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INTRODUCTION

Otitis media has one of the highest disease prevalence rates in 
the world [1,2]. However, otoscopic screening is highly subspe-
cialized, creating diagnostic difficulties for primary care provid-
ers whose otologic diagnoses are relatively inaccurate. The aver-

age diagnostic accuracy for acute otitis media (AOM) and otitis 
media with serous effusion (SOM) using video otoscopy is only 
51% and 46%, respectively. By contrast, the diagnoses of oto-
laryngologists are more accurate, although very far from perfect, 
with a diagnostic accuracy of approximately 74%. Hence, there 
is a need for a new diagnostic strategy to improve the diagnostic 
accuracy and more effectively screen patients with otologic dis-
eases based on abnormal otoscopic findings. Because of the lim-
ited number of otolaryngologists covering all regions and the 
rapid development of telemedicine worldwide, tele-otoscopy 
may be beneficial in optimizing diagnoses and treatments for 
otitis media [3]. 

Artificial intelligence (AI)-based techniques, particularly dis-
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Objectives. Otitis media is a common infection worldwide. Owing to the limited number of ear specialists and rapid devel-
opment of telemedicine, several trials have been conducted to develop novel diagnostic strategies to improve the di-
agnostic accuracy and screening of patients with otologic diseases based on abnormal otoscopic findings. Although 
these strategies have demonstrated high diagnostic accuracy for the tympanic membrane (TM), the insufficient ex-
plainability of these techniques limits their deployment in clinical practice.

Methods. We used a deep convolutional neural network (CNN) model based on the segmentation of a normal TM into five 
substructures (malleus, umbo, cone of light, pars flaccida, and annulus) to identify abnormalities in otoscopic ear im-
ages. The mask R-CNN algorithm learned the labeled images. Subsequently, we evaluated the diagnostic performance 
of combinations of the five substructures using a three-layer fully connected neural network to determine whether 
ear disease was present.

Results. We obtained the receiver operating characteristic (ROC) curve of the optimal conditions for the presence or ab-
sence of eardrum diseases according to each substructure separately or combinations of substructures. The highest 
area under the curve (0.911) was found for a combination of the malleus, cone of light, and umbo, compared with 
the corresponding areas under the curve of 0.737–0.873 for each substructure. Thus, an algorithm using these five 
important normal anatomical structures could prove to be explainable and effective in screening abnormal TMs.

Conclusion. This automated algorithm can improve diagnostic accuracy by discriminating between normal and abnormal 
TMs and can facilitate appropriate and timely referral consultations to improve patients’ quality of life in the context 
of primary care.
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ease screening tools to support clinicians’ decisions, have impacted 
and improved the traditional provision of healthcare. Deep learn-
ing is the leading AI method for a wide range of tasks, including 
medical imaging problems. Deep neural networks have recently 
been applied for otologic diagnoses, with great success. Moreover, 
many trials analyzing the tympanic membrane (TM) have shown 
the usefulness of deep learning models in the early detection and 
treatment of ear diseases [4,5]. However, although those models 
showed high-accuracy diagnoses based on the TM, such techniques 
have limitations in being successfully deployed into clinical prac-
tice. These limitations are due to the underlying unexplainable 
“black-box nature” of deep learning algorithms. To support the 
clinical use of deep learning algorithms, studies should be conduct-
ed to identify understandable algorithms. Moreover, an AI system 
to complement medical professionals should have a certain amount 
of explainability and allow human experts to retrace decisions 
and use their judgment [6]. Medical image segmentation has 
emerged as a biomedical image processing technology in deep 
learning algorithms to support the explainability of decisions [7]. 

The normal TM has several properties that make it distinguish-
able from an infected TM. Therefore, the objective of this study 
was to develop and evaluate a software prototype using a deep 
convolutional neural network (CNN) model based on the seg-
mentation of a normal TM into five substructures (malleus, umbo, 
cone of light, pars flaccida, and annulus) to identify abnormali-
ties in otoscopic ear images. Using a combination of thresholds 
among the five substructures would help improve the accuracy 
of discriminating between normal and abnormal TMs. This would 
also enable the appropriate triaging of middle ear diseases for 
primary clinicians and facilitate the timely transfer of findings to 
otologic specialists. 

MATERIALS AND METHODS

Ear imagery database
Medical images of eardrums from patients who visited the out-
patient clinic in the Department of Otorhinolaryngology, Wonju 

Severance Christian Hospital, from 2015 to 2020 were used ret-
rospective. This study was approved by the Institutional Ethics Re-
view Committee (CR19081) and adhered to the principles of the 
Declaration of Helsinki. Eardrum images were taken by otolar-
yngology residents and professors using 2.7 and 100 mm Insight 
0° telescopes (mione) equipped with a full HD camera system 
with a 21.5´´ LED monitor. The resolution of the images was 
1,920×1,080, 60 fps with an illuminance of 30 and 000 lx. A 
total of 12,444 endoscope photos were reviewed and screened 
by two ENT surgeons. Mostly subjective and reliable images 
were selected by the specialized otologists for defined images in 
each disease after removing the images which had vague bound-
aries of substructures on TM, 2,597 photos of which were deemed 
appropriate and hence included for examination. We classified 
1,370 photos in the normal TM group and 1,227 in the abnor-
mal TM group. We included nine ear diseases (acute otitis media 
[AOM], SOM, otitis media with mucoid effusion [MOM], chron-
ic otitis media without perforations [COM w/o P], chronic otitis 
media with perforations [COM w P], traumatic drum perforation 
[traumatic TM], tympanosclerosis [sclerosis TM], tympanostomy 
tube inserted status [Tube], and congenital cholesteatoma [Cho-
le]), as shown in Fig. 1. 

This retrospective study was approved by the Institutional Re-
view Board of Yonsei University College of Medicine (No. Yonsei 
IRB-CR319081). All participants voluntarily signed the written 
informed consent and joined in this study. Among the 2,597 im-
ages used for this study, the training set was composed of 2,358 
images (90%), and the validation set was composed of 239 im-
ages (20%) chosen randomly. 

Data preprocessing
Eardrum photos were labeled as 10 categories, including normal 
TM and nine diseases (AOM, SOM, MOM, COM w/o P, COM w 
P, traumatic TM, sclerosis TM, Tube, and Chole). We followed the 
guideline of the American Academy of Otolaryngology–Head 
and Neck Surgery (2016) [8] to define the diseases with the ret-
rospective clinical records of patients. AOM refers to the rapid 
onset of signs and symptoms of inflammation of the middle ear. 
Otitis media with effusion (OME) is the presence of fluid in the 
middle ear without signs or symptoms of acute ear infections. 
COM is an OME persisting for 3 months from the date of onset 
(if known) or from the date of diagnosis (if onset is unknown). 
Furthermore, we added the tympanosclerosis group for compar-
ison to a normal eardrum because plaques could shade the visu-
alization of normal substructures, such as the cone of light, umbo, 
or malleus. Images of a normal TM should not have any surgical 
history of ear and chronic otitis media, and they also should in-
clude the five substructures (malleus with lateral process and 
handle, whole annulus, pars flaccida, umbo, and cone of light) 
[9]. Along with the unique pearl gray or white color in the pars 
tensa of the TM, a normal TM has a translucent and concave-
shaped membrane (umbo, center of the TM) with malleus bone 

	� Artificial intelligence (AI)-based techniques can serve as 
screening tools for supporting clinicians’ decision regarding 
otitis media. 

	� Deep learning algorithms for segmentation with substructures 
of the tympanic membrane (TM) can distinguish between nor-
mal and abnormal TMs. 

	� Combination of substructures in the TM can increase the diag-
nostic accuracy for normal and abnormal TMs. 

	� The proposed model can support primary screening for ear 
diseases.
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visibility. Light reflection, also known as the cone of light, is an-
other important feature. Earwax should be below 10% of the 
whole eardrum in the image. The number of images used and 
samples representing each classification is shown in Fig. 1. 

Labeling segmentation extraction from the normal TM 
An in-house graphic user interface software implemented on 
MATLAB2019a (MathWorks Inc.) was used for manual label-
ing. As shown in Fig. 2, filmed otoscopic images that contained 
both ears were divided into two segmented images, i.e., the right 
and left parts. The images were manually labeled with the con-
tours of the five substructures (malleus with lateral process and 
handle, whole annulus, pars flaccida, umbo, and cone of light) 
by two specialized otologist (YJS and THK). When all five sub-
structures in one image were confirmed by the otologists, it was 
used as the training data. We used “LabelMe,” a database and 
an online annotation tool that allows the sharing of images and 
annotations. This online tool provides functionalities, such as 
drawing polygons, querying images, and browsing the database 
[10]. The labeling results were converted into JSON files. 

Deep learning models to discriminate the normal TM and  
abnormal TM
The learning process shown in Fig. 2A was performed. The mask 
R-CNN by Matterport Inc. (https://github.com/matterport/Mask_

RCNN) with ResNet-50 was used to detect and segment the 
contours of predicted substructures. The classification result of 
the mask R-CNN was passed through a three-layer fully connect-
ed neural network to detect the presence of an ear disease. To 
extract features from the eardrum image, Matterport’s mask R-
CNN model was used, and ResNet-101 was used as the back-
bone [11]. Mask R-CNN was trained with a batch size=4, learn-
ing momentum=0.9, and weight decay=10–4. Up to epoch 100, 
only the head part was trained with a learning rate of 10–2; up to 
340, layers of stage 4 or higher were trained with a learning rate 
of 10–3; and finally up to epoch 400, the entire layer was trained 
with a learning rate of 10–4. In the model training process, ran-
dom flips were performed in the horizontal direction of the in-
putted images to augment the data, and the training datasets were 
inputted into a deep neural network to extract the features of 
the eardrum image sample. The k-fold cross-validation was used 
as a tool to evaluate machine learning models. Then, we observed 
the performance of the training model until the values were sta-
bilized. In addition, based on the weight obtained through the 
above learning process, we extracted the classification probability 
value of the input data of the three-layer fully connected neural 
network. Through this neural network, the presence or absence 
of an eardrum disease is judged. In the neural network for judg-
ing the presence of an ear disease, two fully connected layers of 
size 32 were used. To prevent overfitting, L2 regularization of 

Fig. 1. (A, B) Normal anatomic substructures of the tympanic membrane. (C) Otoendoscopy image and two diagnostic classes of normal and 
abnormal tympanic membranes, including nine diseases subgroups. AOM, acute otitis media; SOM, otitis media with serous effusion; MOM, 
otitis media with mucoid effusion; COM w/o P, chronic otitis media without perforation; COM w P, chronic otitis media with perforation; Trau-
matic TM, traumatic drum perforation; Sclerosis TM, tympanosclerosis; Tube, tympanostomy tube inserted status; Chole, congenital cholestea-
toma.
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10–4 and dropout of 0.5 were applied, and the epoch value was 
set to 1,000 for learning. While processing the data, we extract-
ed the mask R-CNN classification probability value by entering 
the input of the above process. Then, we identified the missing 
value for the class that was not detected. This study was per-
formed using the TensorFlow deep learning framework on mul-
tiple GPU (Tesla V100, NVIDIA) to increase the training speed 
of neural network. Supplementary Fig. 1 shows the training and 
validation loss graphs according to the epoch of the mask R-
CNN classification, and the results was obtained by inferring 
the test data based on the weights obtained through transfer 
learning.

Statistical analysis
The metrics used for evaluating the performance of the final 
model were calculated using a one-versus-rest strategy applied 
separately for each class. The F1 score provides a harmonic mean 
of the sensitivity (recall) and positive predictive value (precision). 
Receiver operating characteristic (ROC) analyses, including the 
area under the curve (AUC), were performed separately for each 
class by varying the cut-off applied to the probabilistic output of 
the neural network for the class in question using the IBM SPSS 
23.0 statistical software (IBM Corp.). The micro-averaged ROC 
AUC was calculated using Scikit-learn.

RESULTS

Accuracy of TM segmentation
Supplementary Fig. 1 shows the results of training with several 
epochs to obtain good results, as well as the loss curves in the 
training and validation sets. An example of the classification re-
sults with five substructures using the mask R-CNN model is 
shown in Fig. 3. We analyzed the results upon dividing the imag-
es into individual structures, and we evaluated the detection rate 
and segmentation accuracy using the intersection over union (IoU) 
score. The average IoU scores in the normal group were 0.9±

0.14 for the malleus, 0.99±0.05 for the annulus, 0.88±0.15 for 
the cone of light, 0.84±0.17 for the umbo, and 0.89±0.13 for 
the pars flaccida (Fig. 3). The most significant differences were 
found between the normal and disease groups in the malleus 
and pars flaccida. With a cut-off value of 0.8, we could distinguish 
normal from abnormal TMs with each of the malleus, cone of 
light, umbo, or pars flaccida. 

Accuracy of discriminating between normal and abnormal 
TMs through deep learning
Because missing IoU values below 0.5 were applied, the optimal 
missing value could be found and replaced in each substructure. 
To make the best distinction between the normal and abnormal 
groups, the following missing values for each class were entered: 

Fig. 2. Pre-processing with “LabelMe.” (A) A schematic flow of image analysis. (B) Labeling with contours of the five substructures (malleus 
with lateral process and handle, whole annulus, pars flaccida, umbo, and cone of light) was done manually by a specialized otologist. (C) 
Sample images showing the delineation of the five substructures on a normal tympanic membrane. (D) Example of the results for the five sub-
structures analyzed with mask R-CNN.
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malleus, 0.2; cone of light, 0.7; pars flaccida, 0.2; annulus, 0.8; 
and umbo, 0.3. 

We achieved a high level of accuracy for the mask R-CNN 
model by fine-tuning the learning rate (0.01, 0.001, 0.0001, 
0.00001, or scheduled), and we obtained better results with a 
learning rate of 0.001 (Fig. 4A). We also tested the fine-tuning of 
layers with stage 1 (network heads), stage 2 (over Resnet stage 
4), and stage 3 (all layers), and we chose the layer of stage 2 as 
having the lowest validation loss and lowest computation power 
(Fig. 4B). The model with the best performance on the valida-
tion data was evaluated using the test set. 

The ROC curves for each subgroup are shown in Fig. 4C. The 
highest AUC was 0.873 for the umbo, 0.826 for the pars flaccida, 
0.797 for the cone of light, and 0.794 for the malleus. The annu-
lus (AUC, 0.737) did not have a suitable structure for discrimi-
nating between normal and abnormal TMs. To increase sensitivi-
ty and specificity, we combined several segmentations to classify 
the TM in diseases from the normal TM (Fig. 4D). Based on the 
three-layer fully connected neural network, we obtained ROC 
curves for the optimal conditions for distinguishing between the 
presence and absence of eardrum diseases. Except for the annu-
lus substructure, we could obtain good prediction results with 
combinations of the other four substructures (20 f combinations). 
We could also diagnose abnormal TMs with the malleus, cone of 
light, and umbo compared to the normal TM, which showed a 
satisfactory result (AUC, 0.911). This value was higher than those 
obtained for each substructure separately. The scores of precision 
and recall for the combination of malleus, cone of light, and umbo 

were better than those obtained for each substructure separately 
or for other combinations (Fig. 4E and F). 

Accuracy of discriminating between normal TMs and TMs with 
each disease 
Finally, we applied the deep learning model with a gradient 
boosting classifier because it had the highest values of accuracy, 
precision, recall, and F1 (Supplementary Fig. 2). We compared 
the precision, recall, F1, and support values between the normal 
TMs and TMs with each disease (AOM, SOM, MOM, COM w/o 
P, COM w P, traumatic TM, sclerosis TM, tube, and Chole). Sig-
nificant values (AUCs over 0.911) were found for SOM, MOM, 
COM w/o P, COM w P, traumatic TM, tube, and Chole. Insuffi-
cient specificity was found for the AOM and sclerosis TM groups. 
The combined group of SOM, COM w P, and traumatic TM had 
the most significant values (precision, 0.950; recall, 0.960) in 
comparison to the normal TM group (Fig. 5). 

DISCUSSION

This deep neural network framework is the first prototype im-
plementation of a CNN for the substructure-based classification 
of TMs with disease as compared to completely healthy ears. 
The classification accuracy of the current model reached 91.1% 
with the combination of the malleus, cone of light, and umbo 
substructures, which was higher than those of deep learning 
models based on a single substructure. We could increase the 

Fig. 3. The comparisons of intersections over union (IoUs) in the subgroups according to five substructures (malleus, annulus, cone of light, 
umbo, and pars flaccida). AOM, acute otitis media; SOM, otitis media with serous effusion; MOM, otitis media with mucoid effusion; COM w/o 
P, chronic otitis media without perforation; COM w P, chronic otitis media with perforation; Traumatic TM, traumatic drum perforation; Sclerosis 
TM, tympanosclerosis; Tube, tympanostomy tube inserted status; Chole, congenital cholesteatoma.

Normal AOM SOM MOM COM w/o P COM w P Traumatic TM Sclerosis TM Tube Chole
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Fig. 4. Results of mask R-CNN. (A) Fine-tuning according to the learning rate (0.01, 0.001, 0.0001, 0.00001, and scheduled). (B) Fine-tuning 
according to the layers with stage 1 (network heads), stage 2 (over Resnet stage 4), and stage 3 (all layers). The layer of stage 2 showed the 
lowest validation loss and the lowest computation power. (C) Receiver operating characteristic (ROC) curves of the three-layer fully connected 
neural network algorithm according to each substructure. (D) ROC curve according to combinations of the substructures. (E) Precision and 
recall curves for each substructure. (F) Precision and recall curves for the combined substructures. We could obtain good prediction results 
with combinations of the other four substructures. We could also diagnose abnormal tympanic membranes (TMs) with the malleus, cone of 
light, and umbo in comparison with normal TMs, with a satisfactory result (area under the curve [AUC], 0.911). 
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precision to 0.950 and the recall to 0.960 to discriminate be-
tween normal TMs and those with certain diseases. A medical 
diagnosis needs to be transparent, understandable, and explain-
able to gain the trust of clinicians. Hence, we believe that this 
method of ear image segmentation would be an important first 
step in numerous applications. It segmented images into five an-
atomically meaningful regions (malleus, umbo, cone of light, an-
nulus, and pars flaccida), based on which substructures could be 
extracted. Other deep learning studies on ear diseases have clas-
sified several diseases using images of the entire TM. Cha et al. 
[4] proposed an image classification model based on transfer 
learning with a deep CNN, which classified middle ear and ex-
ternal auditory canal pathologies into six categories with a mean 
accuracy of 93.73%. Another study reported that otoendoscopic 
images of the eardrum and external auditory canal were classi-
fied into eight categories. The classification accuracy of the cur-
rent model reached 95.59% [5]. Even though those models 
showed high accuracies, they have insufficient explainability, 
which would allow human experts to retrace decisions and use 
their judgment for disease diagnoses. The analysis of medical 
images with segmentations delineating the anatomical or patho-
logical structures can help explain the role of how deep learning 
models in medical imaging diagnoses. Typical medical image 
segmentation tasks include brain and tumor segmentation, car-
diac segmentation, liver and tumor segmentation, and cell and 
subcellular structures [12]. The AUC values ranged between 
0.864 and 0.937 for diagnosing lung nodules or lung cancer on 
the chest X-ray examinations or computed tomography scans 
[13]. For breast imaging, the AUC values ranged between 0.868 
and 0.909 for diagnosing breast cancer on mammograms, ultra-
sonography, magnetic resonance imaging, and digital breast to-
mosynthesis. Compared with these values, our deep learning al-

gorithm with combinations of five substructures had high AUC 
values ranging from 0.905 to 0.932. Hence, using these five im-
portant normal anatomic structures would be an explainable 
and effective algorithm for screening abnormal TMs. 

We included nine diseases (AOM, SOM, MOM, COM w/o P, 
COM w P, traumatic TM, sclerosis TM, tube, and Chole) in the 
group with abnormal TMs. However, we did discriminate the ab-
normal TMs compared with the normal TMs based on the five 
segmentations; hence, we did not classify all diseases into sub-
groups. Distinguishing only between normal and abnormal TMs 
would be meaningful in the primary medical care system. This 
deep learning model would support the primary screening for 
ear diseases before seeing a specialist. If a person is diagnosed 
with an abnormal TM using this method, then he or she must 
consult an otorhinolaryngology specialist for a further detailed 
diagnosis with additional tests, including a hearing test or com-
puted tomography of the temporal bones. The diagnosis of vari-
ous ear diseases with deep learning algorithms should not be 
overapplied to predict diseases based on only a single otoendo-
scopic image. 

Mask R-CNN models are of enormous importance in medical 
imaging analysis. He et al. [11] proposed a mask R-CNN model 
in 2017. Mask R-CNN is a multitask network and can simulta-
neously implement detection and segmentation. It also detects 
small objects effectively, such as ear substructures, because of 
the introduction of the feature pyramid network mechanism. A 
cascaded CNN was designed with multiple layers of anisotropic 
and dilated convolution filters for automatic segmentation for 
brain tumors [14]. Mask R-CNN is an important AI-based scheme 
that has been used in automatic nucleus segmentation [15], lung 
nodule detection and segmentation [16], liver segmentation [17], 
automated blood cell counting, and multiorgan segmentation [18]. 

Fig. 5. The matrix of precision, recall, F1, and support values between the normal tympanic membranes (TMs) and the combined group of 
SOM, COM w P, and traumatic TM. (A) Matrix of raw cases sorted between the true and predicted classes. (B) Matrix of proportions for preci-
sion, recall, F1, and support between the normal and the combined groups. The combined group of SOM, COM w P, and traumatic TM had 
the most significant values (precision, 0.950; recall, 0.960) compared to the normal TM group. SOM, otitis media with serous effusion; COM w 
P, chronic otitis media with perforations; Traumatic TM, traumatic drum perforation. 
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In otorhinolaryngological research, a CNN with transfer learn-
ing was used to classify dental diseases [19]. Mask R-CNN mod-
els can also be used in specialized areas, such as oral pathology 
[20]. Because the substructures of the TM can overlap with one 
another and be distorted under disease conditions, such as per-
forations or ear wax, the mask R-CNN was chosen in our study 
as the best deep learning algorithm to enable each substructure 
to be detected separately on otoendoscopic images. This method 
could effectively perform object detection and instance segmen-
tation for five substructures of the TM. 

Nonetheless, a limitation of this study is that clinicians should 
consider factors other than these five substructures (malleus, umbo, 
cone of light, annulus, and pars flaccida) when making a diagno-
sis. The red color of the TM can be noticed as a bulging shape of 
the TM of AOM. The bulging shape of the TM in otitis media chang-
es the central concavity of the membrane, with loss or relocation 
of the cone of light [21]. OME shows small bubbles of fluid be-
hind the TM, with several fluid characteristics. However, light re-
flection and the malleus bone can also be noted. The model de-
veloped in this study discriminated between normal and abnormal 
TMs using only these five substructures as normal TM compo-
nents, not including the color of the TM, possible perforation, and 
otorrhea from the middle ear. We did not include further param-
eters because we did not try to classify the diseases into more 
detailed subgroups. The absence of membrane perforation in SOM 
will affect the judgment of the deep learning model for normal 
TMs. Although the color of the TM is important for deciding 
whether there is fluid behind the membrane, the light through 
otoendoscopy may cause biases in images. Based on this algorithm, 
we will add other parameters to discriminate among various 
diseases in future studies. A collaborative, multi-institutional ap-
proach to obtaining high-quality images would be necessary. 

In light of many previous studies that have reported consider-
able accuracy for the diagnosis of ear diseases [4,22], this study 
demonstrated the usefulness of applying multiple-object detec-
tion and segmentation of five substructures using mask R-CNN 
in otoendoscopic images to discriminate between ear diseases 
and normal TMs. This model would help clinicians by enhancing 
explainability and allow human experts to retrace decisions and 
use their judgment for abnormal eardrums. The proposed model 
may achieve a high accuracy, similar to that of primary clinicians, 
who judge whether patients should be referred to a specialist or 
not. We hope that this automated algorithm will improve the di-
agnostic accuracy for abnormal TMs and facilitate appropriate 
and timely clinical referrals for consultations to improve patient’s 
quality of life in the context of primary care. 

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was re-
ported.

ACKNOWLEDGMENTS

This work was supported by the Technology Innovation Program 
(20010587, Development and Dissemination on National Stan-
dard Reference Data) funded by the Ministry of Trade, Industry 
& Energy (MOTIE, Korea) and by the project Joint Demand 
Technology R&D of Regional SMEs funded by the Korea Minis-
try of SMEs and Startups in 2020 (Project No. S3035723). 

ORCID

Yong Soon Park	 https://orcid.org/0000-0002-8926-9836
Jun Ho Jeon	 https://orcid.org/0000-0003-2612-1081
Tae Hoon Kong	 https://orcid.org/0000-0002-9047-2348
Tae Yun Chung	 https://orcid.org/0000-0002-3445-468X
Young Joon Seo	 https://orcid.org/0000-0002-2839-4676

AUTHOR CONTRIBUTIONS 

Conceptualization: YJS. Data curation: YSP, JHJ, THK. Formal 
analysis: YSP, JHJ, YJS, TYC. Funding acquisition: YJS. Method-
ology: YJS. Project administration: YJS. Visualization: YJS. Re-
sources: YJS. Software: JHJ. Supervision: YJS. Validation: YSP. 
Writing–original draft: all authors. Writing–review & editing: all 
authors. 

SUPPLEMENTARY MATERIALS

Supplementary materials can be found online at https://doi.org/ 
10.21053/ceo.2022.00675.

REFERENCES

1.	Joe H, Seo YJ. A newly designed tympanostomy stent with TiO2 
coating to reduce Pseudomonas aeruginosa biofilm formation. J 
Biomater Appl. 2018 Oct;33(4):599-605.

2.	Lee SH, Ha SM, Jeong MJ, Park DJ, Polo CN, Seo YJ, et al. Effects of 
reactive oxygen species generation induced by Wonju City particu-
late matter on mitochondrial dysfunction in human middle ear cell. 
Environ Sci Pollut Res Int. 2021 Sep;28(35):49244-57.

3.	Demant MN, Jensen RG, Bhutta MF, Laier GH, Lous J, Homoe P. 
Smartphone otoscopy by non-specialist health workers in rural Green-
land: a cross-sectional study. Int J Pediatr Otorhinolaryngol. 2019 
Nov;126:109628.

4.	Cha D, Pae C, Seong SB, Choi JY, Park HJ. Automated diagnosis of 
ear disease using ensemble deep learning with a big otoendoscopy 
image database. EBioMedicine. 2019 Jul;45:606-14.

5.	Zeng X, Jiang Z, Luo W, Li H, Li H, Li G, et al. Efficient and accurate 
identification of ear diseases using an ensemble deep learning mod-
el. Sci Rep. 2021 May;11(1):10839.

6.	Singh A, Sengupta S, Lakshminarayanan V. Explainable deep learn-

https://doi.org/10.21053/ceo.2022.00675
https://doi.org/10.21053/ceo.2022.00675


36    Clinical and Experimental Otorhinolaryngology    Vol. 16, No. 1: 28-36, February 2023

ing models in medical image analysis. J Imaging. 2020 Jun;6(6):52.
7.	Liu X, Song L, Liu S, Zhang Y. A review of deep-learning-based med-

ical image segmentation methods. Sustainability. 2021 Jan;13(3): 
1224.

8.	Rosenfeld RM, Shin JJ, Schwartz SR, Coggins R, Gagnon L, Hackell 
JM, et al. clinical practice guideline: otitis media with effusion (up-
date). Otolaryngol Head Neck Surg. 2016 Feb;154(1 Suppl):S1-41.

9.	Sanna M, Russo A, Caruso A, Taibah A, Piras G. Color atlas of endo-
otoscopy. Thieme; 2017.

10.	Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a data-
base and web-based tool for image annotation. Int J Comput Vis. 
2008 May;77(1):157-73.

11.	He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. International 
Conference on Computer Vision; 2017. p. 2980-8. 

12.	Peng J, Wang Y. Medical image segmentation with limited supervision: 
a review of deep network models. IEEE Access. 2021;9:36827-51.

13.	Aggarwal R, Sounderajah V, Martin G, Ting DS, Karthikesalingam A, 
King D, et al. Diagnostic accuracy of deep learning in medical imag-
ing: a systematic review and meta-analysis. NPJ Digit Med. 2021 
Apr;4(1):65.

14.	Wang G, Li W, Ourselin S, Vercauteren T. Automatic brain tumor seg-
mentation using cascaded anisotropic convolutional neural networks. 
In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M, editors. Brainlesion: 
glioma, multiple sclerosis, stroke and traumatic brain injuries. Pro-
ceedings of the Third International Workshop BrainLes; 2017 Sep 
14; Quebec City (QC). Springer; 2018. p. 10670. 

15.	Liu Y, Zhang P, Song Q, Li A, Zhang P, Gui Z. Automatic segmenta-

tion of cervical nuclei based on deep learning and a conditional ran-
dom field. IEEE Access. 2018;6:53709-21.

16.	Zhao C, Han J, Jia Y, Gou F. Lung nodule detection via 3D U-Net 
and contextual convolutional neural network. In: 2018 International 
Conference on Networking and Network Applications; 2018; Xi’an, 
China. p. 356-61. 

17.	Mulay S, Deepika G, Jeevakala S, Ram K, Sivaprakasam M. Liver 
segmentation from multimodal images using HED-Mask R-CNN. In: 
Li Q, Leahy R, Dong B, Li X, editors. Multiscale multimodal medical 
imaging. Proceedings of the First International Workshop MMMI 
2019; Shenzhen. Springer; 2019. p. 68-75.

18.	Shu JH, Nian FD, Yu MH, Li X. An improved mask R-CNN model 
for multiorgan segmentation. Math Probl Eng. 2020;2020:8351725.

19.	Prajapati SA, Nagaraj R, Mitra S. Classification of dental diseases us-
ing CNN and transfer learning. In: 5th International Symposium on 
Computational and Business Intelligence (ISCBI); 2017; Dubai, Unit-
ed Arab Emirates. p. 70-4.

20.	Anantharaman R, Velazquez M, Lee Y. Utilizing Mask R-CNN for 
detection and segmentation of oral diseases. In: 2018 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM); 2018; 
Madrid, Spain. p. 2197-204,

21.	Myburgh HC, van Zijl WH, Swanepoel D, Hellstrom S, Laurent C. 
Otitis media diagnosis for developing countries using tympanic mem-
brane image-analysis. EBioMedicine. 2016 Feb;5:156-60.

22.	Pichichero ME, Poole MD. Assessing diagnostic accuracy and tym-
panocentesis skills in the management of otitis media. Arch Pediatr 
Adolesc Med. 2001 Oct;155(10):1137-42.


