
© Copyright 2024. Korean Association for the Study of Intestinal Diseases. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

15

mild, moderate, and severe.3 IBD affects about 6.8 million peo-

ple globally.4 The incidence of IBD has been rising in develop-

ing countries,4,5 whereas a stabilizing trend has been observed 

in high-prevalence developed countries in Europe and North 

America.6 Individuals with IBD are at greater risk of develop-

ing colorectal cancer (CRC), called colitis-associated cancer, 

than normal individuals.7-9 The risk of developing CRC is about 

20% and 2.5% to 4.5% for patients with UC10 and CD,11 respec-

tively. Colitis stimulates carcinogenesis by inducing the expan-

sion of genotoxic bacteria,12 Patients with IBD show a signifi-

cant clinical heterogeneity, which makes the right treatment 

for each patient difficult.13,14

  The human gastrointestinal tract contains a diverse assem-

bly of microorganisms, including bacteria, archaea, fungi, pro-

tozoa, and viruses.15 It has been estimated that there are appro

ximately 40 trillion microorganisms that constitute the human 

pISSN 1598-9100 • eISSN 2288-1956
https://doi.org/10.5217/ir.2023.00080
Intest Res 2024;22(1):15-43

Gut microbiota in pathophysiology, diagnosis, and 
therapeutics of inflammatory bowel disease

Himani Pandey1, Dheeraj Jain1, Daryl W. T. Tang2, Sunny H. Wong3, Devi Lal4

1Redcliffe Labs, Noida, India; 2School of Biological Sciences, Nanyang Technological University, Singapore; 3Centre for Microbiome Medicine, 
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 4Department of Zoology, Ramjas College, University of 
Delhi, Delhi, India

Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, 
microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is close-
ly related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy 
individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes 
in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its 
treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, 
prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical 
studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve 
inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mech-
anisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. 
The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the 
use of gut microbiota as a noninvasive biomarker and potential therapeutic option. (Intest Res 2024;22:15-43)

Key Words: Inflammatory bowel disease; Ulcerative colitis; Crohn disease; Microbiota; Fecal microbiota transplantation

Received July 6, 2023. Revised August 23, 2023. Accepted August 27, 2023.
Correspondence to Devi Lal, Department of Zoology, Ramjas College, 
University of Delhi, Delhi 110007, India. Tel: +91-9654723557, E-mail: 
devilal@ramjas.du.ac.in

Co-Correspondence to Sunny H. Wong, Centre for Microbiome Medicine, 
Lee Kong Chian School of Medicine, Nanyang Technological University, 
Singapore 308232. Tel: +65-6592-3927, E-mail: sunny.wong@ntu.edu.sg

REVIEW

INTRODUCTION 

Inflammatory bowel disease (IBD) is characterized by chron-

ic and relapsing inflammation of the gastrointestinal tract.1 It 

encompasses 2 main clinical entities, Crohn’s disease (CD) 

and ulcerative colitis (UC). Though CD and UC show similar 

clinical symptoms, they vary in their anatomical distribution,  

which can occur anywhere in the gastrointestinal tract for CD 

but only in the colon and rectum for UC.2 Depending on 

symptoms and disease severity, UC and CD are classified into 
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gut microbiota.16 The gut microbiota possesses approximately 

150-fold more genes than the human genes.17 The gut micro-

biota and humans show a symbiotic relationship, and the com-

position of the human gut microbiota is closely linked to health 

and disease.18,19 Many factors influence the composition of gut 

microbiota, including the delivery (C-section or normal), diet, 

age, race, environmental factors, use of antibiotics, or popula-

tion geography.20-28 The gut microbiota constantly crosstalk with 

each other and the host cells and maintain the homeostasis of 

the intestinal environment. 

  More than 99% of the bacteria in the human intestine be-

long to the 4 major phyla: Firmicutes, Bacteroidetes, Actino-

bacteria, and Proteobacteria.29,30 Nearly 90% of bacterial phyla 

in the colon are represented by Bacteroidetes and Actinobac-

teria, while 40% of the bacterial phyla in the small intestine are 

represented by Firmicutes.26,31 The composition and diversity 

of gut microbiota vary along the gastrointestinal tract and be-

tween mucosal surfaces and the lumen.32-35 It has been found 

that the Firmicutes/Bacteroidetes ratio is a critical parameter 

for gut health.36 Various studies have found that a change in 

the Firmicutes/Bacteroidetes ratio is associated with IBD.37-41 

  Pathogenic and symbiotic microbiota can coexist in a heal

thy human gut. Any disturbance can alter the normal interac-

tions between microbiota and the host, potentially affecting 

the susceptibility to IBD.33 Such disturbance or change in mi-

crobiota, commonly referred to as “dysbiosis,” is involved in 

the pathophysiology of gastrointestinal diseases such as IBD 

and irritable bowel syndrome (IBS).42-44 A significant reduc-

tion in the complexity of the gut microbial ecosystem and al-

terations in a few specific taxa have been observed in patients 

with IBD.45 The association of gut microbiota with IBD is streng

thened by the fact that when germ-free mice are inoculated 

with IBD microbiota, they develop severe colitis.46,47 However, 

it remains unclear whether dysbiosis of the gut microbiota is a 

cause or a consequence of IBD. An increase in microbial spe-

cies capable of tolerating oxidative stress indicates that dysbi-

osis in IBD is caused by inflammation.48 Though the precise 

etiopathology of the disease remains to be elucidated, one of 

the hypotheses suggests that an inappropriate immune response 

to the intestinal microbiota in genetically predisposed individ-

uals can lead to IBD.49 Over 200 IBD-associated susceptible 

genes have been identified, some of which are involved in host 

innate or adaptive immune responses to gut microbiota.3,50-52 

This indicates that gut microbiota play an essential role in the 

pathogenesis of IBD.53

  This review discusses the relationship between the gut mi-

crobiota and the onset and progression of IBD and their po-

tential role in the diagnosis, treatment, and prevention of IBD.

GUT MICROBIOTA AND IBD

Various molecular techniques have been employed to study 

the human gut microbiota. These techniques have their own 

biases and limitations, and no known molecular technique is 

able to capture all of the microorganisms that inhabit the hu-

man gut. Moreover, as mentioned earlier, individual gut micro-

biota is affected by numerous factors, and comparing micro-

biota from different individuals is not often conclusive. How-

ever, it is still possible to reach a consensus by comparing dif-

ferent studies conducted using different techniques and ex-

perimental settings. By comparing cases and controls, we can 

identify recurring patterns of trends that provide a comprehen-

sive understanding of the gut microbiota. Collectively they can 

contribute to a more robuse and reliable consensus regarding 

the characteristics of the gut microbiota in diseases. 

  Studies have shown that alterations in the gut microbiota, 

often called dysbiosis, are associated with IBD.54,55 Burgeoning 

evidence suggests that a reduction in fecal microbial diversity 

is an indicator of IBD. A decline in Firmicutes and Bacteriode-

tes42,43,53,56-58 and an increase in Proteobacteria and Actinobac-

teria have been observed in IBD.54,58,59 Specific genera, such as 

Bacteroides, Eubacterium, Faecalibacterium, and Ruminococ­

cus, are reduced in fecal samples of patients with CD.60 Nemo-

to et al.61 observed that patients with UC showed a decline in 

Bacteroides and Clostridium XIVab. In another study, Fuentes 

et al.62 found that patients with UC had fewer Clostridium and 

increased Bacteriodetes, whereas Khalil et al.63 found that sul-

fate-reducing bacteria were dominant in UC but were fewer in 

healthy subjects. A multicenter study by Gevers et al.64 report-

ed an increase in the members of Pasteurellaceae, Veillonella-

ceae, and Enterobacteriaceae and a decrease in the members 

of Clostridioides, Bacteroidales, and Erysipelotrichales in CD 

patients. Members of the family Enterobacteriaceae express li-

popolysaccharide that can trigger strong inflammatory respons-

es, contributing to IBD.65,66 Studies have also found decreased 

abundance of Clostridium lavalense, Ruminococcus torques, 

Blautia faecis, and Roseburia inulinivorans in patients with 

CD.67,68 Takahashi et al.68 reported a decrease in Faecalibacte­

rium, Eubacterium, Bacteroides, and Ruminococcus and an in-

crease in Actinomyces and Bifidobacterium in CD patients. 

  In addition to changes in bacterial diversity, changes in ar-

chaeal,55,69-71 and viral diversity72 have also been reported in 
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IBD. Interkingdom crosstalk between the bacteriome and my-

cobiome has been implicated in CD.73

1. IBD-Associated Bacteria
A change in the human bacteriome has been found in IBD (Ta-

ble 1), due to their greater abundance than other kingdoms of 

microbes in the gut. The bacteria found to be associated with 

IBD include Escherichia coli, Bacteroides fragilis, Ruminococcus 

gnavus, Faecalibacterium prausnitzii, and Roseburia (Fig. 1). 

1) Escherichia coli 

E. coli is a Gram-negative, facultative anaerobic bacterium and 

a normal inhabitant of the human gut. The gut microbiota of 

patients with IBD show an increased abundance of adherent-

invasive E. coli (AIEC).74-77 AIEC can adhere to and cross the 

intestinal mucosa of IBD patients, induce inflammation, and 

increase the permeability of the intestinal epithelium.78,79 Man-

cini et al.80 found that AIEC could disrupt epithelial mitochon-

drial networks and influence gut permeability by affecting gene 

Table 1. Putative IBD-Associated Gut Microbes and Potential Mechanism

Taxonomic affiliation Microorganism Potential mechanism

Increase in IBD

   Bacteria Adherent-invasive 
Escherichia coli 

Induces inflammation, increases the permeability of the intestinal epithelium, disrupts epithelial 
mitochondrial networks, induces secretion of TNF

Enterococcus faecium Promotes cytokine expression and inflammation 

Enterotoxigenic 
Bacteroides fragilis 

Produces BFT, which directly affects Wnt, NF-κB, STAT3, and MAPK pathways, activates the Stat3 
transcription factor, increases Th17 and Treg cells, promotes mucosal permeability

Ruminococcus gnavus Produces complex glucorhamnan polysaccharide which can induce secretion of inflammatory 
cytokines by dendritic cells

Enterobacteriaceae Trigger strong inflammatory responses by expressing lipopolysaccharides

Fusobacterium 
nucleatum

Activates epithelial TLR4, resulting in inflammation

   Archaea Methanobrevibacter 
stadtmanae

Stimulates pro-inflammatory cytokine production by dendritic cells

Halophilic archaea Unknown

   Fungi Candida albicans Enhances inflammation by increasing IL-17 and IL-23 production

Malassezia Synthesizes indole compounds that act on AhR and regulates the production of inflammatory 
mediators

   Virus Faecalibacterium 
prausnitzii temperate 
phages

Depletes F. prausnitzii

Caudovirales Decreases bacterial richness

Decrease in IBD

   Bacteria F. prausnitzii Produces butyrate, inhibits NF-κB pathway, maintains a balance of Th17/Treg cells, stimulates the 
production of anti-inflammatory cytokines, inhibits the production of inflammatory cytokines

Nontoxigenic B. fragilis Induces anti-inflammatory effects of Treg, directs the development of CD4+ T cells

Roseburia (R. hominis, 
R. intestinalis) 

Converts acetate to butyrate, has anti-inflammatory effect

Clostridium Produces butyrate which has anti-inflammatory effect

   Archaea Methanobrevibacter 
smithii

Directs Bacteroides thetaiotaomicron-mediated fermentation of dietary fructans to acetate

   Fungi Saccharomyces 
cerevisae

Prevents adherent-invasive E. coli from adhering to inflamed intestinal mucosa, prevents the 
transformation of C. albicans into invasive hyphal form

Saccharomyces 
boulardii

Exhibits anti-inflammatory effects and protection against intestinal pathogens

TNF, tumor necrosis factor; BFT, B. fragilis toxin; Treg, T regulatory; TLR4, Toll-like receptor 4; IL, interleukin; AhR, aryl hydrocarbon receptor.
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expression. AIEC can survive and replicate in macrophages, 

resulting in the secretion of tumor necrosis factor (TNF) and, 

thus, inflammation.81,82 A high abundance of E. coli has been 

linked to inflammation in patients with IBD.83 

2) Bacteroides fragilis

B. fragilis is a commensal Gram-negative anaerobic bacterium. 

It is an opportunistic pathogen with pro-inflammatory prop-

erties84 and contributes to IBD.85 Strains of B. fragilis that express 

a zinc-dependent metalloprotease, called B. fragilis toxin (BFT 

or fragilysin), are known as enterotoxigenic B. fragilis (ETBF).86,87 

The strains that lack BFT are called nontoxigenic B. fragilis (NT

BF). ETBF is responsible for diarrhea in children88 and IBD.89,90 

BFT directly affects signaling pathways such as Wnt, NF-κB, 

STAT3, and MAPK pathways, leading to the production of pro-

inflammatory mediators.91-95 ETBF activates the Stat3 transcrip-

tion factor, increases Th17 and T regulatory cells (Treg), and 

promotes mucosal permeability.96,97 ETBF also induces reac-

tive oxygen species (ROS) production and DNA damage by 

inducing the expression of spermine oxidase in colonocytes.98 

Kordahi et al.99 found a correlation between B. fragilis and the 

levels of inflammatory cytokines. Contrary to ETBF, NTBF can 

induce the anti-inflammatory effects of Treg and direct the 

development of CD4+ T cells.100,101

3) Ruminococcus gnavus

R. gnavus is a strict anaerobic Gram-positive bacterium and a 

part of the normal intestinal flora in humans. An increased abun-

Fig. 1. Microbes involved in inflammatory bowel disease and their molecular mechanisms. Figure created with BioRender. B. fragilis, Bac-
teroides fragilis; E. faecium, Enterococcus faecium; E. coli, Escherichia coli; F. nucleatum, Fusobacterium nucleatum; F. prausnitzii, Faecali-
bacterium prausnitzii; M. stadtmanae, Methanosphaera stadtmanae; R. gnavus, Ruminococcus gnavus; TLR4, Toll-like receptor 4; BFT, B. 
fragilis toxin; TNF, tumor necrosis factor; ETBF, enterotoxigenic B. fragilis; AhR, aryl hydrocarbon receptor; IL, interleukin; PLC, phospholi-
pase C; DAG, diacylglycerol; PKC, protein kinase C.
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dance of R. gnavus is associated with IBD.57,102-104 Hall et al.103 

found that R. gnavus could reach an abundance of 69% in pa-

tients with severe CD. R. gnavus produces complex glucorham-

nan polysaccharide, which can induce the secretion of inflam-

matory cytokines, like TNF-α, by dendritic cells.104

4) Faecalibacterium prausnitzii

F. prausnitzii is one of the most important butyrate-producing 

bacteria found in the gastrointestinal tract,105,106 which has drawn 

much attention in recent years. A decrease in F. prausnitzii has 

been reported in IBD.67,107-114 Varela et al.115 found that UC pa-

tients had insufficient colonization of F. prausnitzii, and the 

maintenance of clinical remission required F. prausnitzii colo-

nization. They also found that the abundance of F. prausnitzii 

was correlated with a relapse of ileal CD after surgery. F. praus­

nitzii mediates anti-inflammatory effects by inhibiting the NF-

κB pathway in intestinal epithelial cells111 and by producing 

butyrate, which maintains a balance of Th17/Treg cells.107,116 F. 

prausnitzii also stimulates the production of anti-inflammato-

ry cytokines, such as interleukin (IL)-10, and inhibits the pro-

duction of inflammatory cytokines, such as IL-12 and interfer

on-γ.107

5) Roseburia

Roseburia is a genus of anaerobic, Gram-positive, rod-shaped 

bacteria known for butyrate production in the human colon. 

Several studies have confirmed that a decrease in Roseburia is 

associated with IBD.109,113,117-119 Roseburia intestinalis can con-

vert acetate to butyrate and has anti-inflammatory effects.118 

The patients with high genetic risk for IBD have significantly 

reduced Roseburia spp.117 Other bacteria, such as Enterococ­

cus faecium, Citrobacter rodentium, and Mycobacterium, can 

promote cytokine expression and inflammation in the colon, 

inducing IBD.120-122 Fusobacterium is also found to be abundant 

in the colonic mucosa of UC patients.123 Fusobacterium nuclea­

tum is a pro-inflammatory bacterium that activates epithelial 

TLR4, resulting in inflammation.124,125

2. IBD-Associated Archaea
Archaea are single-celled prokaryotes like bacteria but are clos-

er to eukaryotes at the genetic level. Like bacteria, they also in-

habit various locations of the human body.126-129 The most dom-

inant archaea in the human gut are methanogens, particularly 

Methaonbrevibacter and Methanosphaera.126 Studies have found 

that a decrease in methanogens like Methanobrevibacter smit­

hii is associated with IBD.69-70 M. smithii plays a role in diges-

tive health by directing Bacteroides thetaiotaomicron-mediat-

ed fermentation of dietary fructans to acetate.130 Contrary to 

M. smithii, studies have found that the abundance of Metha­

nosphaera stadtmanae increases up to 3-fold in IBD patients.131,132 

M. stadtmanae stimulates pro-inflammatory cytokine produc-

tion by dendritic cells.132 In addition to methanogens, halophil-

ic archaea may also be involved in the etiology of IBD.133 Con-

trary to these results, Chehoud et al.134 reported that there were 

no alterations in the archaeome associated with IBD. Neverthe-

less, their role in the onset and progression of IBD is still debat-

able,127 probably due to a lack of sufficient studies. 

3. IBD-Associated Fungi
Fungi represent just 0.1% of the total microbial community in 

the gut.135 Alterations in the mycobiome are also associated 

with IBD. Studies have found reduced fungal diversity and dys-

biosis in patients with IBD.55,71,73,136 Sokol et al.55 found an incre

ased Basidiomycota/Ascomycota ratio in patients with IBD. 

Other studies have reported an increase in Candida, Malasse­

ziales, and Filobasidiaceae and a decrease in Saccharomyces, 

Penicillium, and Kluyveromyces.137,138 Candida is a pathogenic 

fungus and has gathered much attention in recent years. Sev-

eral studies have reported an increased abundance of Candi­

da in IBD patients.73,134,139,140 Studies have also reported the in-

volvement of Candida in causing severe colitis in a mouse mo

del.141,142 Mounting evidence suggests that colonization by Can­

dida albicans enhances inflammation by increasing IL-17 and 

IL-23 production.143-145 

  Contrary to Candida, decreased abundance of Saccharo­

myces cerevisae is reported in patients with IBD.55,139 S. cerevi­

sae may prevent IBD by preventing AIEC from adhering to the 

inflamed intestinal mucosa146 and inhibiting aspartyl proteas-

es-2 and 6 from C. albicans, preventing its transformation into 

an invasive hyphal form.147 Saccharomyces boulardii may also 

have a preventive role in IBD owing to its anti-inflammatory 

effects and protection against intestinal pathogens.148,149 Incre

ased abundances of Malassezia have been reported in patients 

with IBD.55,150,151 Limon et al.151 found that Malassezia restricta 

was enriched in the mucosa of patients with CD. Many Malas­

sezia strains can synthesize indole compounds that act on the 

aryl hydrocarbon receptor (AhR)152-154 and also regulate the 

production of inflammatory mediators.155

4. IBD-Associated Viruses
The human gut virome includes mostly bacteriophages and 

eukaryotic viruses.156,157 Alterations in the gut virome have also 
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been reported in IBD.72,158-160 IBD is also associated with the loss 

of the core phagome and increased abundance of temperate 

phages.160 However, contrary to bacterial diversity, increased 

virome diversity has been reported in IBD patients,72,159,161,162 

indicating the role of gut virome in bacterial dysbiosis.162 In par-

ticular, the abundance of bacteriophages of the family Caudo-

virales was found to increase in patients with UC and CD.72,159, 

161,162 Caudovirales may contribute to IBD by decreasing bac-

terial richness. 

  Studies have also found significantly increased phage pop-

ulations in the gut biopsies of patients with IBD compared to 

controls.163,164 Duerkop et al.165 reported that bacteriophages 

Caudovirales and Podoviridae were enriched in a mouse mod-

el of colitis. Similarly, Seth et al.166 found that increased viral di-

versity was correlated with gut dysbiosis and levels of pro-in-

flammatory cytokines in mouse models. Gogokhia et al.167 found 

that an increase in bacteriophage abundance aggravated coli-

tis in germ-free mice. Pérez-Brocal et al.168 reported that bacte-

riophages that infect Alteromonadales and Clostridiales were 

enriched in IBD. In another study, Cornuault et al.169 found a 

high proportion of F. prausnitzii temperate phages in IBD pa-

tients, which results in the depletion of F. prausnitzii. Contrary 

to the above studies, Galtier et al.170 found that bacteriophages 

could significantly reduce the abundance of AIEC in a mouse 

model of dextran sulfate sodium (DSS)-induced colitis. Simi-

larly, Yang et al.171 found that enteric viruses could ameliorate 

gut inflammation by stimulating interferon-β production. In 

addition to bacteriophages, eukaryotic viruses may also trig-

ger intestinal inflammation and contribute to IBD pathogene-

sis.158,159,164,172 Studies have found an increased abundance of 

the eukaryotic viruses Pneumoviridae159 and Hepadnaviridae173 

in UC patients and Herpesviridae in IBD patients.164 Cadwell 

et al.174 found that in mice with a risk gene for CD, Atg16L1HM, 

norovirus could induce intestinal pathologies. In a similar study, 

Bolsega et al.175 found that murine norovirus could induce coli-

tis in an Il10-deficient mouse model of IBD in a microbiota-de-

pendent manner. 

GUT MICROBIOTA AS POTENTIAL BIOMARKER 
FOR IBD DIAGNOSIS 

The current methods of assessing IBD activity include measur-

ing inflammation using biomarkers from plasma and feces, such 

as C-reactive protein and fecal calprotectin, which are not IBD-

specific. Other methods, such as colonoscopy, can precisely 

predict IBD but have limited clinical application due to their 

invasiveness and risk of intestinal perforation. The use of gut 

microbiota as a diagnostic tool for IBD can reduce the frequen-

cy of such invasive procedures. Stool samples can be used to 

generate data through 16S rRNA sequencing, metagenomic 

sequencing, or metabolomic profiling. The presence or absence 

of specific gut microbiota can also help predict treatment re-

sponse in IBD.176 The use of microbial biomarkers for IBD di-

agnosis is a promising method that needs to be utilized in clini-

cal practice. 

  Lopez-Siles et al.177 confirmed that F. prausnitzii was a spe-

cific indicator of IBD. They also reported that the patients with 

IBD had a lower abundance of F. prausnitzii than IBS patients 

and healthy controls. Combining F. prausnitzii with E. coli could 

even distinguish colonic CD from extensive colitis. Prosberg et 

al.178 also found that the patients with active CD and UC had a 

lower abundance of F. prausnitzii than those in remission. These 

studies confirm that F. prausnitzii may be a reliable biomarker 

for IBD. A significant decrease in Bifidobacterium has also been 

reported in IBD patients.179-182 Contrary to this, other studies 

have found an increased abundance of Bifidobacterium in IBD 

patients compared to controls.68,183,184 Further research is re-

quired in this direction to know the precise role of Bifidobacte­

rium in IBD pathogenesis. 

  Using gut microbiota, it is even possible to distinguish heal

thy individuals from UC or CD patients with an accuracy of 

93.2% and 89.5%, respectively.59 Fukuda and Fujita185 used T-

RFLP of feces samples for operational taxonomic unit (OTU) 

discriminant analysis. They could distinguish between patients 

with active UC and other groups, which include individuals 

with mild inflammation in the large intestine, no inflammation, 

consanguineous-healthy individuals, and non-consanguine-

ous healthy individuals. He et al.186 reported a higher abundance 

of Klebsiella, Enterococcus, and Haemophilus in patients with 

active UC and a higher abundance of Roseburia, Lachnospira, 

Blautia, and Faecalibacterium in patients in remission. They 

also reported that decreased abundance of F. prausnitzii was 

related to a higher risk of recurrence in ileal CD. A combina-

tion of multiple microorganisms, including bacteria, archaea, 

and fungi, may serve as a more accurate and reliable biomark-

er to distinguish between individuals with UC, CD, and IBS 

from healthy individuals. 

  Gut microbiota can also be used as a biomarker for predict-

ing the clinical relapse of IBD. A high abundance of Streptococ­

cus has been reported in patients with postoperative recurren

ce.187 Screening preoperative stool samples for Streptococcus 

may be a predictive marker of disease recurrence. 
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METABOLOMICS OF GUT MICROBIOTA IN IBD

The gut microbial metabolites include metabolites produced 

de novo by the gut microbes, metabolites produced by the host 

and modified by the gut microbes, and by-products of micro-

bial interactions with dietary components. Metabolomics has 

been used to distinguish between IBD patients and healthy 

subjects.119,188-190 Metabolites, particularly short-chain fatty ac-

ids (SCFAs), bile acids, and tryptophan metabolites, are found 

to be involved in IBD pathogenesis (Fig. 2). Various studies have 

confirmed reductions in the levels of medium-chain fatty acids 

and SCFAs,119,189,191,192 dysregulation of bile acid metabolism,113,193 

and changes in the levels of amino acids193,194 in the feces sam-

ples of IBD patients. Other studies have reported alterations in 

tricarboxylic acid cycle (TCA) intermediates,195,196 hippurate,197 

and amino acid metabolism198 in patients with IBD.

  Differences in the diversity and abundance of intestinal me-

tabolites are seen in patients with IBD compared to control, 

with increased levels of primary bile acids, sphingolipids, and 

amino acids and decreased levels of indoles, long-chain fatty 

Fig. 2. Microbial metabolites implicated in inflammatory bowel disease (IBD) and their molecular mechanisms. Figure created with Bio-
Render. SCFA, short-chain fatty acid; PXR, pregnane X receptor; AhR, aryl hydrocarbon receptor; IL, interleukin; Treg, T regulatory; GPCRs, 
G protein-coupled receptors; CD, Crohn’s disease; UC, ulcerative colitis; FXR, farnesoid X receptor; TGR5, transmembrane G protein-cou-
pled receptor 5.

Regulate intestinal barrier  
integrity, reduce intestinal 
inflammation, show anti-
inflammatory effects by 

downregulating IL-6 and IL-
12, and interact with GPCRs 
expressed in human colon 

epithelial cells.

Act as agonists for the AhR, an important 
transcription factor that regulates T cell 
immunity, cytokine expression, and anti-

inflammatory effects through IL-22.

Its levels are increased in CD patients. 
UC and CD patients have reduced 
abundances of succinate-utilizing 

Phascolarctobacterium compared to 
healthy individuals.
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acids, cholesterol, and tetrapyrroles in IBD patients.119 

  Studies have indicated that anti-inflammatory microbial 

metabolites are decreased,119,199 while pro-inflammatory mi-

crobial metabolites are enriched118 in IBD patients compared 

to healthy subjects. Morgan et al.200 reported that 12% of meta-

bolic pathways significantly differed between IBD patients and 

healthy controls. They also found that the genes for the metab-

olism of butanoate and propanoate were decreased in CD pa-

tients. 

1. Short-Chain Fatty Acids
SCFAs, such as acetate, propionate, and butyrate, are produced 

by the anaerobic fermentation of non-digestible carbohydrates 

by gut microbes.201-203 Acetate accounts for nearly 50% to 70%, 

propionate for 10% to 20%, and butyrate for 20% to 30%. Ace-

tate is produced by a variety of gut microbes,204 propionate is 

mainly produced by Bacteroidetes, Negativicutes, and Lachno-

spiraceae,201,205 while butyrate is mostly produced by Eubacteri­

um, Clostridium, and Fusobacterium.206 SCFAs are important 

players in regulating intestinal barrier integrity and reducing 

intestinal inflammation.109,207 SCFAs regulate colonic Treg and 

show anti-inflammatory effects.208 Butyrate and propionate 

can downregulate pro-inflammatory cytokines, such as IL-6 

and IL-12.209,210 Butyrate and propionate can also alter the chro-

matin state by inhibiting histone deacetylases.211 Furusawa et 

al.212 found that butyrate upregulated histone H3 acetylation of 

the Foxp3 gene and promoted CD4+ T cell differentiation into 

Treg. Many studies have confirmed lower levels of SCFAs in the 

feces of IBD patients compared to healthy controls.109,113,213-215 

However, other studies have found a non-significant reduction 

in SCFAs in IBD.188,189 Contrary to the levels of other SCFAs, lac-

tate levels are elevated in both UC and CD.119,216,217

  SCFAs affect cellular functions by interacting with G pro-

tein-coupled receptors expressed in human colon epithelial 

cells.218 Orphan G protein-coupled receptor (GPR43) interacts 

with acetate, propionate, and butyrate.219 The binding of SC-

FAs with GPR43 reduces inflammation.100 Loss of GPR43 re-

sults in refractory colitis in the DSS mice model.100 Butyrate 

binds and activates GPR109A.220,221 The interaction of butyrate 

with GPR109A reduces inflammation by promoting the dif-

ferentiation of Treg, suppressing the induction of inflammato-

ry cytokine, IL-6, and secreting anti-inflammatory cytokine, 

IL-10, by TH1 cells, and also activates macrophages and CD+ 

T cells.208,212,222,223 SCFAs regulate intestinal homeostasis by 

stimulating the production of antimicrobial peptides and in-

testinal IgA.224,225 They promote epithelial homeostasis through 

the production of IL-18.226 They also inhibit NF-κB expression 

and secretion of TNF-α.227 They also have anti-proliferative ef-

fects228 and a protective role in animal models of colitis208 and 

colitis-induced CRC.221 

  Butyrate is the major energy source for colonic epithelial 

cells and inhibits epithelial stem cells.229 It modulates mitochon-

drial function, increasing oxygen consumption of colonic epi-

thelial cells,230-233 which decreases oxygen concentration in the 

intestinal tract, increasing the number of obligate anaerobic 

bacteria, including butyrate-producing Firmicutes.234 IBD is 

characterized by the loss of butyrate-producing bacterial spe-

cies, such as F. prausnitzii, Roseburia hominis, and Clostridium 

cluster IV and XIVa, as is evident by a reduction in fecal butyr-

ate levels in IBD patients.68,107,109,183 Administration of butyrate 

by enema in UC has been found to be beneficial.235 Therefore, 

decreased concentrations of SCFA-producing bacteria and 

SCFAs may be involved in chronic intestinal inflammation and 

the pathophysiology of IBD. 

  Studies have also found reduced levels of medium-chain 

fatty acids in IBD patients.189,236 Medium-chain fatty acids may 

have an anti-inflammatory role, as replacing n-6 fatty acids with 

medium-chain fatty acids can reduce the incidence of colitis 

in IL-10-/- mice.237 

2. Bile Acids
Bile acids play an essential role in the emulsification and ab-

sorption of fats and the elimination of cholesterol. They are a 

type of steroid acid found in bile and synthesized from choles-

terol by the liver. Primary bile acids, such as cholic acid and 

chenodeoxycholic acid, are synthesized in the host liver and 

are metabolized to secondary bile acids, such as deoxycholic 

acid and lithocholic acid by anaerobic microorganisms, par-

ticularly clostridial species, in the colon.238 Many gut microbes 

can produce unique bile acids by conjugating amino acids to 

cholic acid.239 Bile acids exert many metabolic effects by bind-

ing to various receptors, including the farnesoid X receptor 

(FXR), pregnane X receptor (PXR), transmembrane G protein-

coupled receptor 5 (TGR5), vitamin D receptor, and androstane 

receptor.240

  A bidirectional relationship exists between bile acids and 

the microbiota. Gut microbiota can deconjugate amino acid 

residues from primary bile acids using the enzyme bile salt 

hydrolases.241 Labbé et al.242 analyzed metagenomics samples 

from the Human Microbiome Project and MetaHit. They found 

a reduction in the clusters of bile salt hydrolase (bsh) genes as-

sociated with Firmicutes in IBD. Bile acids have strong antimi-
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crobial properties243 and may change gut microbiota compo-

sition and density. They may have direct antimicrobial effects 

on bacteria such as Bifidobacterium breve and Lactobacillus 

salivarius.243 The indirect antimicrobial effects of bile acids in-

clude stimulating the production of antimicrobial peptides from 

the host and activation of FXR.244-246 Bile acids are crucial in the 

development of colonic RORγ+ Treg in mice, suggesting their 

anti-inflammatory effects.247

  Various studies have reported altered bile acid profiles in 

fecal samples of IBD patients.119,193,248-250 Bile acid synthesis is 

regulated by the FXR. Once activated, FXR can reduce bile acid 

synthesis and uptake by downregulating gene expression in 

enterocytes.251 FXR activation also exerts anti-inflammatory 

effects and is protective in chemically induced colitis.252,253 Con-

comitant with this finding, studies have shown a significant 

reduction in FXR expression in CD patients.252,254 

3. Tryptophan Metabolites
Tryptophan is an essential aromatic amino acid. Alterations 

in the concentration of tryptophan and its metabolites and 

changes in the activity of associated enzymes have been re-

ported in IBD.255 Dietary tryptophan is metabolized by 3 met-

abolic pathways: the kynurenine pathway, serotonin pathway, 

and indole pathway. The indole pathway is the microbial path-

way used by the gut microbes to metabolize indole, while the 

kynurenine and serotonin pathways are the endogenous path-

ways. The majority of dietary tryptophan is metabolized by the 

kynurenine pathway.256 The microbial pathway can convert 

tryptophan into various bioactive indole derivatives, such as 

indole propionic acid, indole acetic acid, indole acrylic acid, 

indole 3-aldehyde, and tryptamine. These indole metabolites 

can act as agonists for the AhR, an important transcription fac-

tor that regulates T cell immunity, cytokine expression, and 

anti-inflammatory effects through IL-22.257-261 Concomitant 

with these findings, Monteleone et al.262 reported that the in-

flamed mucosa of CD patients had reduced expression of AhR. 

Lactobacillus strains that can activate AhR have been shown 

to reduce the severity of DSS-induced colitis.263 Indole metab-

olites can also activate PXR, which promotes intestinal barrier 

function in a mouse model of CRC.264 Indole propionic acid 

inhibits TNF production by binding to PXR.258 Reduced levels 

of indole propionic acid have been found in the serum of UC 

patients.265 Other indole metabolites, such as indole acrylic 

acid, are also reduced in patients with IBD.258,266 Wlodarska et 

al.266 found that Peptostreptococcus russellii, a mucin-utilizing 

bacterium, could metabolize tryptophan to indole acrylic acid 

thus could reduce susceptibility to colitis. A critical study by 

Nikolaus et al.255 identified a crucial link between tryptophan 

metabolism and IBD in a large clinical cohort of 535 patients. 

This study found an inverse relationship between tryptophan 

levels and IBD. A similar study found that a deficiency of dietary 

tryptophan could worsen colitis in mouse models.267

4. Succinate 
Succinate is a TCA intermediate produced by both the host 

and the microbiota.268 Succinate metabolism has gathered 

much attention in recent years due to its potential link with 

IBD. Succinate acts as a key pro-inflammatory signal, and its 

levels are increased in CD.269,270 Similarly, the levels of fecal 

succinate have also been found to be increased in UC and CD 

patients.216 Concomitant with these findings, both UC and CD 

patients have reduced abundances of succinate-utilizing Phas­

colarctobacterium compared to healthy individuals.200

GUT MICROBIOTA IN IBD THERAPEUTICS

Although a complete cure for IBD is unknown, the current treat-

ment regimen is adopted to reduce inflammation, promote 

clinical remission, and prevent disease relapse.271-273 The hu-

man gut microbiota is being recognized as a potential thera-

peutic solution for IBD.274 Studies have demonstrated that pro-

biotics, prebiotics, and synbiotics effectively modulate the gut 

microbiota.275-277 Though promising results have been obtained, 

much research is needed to establish the efficacy of these treat-

ment options. Clinical trials have shed some light on manipu-

lating gut microbiota through probiotics, prebiotics, synbiotics, 

and fecal microbiota transplantation (FMT) for IBD treatment 

(Tables 2 and 3).

1. Probiotics 
Probiotics are defined as live microorganisms that provide mul-

tiple health benefits when administered in adequate amounts.278 

Probiotics deliver many health benefits, modify the gut micro-

flora composition, enhance the intestinal mucosal barrier func-

tion, prevent the colonization of pathogenic microbes, and mod-

ulate the local and systemic immune responses.279-285 Accumu-

lating evidence has also revealed that probiotics influence gut 

microbiota. Since IBD has been linked to dysbiosis of the gut 

microflora, restoring the normal gut microflora through probi-

otics is one of the recommended therapeutic options for IBD. 

Probiotics may prevent IBD by reducing intestinal inflamma-

tion,286 downregulating inflammation pathways,287 and pro-
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ducing SCFAs.212 Studies have found that probiotic therapy 

can suppress the NF-κB signaling pathway288,289 and decrease 

inflammatory cytokines.290

  The most important probiotics for IBD treatment are Bifido­

bacterium, Lactobacillus, and yeasts.291 Other probiotics, such 

as Clostridium butyricum have also been shown to be effec-

tive in suppressing inflammation in experimental colitis and 

are therefore considered for IBD treatment.292 Although no gold 

standard regarding effective probiotic doses exists, most com-

mercially available probiotics contain one to 10 billion CFU 

per dose.290,293 S. boulardii, Escherichia coli Nissle 1917, and B. 

breve strain Yakult have shown effectiveness similar to 5-ami-

nosalicylic acid (mesalamine) in maintaining clinical remis-

sion in UC patients.294-296 European Crohn’s and Colitis Orga-

nization guidelines mention E. coli Nissle 1917 as an effective 

alternative to mesalamine in the maintenance of remission in 

UC patients.297 Lactobacillus reuteri ATCC 55730, when com-

bined with mesalamine, showed a better clinical response and 

remission rate in children with UC.298 Jin et al.299 found that Lac­

tobacillus plantarum could restore gut barrier function and 

reduce intestinal inflammation in a mouse model of DSS-in-

duced colitis. 

  Various probiotic cocktails have been used for IBD treatment. 

The probiotic VSL#3 is a mixture of 8 bacterial strains: Lacto­

bacillus acidophilus, L. plantarum, Lactobacillus casei, Lacto­

bacillus delbrueckii subspecies bulgaricus, B. breve, Bifidobac­

terium longum, Bifidobacterium infantis, and Streptococcus 

salivarius subspecies thermophiles.300 Studies have found the 

effectiveness of VSL#3 in inducing remission in patients with 

mild-to-moderately active UC.301,302 VSL#3 can also reduce in-

Table 2. Completed Clinical Trials on the Effects of Probiotics, Prebiotics and Synbiotics on Inflammatory Bowel Disease 

Clinical trial  
   identifier Study title No. of 

participants Country Probiotic strains/product

NCT00175292 A randomized controlled trial of VSL#3 for the prevention of 
endoscopic recurrence following surgery for Crohn’s disease

120 Canada VSL#3

NCT00374374 Treatment with Lactobacillus rhamnosus and Lactobacillus 
acidophilus for patients with active colonic Crohn’s disease

30 Denmark L. rhamnosus, L. acidophilus

NCT00114465 VSL#3 versus placebo in maintenance of remission in Crohn’s 
disease

38 Australia VSL#3

NCT00944736 Effect of VSL#3 on intestinal permeability in pediatric Crohn’s 
disease

12 USA VSL#3

NCT04223479 Effect of probiotic supplementation on the immune system in 
patients with ulcerative colitis in Amman, Jordan

30 Jordan Not disclosed

NCT01698970 Effect of the consumption of a probiotic strain on the 
prevention of postoperative recurrence in Crohn’s disease

122 France Freeze-dried probiotics 

NCT01772615 Treatment of ulcerative colitis with ciprofloxacin and 
Escherichia coli Nissle

100 Denmark E. coli Nissle

NCT00305409 Synbiotic treatment in Crohn’s disease patients 50 UK Synbiotic (Synergy I/ 
Bifidobacterium longum)

NCT00803829 Synbiotic treatment of ulcerative colitis patients 24 UK Synbiotic (Synergy1/B. longum)

NCT00951548 Food supplementation with VSL#3 as a support to standard 
pharmaceutical therapy in ulcerative colitis

144 Italy VSL#3

NCT00374725 Treatment of ulcerative colitis with a combination of 
Lactobacillus rhamnosus and Lactobacillus acidophilus

130 Denmark L. rhamnosus, L. acidophilus

NCT04102852 Lactobacillus rhamnosus GG (ATCC 53103) in mild-moderately 
active ulcerative colitis patients

76 Italy L. rhamnosus

NCT04969679 Additive effect of probiotics (Mutaflor®) in patients with 
ulcerative colitis on 5-ASA treatment

134 South 
Korea

E. coli Nissle 1917 (Mutaflor®)

NCT02093767 Oligofructose-enriched inulin for the treatment of mild to 
moderate active ulcerative colitis

24 Canada Synergy-1 (1:1 oligosaccharide/ 
inulin mixture)

NCT01193894 Trial on Profermin and Fresubin in ulcerative colitis 73 Denmark Profermin and Fresubin
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Table 3. Completed Clinical Trials on FMT in IBD

Clinical trial  
   identifier Study title No. of 

participants Country Side effects

NCT02108821 Fecal microbiota transplantation in pediatric patients 23 USA Abdominal pain, 
diarrhea, flatulence 
and bloating

NCT02487238 Pediatric fecal microbiota transplant for ulcerative colitis 35 Canada Not available

NCT03106844 The ICON Study: Outcomes after FMT for patients with IBD and 
CDI

50 USA Diarrhea, rectal 
bleeding, abdominal 
pain 

NCT04294615 Clinical response and safety following FMT for UC 9 China Not available

NCT05538026 Effectiveness of fecal microbiota transplantation as add-on 
therapy in mild-to-moderate ulcerative colitis

53 Ukraine Not available

NCT01896635 Fecal microbiota transplantation in ulcerative colitis (FOCUS) 81 Australia Not available

NCT02460705 Fecal microbiota transplant for inflammatory bowel disease 59 USA Not available

NCT04820413 Fecal microbiota transplantation from normal pouch function 
donor in the treatment of chronic pouchitis

3 Denmark Not available

NCT02330653 Fecal microbiota transplant (FMT) in pediatric active ulcerative 
colitis and pediatric active Crohn’s colitis

15 USA Not available

NCT03078803 Fecal transplant for Crohn’s disease 38 Canada Not available

NCT01560819 Gut microbial transplantation in pediatric inflammatory bowel 
diseases (GMT)

20 USA Bloating/flatulence, 
abdominal pain/
cramping, diarrhea

NCT01847170 Impact of fecal biotherapy (FBT) on microbial diversity in patients 
with moderate to severe inflammatory bowel disease

22 USA Not available

NCT02097797 Impact of the fecal flora transplantation on Crohn’s disease 
(IMPACT-Crohn)

24 France Not available

NCT01650038 Transplantation of feces in ulcerative colitis; restoring nature’s 
homeostasis (TURN)

50 Netherlands Not available

NCT01947101 FMT for treatment of ulcerative colitis in children 6 USA Not available

NCT03538366 Fecal microbiota transplantation for chronic pouchitis 10 Denmark Not available

NCT02199561 FMT in the management of active Crohn’s disease 3 Canada Not available

NCT03194529 FMT in pediatric Crohn’s disease (FMTPCD) 9 USA Not available

NCT02516384 FMT in the management of ulcerative colitis (UC) 20 USA Not available

NCT03711006 The effect of fecal microbiota transplantation in ulcerative colitis 7 Denmark Not available

NCT02227342 FMT in the management of active ulcerative colitis 3 Canada Not available

NCT02033408 Manipulating the microbiome in IBD by antibiotics and FMT 28 Canada, 
Finland, Israel, 
Italy, Poland, 
Spain

Not available

NCT03006809 Optimal fecal microbiota transplant dosing for mild to moderate 
ulcerative colitis

30 USA Not available

NCT02049502 FMT in ulcerative colitis-associated pouchitis 8 USA Abdominal pain, rectal 
bleeding, increase in 
stool frequency

NCT03267238 Fecal microbial transplantation in patients with Crohn’s disease 9 USA Not available

NCT03104036 Fecal bacteriotherapy for ulcerative colitis (FACTU) 61 Czechia Not available

(Continued to the next page)
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flammation in pouchitis.303,304 Studies on a mouse model have 

shown that VSL#3 effectively reduces ileitis305 and 2,4,6- 

trinitrobenzenesulfonic acid-induced colitis.306 Fedorak et al.290 

reported that VSL#3 could reduce endoscopic recurrence af-

ter surgery for CD. Miele et al.307 showed that combining VSL#3 

with 5-aminosalicylic acid (mesalamine) and steroids could 

significantly improve the remission rate in children with UC. 

Huynh et al.308 also showed that combining VSL#3 with stan-

dard therapy could improve histological scores in children with 

UC. A meta-analysis by Mardini and Grigorian309 suggested 

that VSL#3 in combination with standard therapy was more 

effective than standard therapy for UC. 

  Administration of a cocktail of L. acidophilus, L. plantarum, 

Bifidobacterium lactis, and B. breve has been shown to enhance 

the production of intestinal mucus and goblet cells in mice.310 

Another cocktail mixture of L. plantarum, L. acidophilus, Lac­

tobacillus rhamnosus, and E. faecium can increase wound heal-

ing and enhance the integrity of tight junctions of epithelial 

cells.311 Chen et al.312 reported that the probiotic mixture of B. 

infantis, L. acidophilus, and Enterococcus faecalis with or with-

out Bacillus cereus could restore the relative abundance of Lac­

tobacillus, Bifidobacterium, Bacteroides, and Akkermansia in a 

mouse model of DSS-induced chronic colitis. In UC patients, 

a mixture of Lactobacillus and Bifidobacterium significantly 

increases the population of Proteobacteria and reduces Gram-

negative rods.313

  When combined with mesalazine S. boulardii, a yeast, can 

reduce the recurrence rates in CD patients.314 S. boulardii can 

also reduce intestinal permeability, increase plasma levels of 

the anti-inflammatory cytokine, IL-10 and increase intestinal 

IgA secretion.315 S. boulardii has also been shown to prevent 

relapses in patients with CD.316 Contrary to these studies, Bour-

reille et al.317 reported that S. boulardii did not demonstrate any 

significant efficacy in IBD compared to control individuals. 

  Next-generation probiotics (NGPs) include human gut com-

mensals that produce some beneficial metabolites.291 Current-

ly, their use is limited by difficulties in isolation, characteriza-

tion, cultivation, and formulation. One of the potential NGPs is 

F. prausnitzii, which has anti-inflammatory properties.318,319 

Several animal experiments have confirmed the therapeutic 

potential of F. prausnitzii in UC.318,320-322 C. butyricum MIYAIRI, 

a butyrate-producing bacterium, is effective in preventing pou-

chitis and alterations of the microbiota in UC patients.83 Re-

cently, Ma et al.323 found that C. butyricum MIYAIRI-II could 

alleviate colitis-related parameters in a mouse model of DSS-

induced colitis. NGPs also include genetically engineered pro-

biotic strains. Recently, Zhou et al.324 genetically engineered E. 

coli Nissle 1917 to overexpress catalase and superoxide dis-

mutase for treating intestinal inflammation. They found that 

genetically engineered E. coli Nissle 1917 could effectively al-

leviate inflammation and repair epithelial barriers in the colon 

of a mouse model of IBD. They also found that genetically en-

gineered E. coli Nissle 1917 improved the abundance of mi-

crobes that maintain intestinal homeostasis, such as Lachno-

spiraceae and Odoribacter. Many non-conventional probiot-

ics, including Akkermansia muciniphila,325,326 Companilacto­

bacillus crustorum,327 Pediococcus pentosaceus,328,329 Lactiplan­

tibacillus plantarum,330 B. thetaiotaomicron,331 and Christense­

nella minuta,332 have shown promise in animal studies. More 

extensive clinical cohort studies are required to evaluate their 

efficacy in humans. 

  However, Cochran systematic reviews have concluded that 

there is no evidence to suggest that probiotics are beneficial 

for the induction or maintenance of remission in CD.333,334 Zhang 

et al.,335 in a systematic review, also concluded that there was 

no evidence to support the use of probiotics in CD. Studies have 

also shown that L. rhamnosus GG has no additional benefit 

over placebo in treating CD.336-338 Marteau et al.339 reported that 

Lactobacillus johnsonii and E. coli Nissle had no significant 

benefit in maintaining IBD remission. Mallon et al.340 found 

Clinical trial  
   identifier Study title No. of 

participants Country Side effects

NCT01545908 Fecal biotherapy for the induction of remission in active 
ulcerative colitis

130 Canada Not available

NCT02606032 Trial of antimicrobials versus placebo in addition to fecal 
transplant therapy in ulcerative colitis (FMT)

75 Canada Not available

NCT03268213 Fecal microbial transplantation for C. difficile and/or ulcerative 
colitis or indeterminate colitis (FMT)

12 USA Not available

FMT, fecal microbiota transplantation; IBD, Inflammatory bowel disease; CDI, Clostridioides difficile infection.

Table 3. Continued
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that combining S. boulardii and VSL#3 did not significantly 

improve the remission rates of UC. Matthes et al.341 reported 

that the rectal administration of E. coli Nissle for UC had no 

additional benefits over placebo. Petersen et al.342 reported that 

using E. coli Nissle in probiotic therapy had a lower rate of clini-

cal remission in UC. In a randomized controlled trial, Matsuo-

ka et al.343 reported that probiotics were not effective in main-

taining remission in UC. 

2. Prebiotics
Prebiotics are food components that are selectively fermented 

by the gut microflora and help maintain healthy gut microbio-

ta by stimulating the growth of beneficial bacteria.344 Prebiot-

ics mostly include fructooligosaccharides (FOS), galactooligo-

saccharides (GOS), and other oligosaccharides, such as pec-

tin.277 Prebiotics have shown some promise in IBD therapeu-

tics, but some studies have shown contrary results. Prebiotics, 

such as inulin, have been shown to induce the growth of SC-

FA-producing bacteria, including Lactobacillus, F. prausnitzii, 

and Bifidobacterium.345-348 Inulin has also been shown to im-

prove histological lesions in patients with pouchitis.349 FOS and 

GOS can improve the levels of F. prausnitzii.350 FOS-enriched 

inulin supplementation can elevate the levels of butyrate.351,352 

FOS are known to increase the population of endogenous mi-

croflora, particularly Lactobacillus and Bifidobacterium.353 FOS 

are fermented by the gut microbes to produce SCFAs, which 

exert anti-inflammatory effects.68,354 Contrary to this, Benjamin 

et al.355 reported that the use of FOS in patients with active CD 

did not improve the remission rate. Casellas et al.356 found that 

oligofructose-enriched inulin did not influence the remission 

rate in patients with UC but could reduce fecal calprotectin 

levels. The use of prebiotics in IBD treatment is limited by a few 

studies that are not sufficiently conclusive. More elaborate stu

dies are required to show the efficacy and therapeutic effects 

of prebiotics for IBD treatment. 

  Preparations containing both prebiotics and probiotics are 

called synbiotics.357,358 Clinical studies275,357,359,360 and animal stu

dies361-365 have suggested that synbiotics are effective therapeu-

tic options for IBD. However, contrary results have been obtain

ed in other clinical intervention studies with IBD patients,366-368 

raising doubts about their effectiveness. 

3. Fecal Microbiota Transplantation 
FMT is an emerging biotherapeutic procedure that aims to re-

store gut microbial ecology by transplanting intestinal micro-

biota from healthy donors to ameliorate various gastrointesti-

nal disorders.369,370 FMT enhances the production of SCFAs and 

restores immune dysregulation.371-373 FMT has proven success-

ful in treating recurrent Clostridioides difficile infections resis-

tant to antibiotic treatment.374-377 

  FMT has gathered much attention recently as a new thera-

peutic option for IBD (Table 3). Studies have found that FMT 

is effective in inducing remission in UC patients.373,378-381 Tian 

et al.382 found that after FMT, there was a significant enrich-

ment of Bacteroides, Proteus, and Prevotella and a decline in 

Klebsiella and Streptococcus. A meta-analysis by Colman and 

Rubin383 showed a remission rate of 36.2% in IBD patients 

who received FMT. They also showed a higher remission rate 

in CD patients than in UC patients. In a randomized con-

trolled trial by Moayyedi et al.,378 FMT induced clinical remis-

sion in patients with active UC. In another randomized place-

bo-controlled trial for UC by Paramsothy et al.,379 the remis-

sion rate of multidonor-intensive FMT was higher than place-

bo. Similar results were obtained by Costello et al.373 Contrary 

to these findings, a randomized controlled trial by Rossen et 

al.384 failed to find any significant effect of FMT in patients with 

UC. In a pilot study, Sood et al.381 concluded that FMT may be 

one of the therapeutic options for clinical remission in UC pa-

tients. Sokol et al.385 carried out a pilot randomized controlled 

study to find the effects of FMT in CD patients showing clini-

cal remission with systemic corticosteroids. In this study, the 

beneficial effects of FMT were evaluated using several clini-

cally relevant endpoints, such as C-reactive protein level and 

CD Endoscopic Index of Severity. Kunde et al.386 found signifi-

cant improvement in 9 children with UC who received FMT 

via enema. Cui et al.387 showed that FMT improved clinical 

outcomes in 57% of patients with steroid-dependent UC. A 

meta-analysis on FMT for IBD by Paramsothy et al.372 showed 

a clinical remission rate of 50.5%. A meta-analysis by Caldeira 

et al.388 reported that FMT had a complete remission rate of 

37% for IBD patients. 

  However, various clinical studies conducted to examine the 

effect of FMT on IBD have obtained inconsistent results, rais-

ing doubts about its effectiveness. Available data suggest that 

the efficacy of FMT in treating IBD is not predictable.389 Angel-

berger et al.390 reported that only one UC patient showed some 

improvement after 12 weeks of FMT. Similarly, Suskind et al.391 

failed to find any significant improvement in 4 children who 

received a single FMT through a nasogastric tube. Such dis-

crepant results in clinical trials may reflect the heterogeneity 

in disease biology, donor selection, FMT regimen, and individ-

ual response to the treatment. 
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  The safety and questionable efficacy of FMT have preclud-

ed its wider use for IBD treatment. FMT is also associated with 

certain risks, further limiting its use as a therapeutic option.16 

The success rate of FMT in IBD treatment can be enhanced by 

standardizing various parameters, such as donor selection, route 

and mode of administration, and optimal dose and frequency 

of infusions. 

CONCLUSIONS AND FUTURE PERSPECTIVES

The human gut is a complex ecosystem with a continuous cross

talk between microbes and host cells. A growing body of evi-

dence has indicated a close association between alterations in 

gut microbiota and the pathophysiology of IBD. Furthermore, 

the microbial metabolites may also affect the progression of 

IBD. Since different studies provide inconsistent, even contra-

dictory results, further studies must be carried out to reach a 

consensus. Advances in next-generation sequencing technol-

ogy have enabled deep insights into the complex microbial 

communities inhabiting the human gut and have helped iden-

tify and compare the normal gut microbiota with the altered 

microbiota in IBD. Also, metabolomics has helped identify al-

tered microbial metabolites in IBD patients. Further research 

describing the role of the gut microbiota in maintaining gut 

barrier function and the immune system is essential to under-

stand IBD pathophysiology. The findings from such studies 

must be translated into clinical practice.

  There is no known cure for IBD. The current treatment op-

tions help induce clinical remission by reducing inflammation. 

Though still in its infancy, targeted microbiota manipulation 

using probiotics, prebiotics, synbiotics, and FMT is one of the 

potential armamentariums in IBD. Although promising results 

have been shown for many probiotics, including VSL#3 and E. 

coli Nissle 1917, clinical trials with larger cohorts must be car-

ried out to reach conclusive evidence. NGPs, including engi-

neered microbes, may provide a new direction for IBD treat-

ment. Another microbiota-based intervention, FMT, has gath-

ered much attention as a new therapeutic option for IBD, but 

its efficacy remains questionable. Standardization of various 

parameters will surely help increase its effectiveness and suc-

cess rate in IBD. Future research should be directed towards 

utilizing gut microbiota for developing less invasive diagnostic 

tools for IBD and microbiota replacement as a potential thera-

peutic for IBD treatment. 
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