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INTRODUCTION

Acute and chronic liver in�ammation induces epithelial cell in-

jury and leads to �brosis via �brotic effector cell activation and 

proliferation [1]. Liver �brosis can cause cirrhosis, leading to portal 

hypertension, variceal bleeding, ascites, and in some cases, hepa-

tocellular carcinoma. However, hepatocytes can regenerate, mak-

ing liver �brosis reversible through therapeutic interventions [2, 3]. 

A liver biopsy is the “gold standard” for assessing liver �brosis se-

verity. However, it has limitations, such as sampling error and ob-

server subjectivity in histological interpretation [4, 5]. Additionally, 

liver biopsy is an invasive method with rare but potentially life-

threatening complications [5]. Therefore, noninvasive methods 

(NIMs) have become necessary to estimate the stage of liver �bro-

sis in patients.

NIMs use several biomarkers and their calculation formulas, 
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Background: Liver fibrosis which causes several liver diseases, requires early screening and management. The gold standard for fibrosis as-
sessment, liver biopsy, has recently been replaced by noninvasive scores. In this study, we validated liver fibrosis-associated biomarkers using 
machine learning techniques applied in medical research and evaluated their prediction models. 
Methods: Noninvasive scores were assayed in 144 patients who underwent transient elastography (TE). The patients were divided into three 
groups (<7 kPa, 7–10 kPa, ≥10 kPa) according to their TE results. Feature selection and modeling for predicting liver fibrosis were performed 
using random forest (RF) and support vector machine (SVM). 
Results: Considering the mean decrease in impurity, permutation importance, and multicollinear analysis, the important features for differentiat-
ing between the three groups were Mac-2 binding protein glycosylation isomer (M2BPGi), platelet count, and aspartate aminotransferase (AST). 
Using these features, the RF and SVM models showed equivalent or better performance than noninvasive scores. The sensitivities of RF and SVM 
models for predicting ≥7 kPa TE results were higher than noninvasive scores (83.3% and 90.0% vs. <80%, respectively). The sensitivity and 
specificity of RF and SVM models for ≥10 kPa TE result was 100%.
Conclusions: We used machine learning techniques to verify the usefulness of established serological biomarkers (M2BPGi, PLT, and AST) that 
predict liver fibrosis. Conclusively, machine learning models showed better performance than noninvasive scores.
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such as the aspartate aminotransferase (AST)-platelet ratio index 

(APRI), the �brosis index based on four factors (FIB-4), nonalco-

holic fatty liver disease (NAFLD) �brosis score (NFS), Mac-2 bind-

ing protein glycosylation isomer (M2BPGi), and radiological tests, 

such as transient elastography (TE, FibroScan) [6, 7]. The FIB-4 in-

dex is calculated using a formula based on patient age, AST, ALT, 

and platelet count (PLT) [7]. The NFS is based on six routine clini-

cal parameters: age, body mass index (BMI), presence of diabetes 

or impaired fasting glucose, AST/ALT ratio, PLT, and albumin. M2B-

PGi is a glycoprotein produced by hepatic stellate cells and a novel 

biomarker to estimate liver �brosis because the liver secretes it 

during �brosis progression and can thus be evaluated using a sin-

gle serologic test [8-11]. An automated immunoassay detects ab-

normal M2BPGi glycosylation related to liver �brosis, which be-

comes agglutinated and can be detected by lectin [12].

FibroScan allows noninvasive measurement of liver stiffness us-

ing a low-frequency 50 Hz elastic shear wave transmitted through 

the liver [13]. The velocity of the shear wave is measured and di-

rectly related to tissue stiffness, which, in turn, is associated with 

the stage of �brosis. The method is fast, reproducible, and has re-

liable intra- and inter-observer agreements [14]. In a meta-analy-

sis, FibroScan had an area under the receiver operating character-

istic (ROC) curve of 0.84–1.00, excluding advanced �brosis [15]. 

Furthermore, FibroScan had high negative and modest positive 

predictive values, indicating its usefulness as a screening test to 

determine whether a liver biopsy is required. However, various 

studies showed different cutoff values when determining the liver 

�brosis stage, and liver stiffness measurement values falsely increase 

in patients with high BMI and/or central obesity [16].

Artificial intelligence (AI) technology has recently advanced 

substantially, and applying AI to several aspects of medicine has 

become common, particularly to support diagnostics [17-19]. Ma-

chine learning (ML) algorithms have been developed to predict 

disease risk and outcomes using multiple clinical parameters in 

liver diseases [20, 21]. ML is the scienti�c discipline focusing on 

how computers learn from data [22]. ML methods are well suited 

for classi�cation tasks and use an unbiased approach to identify 

unexpected informative variables. Noninvasive biomarkers and 

AI integration are leading to new advances in liver �brosis predic-

tion. In a study by Feng et al. [23], ML algorithms were used to dis-

cover noninvasive urine proteomic biomarkers for predicting NA-

FLD. Protein levels were measured using ultra-performance liquid 

chromatography-mass spectrometry (UPLC-MS) in urine samples. 

The resulting novel protein pro�le had an area under the ROC 

(AUC) values of ≥0.80 in the independent validation cohort. Al-

though urine biomarkers offer advantages in accessibility and in-

vasiveness compared to blood tests, they pose disadvantages be-

cause their measurement methods require a high degree of skill 

and less veri�cation data than existing serological biomarkers. 

Despite ongoing research on novel biomarkers, serological tests 

remain helpful in predicting liver �brosis. 

In this study, we used ML techniques to validate the diagnostic 

performance of known liver �brosis-associated serological bio-

markers. Furthermore, the performance of liver �brosis prediction 

models using ML algorithms was compared with that of NIMs.

MATERIALS AND METHODS

1. Study Samples

Participants were recruited from the Kangbuk Samsung Health 

Study, which was a cohort study of Korean males and females 

who undergo comprehensive annual or biennial examinations at 

the Kangbuk Samsung Hospital Healthcare Screening Center in 

South Korea. This study enrolled 186 participants who underwent 

elastography for screening liver �brosis with a comprehensive 

health checkup from November 2017 to April 2019. Patients with 

the following conditions were excluded from the study: 1) incom-

plete data, 2) evidence of any cancer and other chronic liver dis-

eases, including autoimmune hepatitis, hepatitis B or C, or alco-

holic liver disease, 3) medications, such as ursodeoxycholic acid, 

4) advanced liver disease, hemangioma, and hepatic congestion, 

and 5) obesity (BMI of ≥31). The following clinical information, 

including underlying diseases and laboratory data, was collected 

by reviewing the medical records: sex, age, BMI, hypertension 

(HTN), diabetes mellitus (DM), hyperlipidemia, AST, ALT, gamma-

glutamyltransferase (GGT), total bilirubin, albumin, creatinine 

(Cr), white blood cell count (WBC), PLT, and prothrombin time 

(PT). This study was approved by the Institutional Review Board 

of Kangbuk Samsung Hospital (KBSMC 2017-08-015), and the re-

quirement for informed consent was waived.

2. Transient elastography (TE) (FibroScan)

A liver biopsy was not performed on the subjects of this study 

because none had severe liver disease. Therefore, the stages of 
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liver �brosis were classi�ed based on TE and performed by expe-

rienced radiologists using FibroScan (Echosens, Paris, France) with 

an M probe. Patients were placed in a supine position with the right 

upper arm abducted, and the probe was vertically positioned at 

the intercostal spaces above the right lobe of the liver. The me-

dian of 10 valid measurements was expressed in kilopascals (kPa) 

[24, 25]. The following stages of �brosis were de�ned based on 

previous studies [14, 15, 26]: F0/1 with <7.0 kPa, presumed no or 

minimal �brosis; F2 with ≥7.0 kPa, presumed moderate �brosis; 

F3 with ≥10.0 kPa, presumed severe �brosis; and F4 with ≥13 

kPa, presumed cirrhosis. We classi�ed the three groups based on 

7.0 kPa; group 1, including F0/1; group 2, including F2; and group 

3, including F3/4.

3. Serum M2BPGi

Serum samples were collected from subjects that were requested 

for liver �brosis assessment using TE. M2BPGi levels were mea-

sured from frozen sera previously collected. An immunoassay 

based on the lectin antibody sandwich method was performed 

using an automatic immune analyzer (HISCL-5000, Sysmex, Kobe, 

Japan) to quantify M2BPGi. The measured result was presented 

as a cutoff index (COI) by the following formula:

M2BPGi COI= (M2BPGisample-M2BPGiNC)÷(M2BPGiPC-M2BPGiNC), 

where M2BPGisample is the measured value of the patient sample, 

M2BPGiNC is the negative control value, and M2BPGiPC is the posi-

tive control value, which was provided by the manufacturer. The 

positive control was used as a preliminarily standardized calibra-

tion solution to yield a COI value of 1.0 [27].

4. Noninvasive scores

APRI, FIB-4, and NFS were calculated using laboratory data as 

follows [7, 28]:

AP RI= [AST (U/L)/upper limit of reference interval of AST (U/L) 

×100]/PLT (×109/L)

FIB-4= [age (year)×AST (U/L)]/[PLT (×109/L)×√ALT (U/L)]

NF S= -1.675+0.037×age (year)+0.094×BMI (kg/m2)+1.13×im-

paired fasting glucose/diabetes (yes=1, no=0)+0.99×AST/

ALT ratio-0.013×PLT (×109/L)-0.66×albumin (g/dL)

5. Feature selection

After reviewing previous studies on NIMs [10, 25, 28], 16 features 

were selected: sex, age, BMI, HTN, DM, hyperlipidemia, AST, ALT, 

GGT, total bilirubin, albumin, Cr, WBC, PLT, PT, and M2BPGi. Stan-

dard preprocessing methods were performed, such as one-hot 

encoding for categorical features and normalization for numerical 

features. One-hot encoding mitigates categorical data in ML. The 

method turns categorical features into binary features. The mean 

decrease in impurity (MDI) [29] and permutation importance (PI) 

[30] was calculated using a random forest (RF) [31] as a classi�er to 

evaluate the feature importance in the three groups. The mean 

decrease in impurity was used in decision tree algorithms, such 

as RF, to evaluate the importance of a feature in predicting the tar-

get variable. Impurity indicates how well a split separates the classes 

in a node of the tree. If a feature creates splits that result in highly 

homogeneous classes, then it is considered important, and its mean 

decrease in impurity value will be high. The mean decrease in 

the impurity of a feature is calculated by averaging the impurity 

decrease for that feature over all the decision trees in the ensem-

ble in the case of RFs. The feature with the highest mean decrease 

in impurity is considered the most important feature in predicting 

the target variable. Permutation importance evaluates how much 

the model’s performance decreases when the values of a given 

feature are randomly permuted (shuf�ed) across the data samples 

while leaving the target variable unchanged. The decrease in the 

accuracy of a model following permutation re�ects the importance 

of the feature in the model. The default con�guration provided by 

the sci-kit-learn library (v1.0.2) was used for the RF. Top-ranked 

features based on the MDI and the PI were selected. 

6. Computational modeling and validation

After reviewing previous studies on liver diseases [20, 21], we 

used ML algorithms for our computational modeling and the RF 

and support vector machine (SVM) with linear kernel [32] using 

selected features. The models were validated using �ve-fold cross-

validation, in which the total dataset was randomly split into sub-

sets (train and test datasets) �ve times to evaluate the model per-

formance on the test dataset. The ROC curves were applied to eval-

uate the performance of three ML models, and APRI, FIB-4, NFS, 

and M2BPGi were used to diagnose moderate �brosis (groups 

2–3, ≥7.0 kPa) or severe �brosis (group 3, ≥10.0 kPa). The model 

performance was evaluated using AUC, accuracy, sensitivity, and 

speci�city. The sensitivity and speci�city were calculated at Youden’

s point, which is obtained by maximizing the difference between 

the true- and false-positive rates. The AUC results were consid-
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ered excellent (0.9–1), good (0.8–0.9), fair (0.7–0.8), poor (0.6–0.7), 

and failed (0.5–0.6).

7. Statistical analysis and visualization

The IBM statistical package for the social sciences version 20 

(IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Ver-

sion 20.0. Armonk, NY: IBM Corp.) was used for statistical analy-

sis. Baseline characteristics were presented as a number, mean, or 

median with percentage, standard deviation, or interquartile range 

(IQR, Q1–Q3) and tested using an independent t-test, Mann—

Whitney U-test, Pearson’s chi-square test, or Fisher’s exact test. 

The ROC curves were plotted using the Matplotlib library [33]. 

The feature importance, ML modeling, and ROC analysis with 

�ve-fold cross-validation were performed by Python with Scikit-

learn-the machine learning library (https://scikit-learn.org/stable/

auto_examples/index.html) [34]. The level of statistical signi�cance 

was set at P<0.05.

RESULTS

A total of 144 participants were included in this study. The char-

acteristics of the study population are summarized in Table 1. Of 

the total, 83 (57.6%) were males, and the mean age was 55±14 

years. The mean BMI was 24.5±2.7 kg/m2. HTN was determined 

in 33 (22.9%) patients; 30 (20.8%) had DM, and 53 (36.8%) had hy-

perlipidemia. The liver �brosis classi�cation using FibroScan de-

termined 115 (79.9%), 6 (4.2%), and 23 (16.0%) patients belonged 

to group 1 (no or minimal), group 2 (moderate), and group 3 (se-

vere), respectively. A signi�cant difference was found between 

the three groups regarding laboratory �ndings, except for ALT 

and Cr. All noninvasive scores were signi�cantly different in group 

1 vs. group 2 vs. group 3 (except for APRI in group 1 vs. group 2, 

P =0.313) (Fig. 1).

1. Feature importance

The MDI and PI of 16 features (four categorical and twelve nu-

Table 1. Clinical and laboratory characteristics comparing no or minimal (group 1), moderate (group 2), and severe fibrosis (group 3)

Variable Total Group 1 Group 2 Group 3 p-value

N 144 115 6 23

Age (yr) 55±14 53±12 66±7 65±15 <0.001

Male (%) 57.6 58.3 50.0 56.5 0.826

BMI (kg/m2) 24.5±2.7 24.2±2.5 25.4±2.0 25.6±3.1 0.053

Medical histories

   Hypertension (%) 22.9 13.0 50.0 65.2 <0.001

   Diabetes mellitus (%) 20.8 15.7 50.0 39.1 0.005

   Hyperlipidemia (%) 36.8 41.7 16.7 17.4 0.019

Laboratory findings

   AST (U/L) 25 (21–32) 23 (20–28) 29 (21–37) 37 (33–45) <0.001

   ALT (U/L) 22 (17–33) 22 (17–33) 30 (13–62) 22 (16–31) 0.691

   GGT (U/L) 40 (21–79) 35 (20–69) 43 (18–75) 59 (41–132) 0.019

   Total bilirubin (mg/dL) 0.80 (0.58–1.05) 0.75 (0.57–1.02) 0.99 (0.65–1.33) 0.94 (0.72–1.38) 0.035

   Albumin (g/dL) 4.6 (4.4–4.9) 4.7 (4.5–4.9) 4.5 (4.4–4.7) 4.2 (3.7–4.5) <0.001

   Creatinine (mg/dL) 0.80 (0.68–0.95) 0.80 (0.66–0.95) 0.83 (0.61–1.00) 0.81 (0.70–0.93) 0.785

   WBC (×109/L) 5.72±1.40 5.91±1.34 6.25±1.15 4.66±1.30 <0.001

   Platelet (×109/L) 227±66 243±54 232±47 141±61 <0.001

   PT, INR 1.08 (1.03–1.15) 1.06 (1.03–1.12) 1.10 (1.04–1.17) 1.15 (1.07–1.26) <0.001

   M2BPGi, COI 0.65 (0.47–0.88) 0.58 (0.43–0.76) 0.89 (0.66–1.04) 2.34 (1.31–3.39) <0.001

Noninvasive scores

   NFS -1.864±1.806 -2.462±1.206 -1.134±0.857 0.934±1.818 <0.001

   APRI 0.274 (0.211–0.364) 0.246 (0.201–0.327) 0.299 (0.204–0.508) 0.869 (0.495–0.962) <0.001

   FIB-4 1.254 (0.903–1.782) 1.114 (0.787–1.495) 1.591 (1.239–1.922) 4.556 (3.300–5.698) <0.001

TE (kPa) 4.5 (3.6–6.5) 4.2 (3.4–4.8) 8.2 (7.7–9.6) 19.4 (14.2–37.0) <0.001

Continuous variables are presented as mean±standard deviation, and non-normally distributed variables are presented as median with interquartile range.
Abbreviations: BMI, body mass index; AST, aspartate transaminase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase; WBC, whole blood cells; PT, prothrom-
bin time; M2BPGi, Mac-2 binding protein glycosylation isomer; COI, cutoff index; NFS, nonalcoholic fatty liver disease fibrosis score; APRI, AST-platelet ratio index; FIB-4, fi-
brosis 4; TE, transient elastography.
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Fig. 2. Feature selection for differentiating between the three groups. The mean decrease in impurity (left panel) and permutation importance (right 
panel) were calculated to assess the importance of features. 
Abbreviations: M2BPGi, Mac-2 binding protein glycosylation isomer; PLT, platelet count; AST, aspartate transaminase; PT, prothrombin time; WBC, 
whole blood cells; T_bil, total bilirubin; HTN, hypertension; Cr, creatinine; ALB, albumin; GGT, gamma-glutamyl transferase; BMI, body mass index; 
DM, diabetes mellitus; HL, hyperlipidemia.
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merical features) were calculated (Fig. 2). Considering the MDI and 

PI pattern, the important features for discriminating between the 

three groups were M2BPGi, PLT, and AST. 

2. Model performance

The RF and SVM models predicting moderate �brosis (group 

2-3, ≥7 kPa) or severe �brosis (group 3, ≥10 kPa) were gener-

ated using three features (M2BPGi, AST, and PLT). The ROC curves 
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Fig. 3. Five-fold cross-validation composite receiver operating characteristic (ROC) curves for predicting (A) moderate (≥7 kPa) and (B) severe fibro-
sis (≥10 kPa). Five-fold cross-validation separate ROC curves for predicting (C) moderate (≥7 kPa) and (D) severe fibrosis (≥10 kPa). The random for-
est and support vector machine are shown in the left and right panels, respectively. 
Abbreviation: AUC, area under the curve.
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Table 2. The performance of the models, including area under the receiver operating characteristics curve (AUROC), sensitivity, and specificity for 
diagnosing moderate (≥7 kPa) or severe fibrosis (≥10 kPa)

Features ML
Diagnostic criteria for  

fibrosis (kPa)
AUROC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

M2BPGi+PLT+AST RF ≥7 0.906 (0.836–0.976) 93.1 83.3 100

≥10 0.995 (0.995–0.995) 99.3 100 100

SVM ≥7 0.952 (0.909–0.995) 93.1 90.0 97.4

≥10 0.993 (0.990–0.997) 97.2 100 99.2

APRI ≥7 0.891 (0.809–0.973) 91.0 72.4 95.7

≥10 0.958 (0.917–1.000) 94.4 82.6 96.7

FIB-4 ≥7 0.910 (0.848–0.972) 88.9 75.9 93.0

≥10 0.943 (0.882–1.000) 91.0 87.0 92.6

NFS ≥7 0.913 (0.850–0.975) 91.0 72.4 95.7

≥10 0.933 (0.864–1.000) 92.4 82.6 94.2

M2BPGi ≥7 0.922 (0.860–0.985) 92.4 75.9 96.5

≥10 0.955 (0.903–1.000) 95.8 87.0 97.5

Abbreviations: ML, machine learning algorithm; CI, confidence interval; PLT, platelet counts; AST, aspartate transaminase; RF, random forest; SVM, support vector machine; 
APRI, AST–platelet ratio index; FIB-4, fibrosis 4; NFS, nonalcoholic fatty liver disease fibrosis score; M2BPGi, Mac-2 binding protein glycosylation isomer.

with �ve-fold cross-validation were plotted to evaluate the model 

performance (Fig. 3). The AUCs for the RF and SVM models to 

predict �brosis were 0.906±0.052 and 0.952±0.035 for predicting 

moderate �brosis and 0.995±0.000 and 0.993±0.003 for severe 

�brosis, respectively. To predict moderate �brosis, the RF model 

had a sensitivity of 83.3%±10.5% and a speci�city of 100%±0.0%. 

The SVM model had a sensitivity of 90.0%±8.2% and a speci�c-

ity of 97.4%±2.1%. To predict severe �brosis, the RF model had a 

sensitivity of 100%±0.0% and a speci�city of 100%±0.0%. The 

SVM model had a sensitivity of 100%±0.0% and a speci�city of 

99.2%±1.7%. Simple ROC curves of APRI, FIB-4, NFS, and M2B-

PGi for diagnosing moderate or severe �brosis were analyzed. To 

diagnose moderate �brosis, the AUCs of APRI, FIB-4, NFS, and 

M2BPGi were 0.891, 0.910, 0.913, and 0.922, respectively; the sensi-

tivity was 72.4%, 75.9%, 72.4%, and 75.9%, respectively; and the 

speci�city was 95.7%, 93.0%, 95.7%, and 96.5%, respectively. To 

diagnose severe �brosis, the AUCs of APRI, FIB-4, NFS, and M2B-

PGi were 0.917, 0.882, 0.864, and 0.903, respectively; the sensitivity 

was 82.6%, 87.0%, 82.6%, and 87.0%, respectively; the speci�city 

was 96.7%, 92.6%, 94.2%, and 97.5%, respectively. All models had 

an AUC of excellent performance except for the APRI of the mod-

erate �brosis group. The sensitivity of APRI, FIB-4, NFS, and M2B-

PGi for moderate �brosis was <80%. The sensitivity and speci�c-

ity of the RF model for the severe �brosis group were 100%. All 

models had an accuracy of >90%, except for the FIB-4 of the mod-

erate �brosis group. The performance of the ROC curves is sum-

marized in Table 2.

DISCUSSION

This study identi�ed three features, M2BPGi, PLT, and AST, us-

ing ML methods, as the top-ranked signi�cant features to evaluate 

liver �brosis, based on 16 features, including information for un-

derlying diseases and laboratory results. Among the three features, 

the most important feature based on MDI and PI was M2BPGi. 

Several investigators validated the usefulness of M2BPGi to assess 

liver �brosis in patients with primary biliary cirrhosis [35, 36], bili-

ary atresia [37], autoimmune hepatitis [38], NFLD [39-42], and hep-

atitis B or C infection. The higher the M2BPGi value, the higher 

the probability of �brosis and progression to liver cancer [39, 43, 44]. 

PLT and AST, as the next important factor after M2BPGi, were 

common components of APRI, FIB-4, and NFS [7, 28]. This study 

used ML algorithms to validate the usefulness of well-known bio-

markers, unlike the above studies that evaluated serological bio-

markers of liver �brosis using general statistical methods. Several 

reports using AI techniques, including ML, have been used mainly 

to build predictive models in liver disease related to �brosis [20, 

21]. However, this study focused on demonstrating their reproduc-

ibility using ML methods rather than presenting a new predictive 

model because these serological biomarkers already show reliable 

performance in predicting liver �brosis.

The RF and SVM models showed equivalent or better perfor-

mance than NIMs. The sensitivity and speci�city of the ML mod-

els were better than those of NIMs. The RF is a type of nonlinear 

classi�er that consists of an ensemble of decision trees [31]. The 
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predicted probability computed by the RF is the average over the 

predictions of all decision trees that comprise the forest. A major-

ity vote of these decision trees offsets any bias against the variance 

across the tree predictions. SVM builds classi�cation models using 

a transformed set of features in higher dimensions [45]. All ML mod-

els split the analysis dataset into training and test sets. The ML 

model learns from the training set and then evaluates the model’s 

performance using the test set. Over�tting occurs when the model 

learns the details and noise of the training data to such an extent 

that it negatively affects the model’s performance on new data. 

Thus, we used feature selection to reduce the number of variables 

and simplify the model to avoid over�tting. Additionally, strati�ed 

�ve-fold cross-validation was used to avoid over�tting due to the 

small number of samples.

Feature selection by ML methods can discover new variables as 

predictors [22]. However, many cases report that these previously 

unknown variables may likely remain missing from cohort data. 

This study performed the feature selection for predicting liver �-

brosis targeting 16 variables, but only liver disease-related labora-

tory data and clinical information remained in most cases. We 

could not �nd a novel biomarker in feature selection, but the ML 

model showed better performance, and signi�cantly improved 

sensitivity, compared to the conventional NIMs. The ML model 

will contribute to conventional scoring system improvement and 

the discovery of new features.

Our study has some limitations. First, the number of patients 

included was small, so only the test set was performed, and an in-

dependent veri�cation set was not performed by dividing the pa-

tient groups. As previously mentioned, this may have degraded 

the performance of some ML models. Furthermore, this study 

evaluated the diagnostic performance of ML models to predict 

liver �brosis in individuals without chronic liver diseases from the 

Healthcare Screening Center. Thus, it is possible that the models 

were over�tted for these individuals, leading to reduced accuracy 

when applied to patients with liver disease. Despite these limita-

tions, the serological biomarkers associated with liver �brosis were 

still veri�able, and ML algorithms using these biomarkers exhib-

ited superior performance to conventional NIMs in predicting liver 

�brosis. Second, the ML methods used in this study have a black-

box nature, complicating the understanding of the internal mech-

anism of analysis [46]. This can lead to unpredictable and obvious 

risks by leaving critical decisions to systems that are dif�cult to 

explain. However, this study used ML only as a means for verify-

ing well-known biomarkers; hence it is partially exempt from black 

box-related limitations. Third, we used FibroScan as the reference 

method instead of liver biopsy. This study excluded patients with 

advanced or chronic liver disease; thus, liver biopsy was not re-

quired. Moreover, many studies have reported that liver stiffness 

measurements using TE can accurately predict liver �brosis [47].

In conclusion, we used ML methods to verify the usefulness of 

well-known serological biomarkers and con�rmed that M2BPGi, 

PLT, and AST were key biomarkers that predict liver �brosis. Ad-

ditionally, the ML models using these biomarkers performed bet-

ter than the conventional NIMs, such as APRI, FIB-4, NFS, and 

M2BPGi.

요  약

배경: 다양한 간질환의 원인인 간섬유화는 조기 선별과 관리가 필

요하다. 간섬유화의 표준 진단법인 간 생검은 비침습적 점수들로 

대체되고 있다. 본 연구는 의학 분야에서 사용되고 있는 기계 학습 

기법을 사용하여 간섬유화와 관련된 혈청 바이오마커를 검증하고 

예측 모델을 평가했다.

방법: 순간탄성측정법(transient elastography, TE)을 받은 144명의 

환자들에서 비침습적 점수가 계산되었다. TE검사 결과에 따라 세 

그룹(<7 kPa, 7–10 kPa, ≥10 kPa)으로 나누었다. 간섬유화의 예

측을 위한 특징 선택(feature selection)과 전산 모델링(computatio-

nal modeling)은 RF (random forest)와 SVM (support vector ma-

chine)을 사용하였다. 

결과: 평균 불순도 감소(mean decrease in impurity), 순열 중요도

(permutation importance) 및 다중 공선(multicollinear) 분석 결과

를 고려한 세 그룹을 구별하는 중요한 특징은 M2BPGi (Mac-2 bind-

ing protein glycosylation isomer), 혈소판수 및 아스파르테이트 아

미노전이효소(AST)로 확인되었다. 이 특징을 사용한 RF 및 SVM 

모델은 비침습적 점수와 동등하거나 더 우수한 성능을 보였다. TE 

결과가 7 kPa 이상인 결과를 예측하기 위한 RF와 SVM 모델의 민

감도는 비침습적 점수보다 높았다(각각 83.3%, 90.0% 대 <80%). 

TE 결과가 10 kPa 이상인 결과에 대한 RF와 SVM 모델의 민감도와 

특이도는 100%였다.

결론: 본 연구를 통해 기계 학습 기법을 사용하여 간섬유화를 예

측하는 혈청학적 바이오마커(M2BPGi, 혈소판수 및 AST)의 유용

성을 검증했다. 또한 기계 학습 모델은 비침습적 점수보다 더 우수

한 성능을 보여주었다.
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