expected that PRSs will become more useful. 
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