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BACKGROUND/OBJECTIVES: Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is 
maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues 
to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell 
and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes 
the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. 
The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated 
enzymes on cancer chemotherapy.
METHODS: This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such 
as antifolates, such as methotrexate, and 5-fluorouracil.
RESULTS AND DISCUSSION: Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and 
retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate 
concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, 
FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates 
and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, 
respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to 
methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. 
Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are 
warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.
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INTRODUCTION*

Folate is a water-soluble B vitamin that acts as an important 
mediator of one-carbon transfer and plays a crucial role in 
human health and disease [1]. Naturally occurring folates are 
present in green leafy vegetables, asparagus, broccoli, legumes, 
whole grain, and organ meats and are extremely unstable and 
easily oxidized in low pH conditions. In contrast, folic acid (FA) 
is the most stable and a fully oxidized monoglutamyl synthetic 
form of folate that is commonly used in commercial supplements 
and fortified food products [1]. Ever since the mandate on FA 
fortification of white wheat flour, cereal, and enriched pastas 
was passed in 1998, grain products have been used as a major 
source of folate in the United States and Canada [2]. Folate 
deficiency is reportedly associated with the development of 
neural tube defects and congenital disorders, anemia, atheros-
clerosis, adverse pregnancy outcomes, neuropsychiatric disorders, 
and cognitive impairments [3]. Accumulating epidemiological 

evidence suggests an inverse relationship between dietary folate 
intake or blood folate levels and the risk of multiple malig-
nancies, including lung, oropharyngeal, esophageal, stomach, 
colorectal, prostate, and breast cancer [3-7]. However, clinical 
and preclinical studies suggest that excess FA consumption is 
associated with an increased risk of progression of established 
precancerous lesions, indicating that folate may play a dual 
modulatory role in cancer development and progression 
[5,6,8-10]. 

A study using the National Health and Nutrition Examination 
Survey (NHANES) 2003-2006 data (n = 11,462) reported that 34.5% 
of the population in the United States used dietary supplements 
containing FA. The use of dietary supplements containing FA 
was highest in individuals aged 51-71 years, with 5% of the 
individuals consuming FA above the tolerable upper intake level 
(UL) from dietary supplements alone [11]. Another study that 
used data from the Canadian Community Health Survey 2.2 
(n = 34,381) revealed that 25% of the study population 
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Fig 1. Summary of folate metabolism and targets of methotrexate and 5-fluorouracil. THF: tetrahydrofolate. Adapted and modified with permission from the publisher (Nutrition 
Reviews®)

consumed supplements containing FA, and 9-14% of individuals 
aged 14 years or above consuming vitamin/mineral supple-
ments had a consumption above the permissible UL for FA [12]. 
Furthermore, use of supplements by cancer survivors is 
relatively common. The previous systematic review reported 
that 64-81% of cancer survivors used a vitamin or mineral 
supplement and 14-32% of survivors started taking supple-
ments after diagnosis [13]. Several studies on the use of FA 
supplements have been conducted on colorectal cancer (CRC) 
survivors. In CRC survivors, the consumption of FA-containing 
supplements increased from 35.4% to 55.1% after diagnosis, 
while consumption of FA or FA-containing supplements was 
higher among female survivors [14-16]. However, a growing 
body of evidence suggests that folate supplementation enhances 
efficacy of anticancer drugs, such as 5-fluorouracil (5FU), and 
helps in management of treatment toxicity due to antifolates, 
whereas increased folate levels may interfere with the efficacy 
of chemotherapeutic agents and induce drug resistance [17-20]. 
This review discusses the effects of enzymes associated with 
maintenance and distribution of intracellular folate on antifolates- 
and 5FU-based cancer chemotherapy. 

Intracellular folate homeostasis 
Monoglutamates are the only form of folate present in 

circulation, while intracellular folate molecules primarily exist 
as polyglutamates after cellular uptake by transporters such as 
reduced folate carrier (RFC), folate receptor, and proton-coupled 
folate transporter [1]. Upon its entry into the cell, the folate 
molecules are linked to glutamate residues by the enzyme 
folylpolyglutamate synthase (FPGS) through a process known 
as polyglutamylation; this facilitates the retention of folate in 
the cell and helps maintain a steady supply of utilizable folate 
derivatives for folate-dependent enzyme reactions. γ-glutamyl 
hydrolase (GGH) is an enzyme that catalyzes the hydrolysis of 
polyglutamylated folate into monoglutamylated folate that is 
subsequently exported from the cell. Both FPGS and GGH are 
critical enzymes that function synergistically to maintain intra-
cellular folate concentration and distribution [1,21]. 

Folate and cancer treatment
Folate is an essential cofactor for DNA synthesis; therefore, 

folate depletion and disrupted folate metabolism can reduce 
the efficacy of DNA synthesis, resulting in inhibition of tumor 
growth in neoplastic cells; this theory forms the basis for cancer 
chemotherapy using antifolates and 5FU [22]. Antifolates, such 
as methotrexate (MTX), used for the treatment of human 
malignancies and rheumatoid arthritis (RA) are structurally 
similar to folate and act by binding to or inhibiting folate- 
dependent enzymes [23]. MTX typically acts by inhibiting 
dihydrofolate reductase and reducing the intracellular folate 
concentration necessary for thymidylate and purine synthesis, 
eventually preventing DNA synthesis (Fig. 1). Additionally, MTX 
polyglutamates can directly inhibit thymidylate synthase (TS) 
and enzymes involved in de novo purine biosynthesis [24,25]. 
Similar to folates, polyglutamylated antifolates exhibit better 
retention in cells, thereby increasing the cytotoxicity of anti-
folates by increasing the duration of exposure [21,22]. Moreover, 
polyglutamylated antifolates inhibit their target folate-dependent 
enzymes involved in thymidylate and purine biosynthesis more 
efficiently as the polyglutamylated forms exhibit higher affinity 
for these enzymes compared to the monoglutamated forms 
[21,22]. 

5FU, a prototype of pyrimidine antagonists, is widely used in 
the treatment of colon and breast cancer [26]. One of the cytotoxic 
mechanisms adopted by 5FU is the formation of a ternary 
complex involving 5-fluoro-2-deoxyuridine-5-monophosphate 
(5FdUMP, a metabolite of 5FU), TS, and 5,10-methylenete-
trahydrofolate (5,10-methyleneTHF) [27]. This ternary complex 
suppresses TS activity with consequent depletion of intracellular 
thymidylate reserves, resulting in inhibition of DNA synthesis 
(Fig. 1) [27]. Leucovorin (LV; 5-formylTHF), a precursor of 
5,10-methyleneTHF, potentiates 5FU cytotoxicity by stabilizing 
the inhibitory ternary complex (Fig. 1) [27]. 5,10-methyleneTHF 
with longer chain polyglutamates exhibit greater potential for 
the formation and stabilization of the 5,10-methyleneTHF- 
TS-5FdUMP ternary complex than those with shorter chain 
polyglutamates, suggesting that 5,10-methyleneTHF polyglu-
tamylation may influence 5FU efficacy [28]. 
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A growing body of evidence suggests that FPGS and GGH 
affect chemosensitivity of cancer cells to antifolates and 5FU 
by altering duration of intracellular retention of antifolates and 
5,10-methyleneTHF (a specific target folate cofactor for 5FU), 
respectively [29,30]. In addition to their implication in polyglu-
tamylation, FPGS and GGH alter the intracellular folate status, 
which is a critical determinant of chemosensitivity of cancer 
cells to chemotherapeutic agents designed to interrupt intracellular 
folate metabolism and DNA synthesis [29-31]. Therefore, FPGS 
and GGH play a substantial role in the maintenance of 
intracellular homeostasis of folates and antifolates for optimal 
folate-dependent one-carbon transfer reactions and antifolate- 
induced cytotoxic effects.

Folate mediates the transfer of one-carbon units in DNA 
methylation as well, which might influence chemotherapeutic 
effects by altering expression of genes involved in drug response 
[1,32]. Given that polyglutamylated folates act as better substrates 
for enzymes involved in DNA methylation, such as methyleneTHF 
reductase and methionine synthase, polyglutamylation plays a 
pivotal role in DNA methylation [21,33] (Fig. 1). Therefore, FPGS- 
and GGH-mediated polyglutamylation-induced changes in DNA 
methylation might affect chemosensitivity to chemotherapeutic 
agents. 

Effects of folylpolyglutamate synthase on cancer chemotherapy
Several studies report the effects of differential FPGS activity 

and FPGS modulation on drug resistance of and chemo-
sensitivity to antifolates such as MTX and 5FU. Considering that 
FPGS has a lower affinity for MTX compared to that for folates 
(dihydrofolate > THF > 5-methylTHF > MTX), the formation of 
MTX polyglutamates is slower than that of folate polyglu-
tamates. Therefore, reduced FPGS activity would affect folate 
polyglutamate pools less significantly and critically reduce 
MTX cytotoxicity [34,35]. In general, high FPGS activity or its 
upregulation seems to enhance chemosensitivity of cancer cells 
to MTX and 5FU, whereas low FPGS activity or downregulation 
appears to correspond to resistance to these drugs. FPGS 
overexpression was associated with enhanced MTX efficacy in 
AUXB1 variant hamster cells lacking endogenous FPGS activity 
[36]. Upregulation of FPGS gene expression increased sensitivity 
to MTX and other antifolates in 9L rat gliosarcoma cells [37]. 
On the contrary, FPGS inhibition has been suggested as the 
mechanism underlying resistance to antifolates such as MTX in 
human and murine leukemia cells [38-43]. Reduced FPGS 
activity was associated with resistance to 5FU in CCRF-CEM 
human acute lymphocytic leukemia (ALL) and HCT8 human 
colon adenocarcinoma cells [44-46]. Sohn et al. [47] reported 
that FPGS overexpression increases and FPGS inhibition decreases 
the chemosensitivity of HCT116 human colon adenocarcinoma 
cells toward 5FU. The same group of authors highlighted that 
in MDA-MB-435 human breast adenocarcinoma cells, FPGS 
overexpression increases chemosensitivity to MTX, while FPGS 
inhibition reduces 5FU-induced chemosensitivity at supraphy-
siologial folate medium concentrations [29]. In addition, FPGS 
modulation affects polyglutamylation of antifolates and specific 
target folate cofactors (for example, 5,10-methyleneTHF for 
5FU), as well as of intracellular folate cofactors, which are critical 
determinants of antifolate and 5FU cytotoxicity [22,29,47-49]. 

FPGS plays an important role in cancer cell sensitivity to 
antifolates and 5FU; therefore, FPGS modulation might be a 
potential therapeutic target for increasing cancer cell sensitivity 
to these chemotherapeutic agents.

Altered FPGS expression was reported to be associated with 
CRC patient outcome. Odin et al. [50] reported that the 
expression of RFC, FPGS, GGH, and TS increased in CRC tumor 
biopsies compared to that in the adjacent non-neoplastic 
mucosa. Moreover, they revealed the association between low 
expression of RFC and FPGS and the absence of the mRNA 
splice variant of the putative tumor suppressor gene deleted 
in colorectal carcinoma (DCC) in normal-appearing mucosa of 
CRC patients [51]. Although several single-nucleotide polymor-
phisms (SNPs) have been reported in the FPGS gene, there are 
a limited number of studies on the functionality or frequencies 
of these SNPs [52,53]. The mutant Cys346Phe FPGS reportedly 
interferes with L-glutamate or ATP binding, resulting in 
disruption of FPGS activity [41]. The CC genotype of FPGS 
rs1544105C>T was associated with poor response to MTX in 
patients with RA and pediatric B-cell precursor ALL [54,55]. 
Furthermore, in lymphoid cells, FPGS expression was epigene-
tically regulated by chromatin remodeling through interactions 
between NFY, Sp1, and histone deacetylase (HDAC) factors 
binding to the FPGS promoter region, resulting in low intra-
cellular accumulation of long-chain MTX polyglutamates [56]. 
Conversely, HDAC inhibitors increased FPGS expression and 
long-chain MTX polyglutamate accumulation in childhood ALL 
cells [57]. In addition, FPGS modulation altered DNA methylation 
and expression of genes associated with folate biosynthesis and 
one-carbon metabolism along with increased 5FU efficacy in 
response to FPGS overexpression [29,58]. This result indicates 
that FPGS-mediated polyglutamylation-induced changes in DNA 
methylation might influence chemosensitivity to chemothe-
rapeutic agents as well. 

Effects of γ-glutamyl hydrolase on cancer chemotherapy
As mentioned previously, both FPGS and GGH are involved 

in the maintenance of intracellular folate and antifolate homeo-
stasis. GGH was reported to have a higher affinity for longer 
chain polyglutamates (for example, Glu4 versus Glu1 derivatives, 
Km 17- and 15-fold lower for folate and MTX, respectively) in 
HT-1080 human sarcoma cells [59]. The ratio of GGH/FPGS 
serves as a reliable predictor of the relative concentrations of 
long-chain MTX polyglutamates in patients with acute leukemia, 
whereas the ratio of FPGS/GGH was associated with MTX-Glu4-6 
accumulation and MTX resistance in childhood leukemia 
patients [60,61]. A growing body of evidence suggests the 
association between lower FPGS and/or higher GGH activity and 
reduced antifolate polyglutamylation, which is related to drug 
resistance [62-66]. Compared to parental H35 cells, an increase 
of approximately 7-fold in GGH activity and no change in FPGS 
activity was observed in H35D rat hepatoma cells resistant to 
the antifolate 5,10-dideazatetrahydrofolate (DDATHF) [64]. In 
this study, two H35 cell lines had nearly equal intracellular folate 
levels; however, the polyglutamate chains in H35D cells were 
predominantly composed of Glu3 and Glu4, while those in H35 
cells were primarily composed of Glu5 and Glu6 [64]. Moreover, 
folate and antifolate accumulation was reduced in H35D cells 
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along with an increase in GGH activity [66]. Similarly, the 
resistance in MTX-resistant HT-1080 and DDATHF-resistant 
CCRF-CEM human leukemia cells was attributed to increased 
GGH activity [62,63]. In addition, Kim et al. [30] demonstrated 
that GGH overexpression reduced the chemosensitivity of 
HCT116 and MDA-MB-435 cells to MTX and 5FU, which was 
affected by exogenous folate levels.

Conversely, there are several studies that highlight the 
association between a reduced GGH activity and an increased 
accumulation of long-chain MTX polyglutamates. A previous 
study reported that cellular and secreted GGH levels were 
reduced by 60% in the presence of insulin in H35 cells [67]. 
Given that the presence of insulin increased MTX glutamylation 
by 3-fold in intact H35 cells [68,69], O’Connor et al. [67] 
suggested that insulin-induced polyglutamylation enhancement 
might be related to the reduction in GGH levels. This explana-
tion was further validated by a study that indicated an inverse 
relation between insulin-induced reduction in GGH activity and 
the changes in intracellular synthesis and accumulation of MTX 
polyglutamate [70]. An inverse association was observed between 
GGH activity and the accumulation of total and long-chain 
(Glu4-7) MTX polyglutamates in the blast cells of ALL patients 
administered a high dose of MTX.

Furthermore, reduction in GGH expression in DLD-1 human 
colon cancer cells induced by small-interfering RNA (siRNA) 
increased sensitivity to 5FU+LV or only to 5FU, presumably due 
to improved retention of 5,10-methyleneTHF [31]. In this study, 
siRNA- induced FPGS downregulation reduced the basal levels 
of reduced folate, the accumulation and retention of folate in 
LV-treated DLD-1 cells, and the sensitivity to 5FU+LV. These 
results suggest that tumors expressing high levels of FPGS and 
low levels of GGH are likely to be most sensitive to 5FU-induced 
chemosensitivity in the presence of LV [31]. Another study 
reported that siRNA-induced GGH inhibition significantly 
enhanced chemosensitivity of HCT116 and MDA-MB-435 cells 
to 5FU and the chemotherapeutic effect was augmented by 
the increase in exogenous folate levels [30]. In addition, the 
CpG island methylator phenotype (CIMP)+, accounting for 
approximately 17% of CRC cases [71], is associated with low 
GGH expression and high 5,10-methyleneTHF levels compared 
to CIMP- tumors, which correspond to positive response of 
CIMP+ tumors to 5FU [72,73]. However, FPGS levels did not 
differ significantly between CIMP+ and CIMP- tumors [73], 
suggesting that FPGS might have a lesser impact than GGH 
on chemosensitivity of CRC to 5FU. 

Several SNPs identified in the GGH gene bases have been 
shown to compromise the promoter as well as the coding 
regions of the gene [74]. These promoter polymorphisms were 
associated with increased GGH expression in HepG2 human 
hepatoma cells. -401C>T and -124T>G showed enhanced GGH 
expression in MCF7 human breast cancer cells, suggesting that 
polymorphisms in the GGH gene promoter may increase GGH 
expression [74]. Moreover, the GGH-401 T allele frequency 
varied among ethnic or populations groups in healthy 
adults-22-36% in Asian, 31% in Caucasian, and 14% in African 
population groups [75]. In RA patients, patients with the TT 
genotype of -401C>T were associated with higher GGH activity 
compared to patients with CC or CT genotypes, indicating that 

the TT genotype might be related to poor response to 
antifolates [76]. However, in Korean patients with cervical cancer 
who underwent radical hysterectomy, a poor response to 
platinum-based neoadjuvant chemotherapy was associated 
with the CC genotype of -401C>T, which might be attributed 
to the counteractive effects of CC genotypes of XRCC1 A194T 
and GGH -401C>T in cervical cancer [77]. Furthermore, there 
was an interethnic difference in the GGH 452 T allelic frequency- 
14% in Caucasian, 9-10% in Asian, and 8% in African population 
groups [75]. GGH +452C>T was associated with low GGH activity 
and high MTX polyglutamate accumulation in ALL patients [78]. 
In addition to SNPs, epigenetic regulation can modulate GGH 
activity and MTX polyglutamate accumulation in human 
leukemia cells. Methylation of two CpG islands (CpG1 and CpG2) 
in the GGH promoter was associated with reduced GGH mRNA 
expression/activity and higher accumulation of MTX polygluta-
mates in human acute leukemia cells, which would suitably 
explain the better response to antifolates [79,80]. Previous 
studies that adopted epigenomic and genomic approaches 
suggested that GGH modulation-induced alterations in con-
centrations of total intracellular and long-chain polyglutamylated 
folate affected global and gene-specific DNA methylation and 
gene expression that was partially associated with 5FU efficacy 
[30,81]. When considered collectively, it appears that identified 
and characterized GGH SNPs and/or GGH-induced epigenetic 
changes contribute to functional and pharmacological conse-
quences in cancer cells.

CONCLUSIONS 

Notwithstanding the complexity of FPGS- and GGH-induced 
changes in folate and antifolate accumulation and metabolism, 
the potential roles played by genetic variants of these enzymes 
in antifolate- and 5FU-based cancer chemotherapy warrants 
further investigation. Elucidating the pharmocogenetic ramifi-
cations of these enzyme-induced changes will provide a 
framework for developing rational, effective, safe, and custo-
mized chemotherapeutic practices.

CONFLICT OF INTEREST

The author declares no potential conflicts of interests.

ORCID 

Sung-Eun Kim: https://orcid.org/0000-0002-1472-2405 

ABBREVIATIONS

ALL, acute lymphocytic leukemia
CIMP, CpG island methylator phenotype
CRC, colorectal cancer
DCC, deleted in colorectal carcinoma
DDATHF, 5,10-dideazatetrahydrofolate
FA, folic acid
FPGS, folylpolyglutamate synthase 
5FdUMP, 5-fluoro-2-deoxyuridine-5-monophosphate
5FU, 5-fluorouracil
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GGH, γ-glutamyl hydrolase
HDAC, histone deacetylase
LV, leucovorin 
MTX, methotrexate 
NHANES, National Health and Nutrition Examination Survey
RA, rheumatoid arthritis
RFC, reduced folate carrier 
siRNA, small-interfering RNA
SNPs, single-nucleotide polymorphisms
THF, tetrahydrofolate
TS, thymidylate synthase
UL, tolerable upper intake level 
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