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ABSTRACT

Background: Long coronavirus disease 2019 (COVID-19) in recovered patients (RPs) is 
gradually recognized by more people. However, how long it will last and the underlining 
mechanism remains unclear.
Methods: We conducted a prospective follow-up study to evaluate the long-term symptoms 
and clinical indices of RPs at one-year after discharge from Union Hospital, Wuhan, China 
between December 2020 to May 2021. We also performed the 16S rRNA sequencing of stool 
samples from RPs and healthy controls (HCs) and analyzed the correlation between the gut 
microbiota and long COVID-19.
Results: In total, 187 RPs were enrolled, among them, 84 (44.9%) RPs reported long 
COVID-19 symptoms at one-year after discharge. The most common long-term symptoms 
were cardiopulmonary symptoms, including chest tightness after activity (39/187, 20.9%), 
palpitations on exercise (27/187, 14.4%), sputum (21/187, 11.2%), cough (15/187, 8.0%) and 
chest pain (13/187, 7.0%), followed by systemic symptoms including fatigue (34/187, 18.2%) 
and myalgia (20/187, 10.7%), and digestive symptoms including constipation (14/187, 7.5%), 
anorexia (13/187, 7.0%), and diarrhea (8/187, 4.3%). Sixty-six (35.9%) RPs presented either 
anxiety or depression (42/187 [22.8%] and 53/187 [28.8%] respectively), and the proportion of 
anxiety or depression in the long symptomatic group was significantly higher than that in the 
asymptomatic group (41/187 [50.6%] vs. 25/187 [24.3%]). Compared with the asymptomatic 
group, scores of all nine 36-Item Short Form General Health Survey domains were lower in 
the symptomatic group (all P < 0.05). One hundred thirty RPs and 32 HCs (non-severe acute 
respiratory syndrome coronavirus 2 infected subjects) performed fecal sample sequencing. 
Compared with HCs, symptomatic RPs had obvious gut microbiota dysbiosis including 
significantly reduced bacterial diversities and lower relative abundance of short-chain fatty 
acids (SCFAs)-producing salutary symbionts such as Eubacterium_hallii_group, Subdoligranulum, 
Ruminococcus, Dorea, Coprococcus, and Eubacterium_ventriosum_group. Meanwhile, the relative 
abundance of Eubacterium_hallii_group, Subdoligranulum, and Ruminococcus showed decreasing 
tendencies between HCs, the asymptomatic group, and the symptomatic group.
Conclusion: This study demonstrated the presence of long COVID-19 which correlates with 
gut microbiota dysbiosis in RPs at one-year after discharge, indicating gut microbiota may 
play an important role in long COVID-19.
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INTRODUCTION

The global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has been ongoing for almost three years, resulting in 
tremendous numbers of infections. However, for infectors, recovering from the acute disease 
is not the end, many of them experience ongoing symptoms. As reported by previous follow-up 
studies of COVID-19,1-3 a portion of recovered patients (RPs) continue to complain of a multitude 
of symptoms for months, and these post COVID-19 symptoms can lead to long-term effects on 
the quality of life and mental health of RPs, which we call long COVID-19.4-6 However, how long 
and why the symptoms persist in long COVID-19 patients are largely unclear.

The gut microbiota which has been widely known to regulate immunity and inflammation 
has a profound impact on human health and disease.7,8 Microbiota dysbiosis may be involved 
in pathogenesis and lead to susceptibility to some diseases.7 Several studies have reported 
gut microbiota alteration in acute and early recovery stage patients with COVID-19.9-11 
Our previous studies also demonstrated gut microbiota dysbiosis including the increase 
of opportunistic pathogens and loss of commensal bacteria that was correlated with the 
symptoms of acute stage and convalescent stage at three-month after discharge.12,13 To 
investigate whether it returns to normal at one-year after discharge and how it acts on long 
COVID-19, in this study, we enrolled a large number of RPs with different disease severities in 
the acute phase and did a comprehensive evaluation of the potential effect of gut microbiota 
on long COVID-19 at one-year after discharge through a series of tests including symptoms, 
health status and psychiatric questionnaires, laboratory tests, pulmonary function tests 
(PFTs), chest computed tomography (CT), 6-minute walk tests (6MWT) and 16S rRNA 
sequencing of stool samples from RPs and healthy controls (HCs).

METHODS

Study design and participants
In this prospective observational follow-up study, we included RPs with COVID-19 at one-
year ± one month after discharge from Wuhan Union Hospital, China, between December 
2020 and May 2021. In the early stage of the pandemic outbreak, Wuhan Union hospital 
was designated as the first-line therapy hospital, and the patients hospitalized all had 
discomfort symptoms and CT abnormalities, so there were no mild patients according to the 
classification of disease severity of World Health Organization COVID-19 guidelines.14 Study 
inclusion and exclusion criteria were described in our previous study.12,15 The SARS-CoV-2 
strain which infected our patients was originally found in the early stage of the pandemic 
outbreak in Wuhan, Hubei, China, and we had sequenced full genomes of the virus which 
we showed in our previous article published in European Respiratory Journal.16 Additionally, all 
patients were unvaccinated.

Evaluation of conditions of RPs at one-year after discharge
RPs were interviewed with symptom questionnaires, 36-Item Short Form General Health 
Survey (SF-36), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS), and 
underwent laboratory tests including complete blood counts, blood biochemistry, C-reactive 
protein (CRP), lymphocyte subset counts, and serum immunoglobulin (Ig) M and IgG 
antibodies, PFTs, chest CT scans, and 6MWT. The specific assessment methods of clinical 
parameters were displayed in Supplementary Data 1.
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Stool samples collection and 16s rRNA sequencing
Fecal samples were collected from RPs and age-, sex-, body mass index (BMI)-, and 
comorbidities-matched HCs. Under the strict epidemic prevention and control measures in 
China including timely closure of cities, nationwide nucleic acid and IgM/IgG antibodies tests 
for SARS-CoV-2, combined with examination of epidemiological histories and symptoms, all 
residents in Wuhan were screened for infection. Subjects with no epidemiological histories, 
negative SARS-CoV-2 nucleic acid and IgM/IgG antibodies were defined to be non-COVID-19 
subjects, and HCs of our study were all non-COVID-19 subjects. Besides, the enrolled RPs and 
HCs were all residents of Wuhan city, and subjects who received antibiotics, probiotics, or 
both within 12 weeks before enrollment were excluded from collecting stool samples. Stool 
specimens (5–10 g) were collected in standard sterile sample pots with an integral spoon 
after defecation, and were processed in the laboratory within 30 minutes after collection 
and stored at −80°C until analysis. Detailed 16s rRNA sequencing process was displayed in 
Supplementary Data 1.

Statistical analysis
Continuous variables were expressed as median (interquartile range) and compared using 
independent t-test, Mann-Whitney U test, one-way analysis of variance, or Kruskal-Wallis test 
when appropriate; categorical variables were expressed as number (%) and compared using χ2 
test or Fisher’s exact test when appropriate. For correlation analysis, Spearman rank test was 
performed. Statistical analysis was performed using SPSS version 25.0 (IBM Corp., Armonk, 
NY, USA). A two-sided P value of < 0.05 was considered statistically significant.

Ethics statement
The study was approved by the Ethics Committee of the Wuhan Union Hospital (2020-0149-
02). All participants provided written informed consent prior to participation.

RESULTS

Demographics and clinical characteristics
One hundred eighty-seven RPs were recruited in our study (a detailed flowchart was 
presented in Supplementary Fig. 1). There were 91 (48.7%) men and the median age was 
58.00 (48.00–66.00) years.

The common comorbidities were hypertension (34.8%), followed by chronic pulmonary 
diseases (18.2%), chronic digestive system diseases (18.2%), hyperlipidemia (16.0%) and 
diabetes (14.4%). There were 105 (56.1%) moderate, 62 (33.2%) severe, and 20 (10.7%) 
critical patients. During hospitalization, 3.7% RPs were admitted to intensive care unit, 
78.6% RPs were given antibiotic therapy, and the median hospital stay days were 27.00 
(18.00–39.00) days.

Long-term symptoms, physical and psychiatric functions, laboratory 
findings, lung functions and lung CT of RPs at one-year after discharge
At one-year after discharge, 84 (44.9%) RPs reported one or more long COVID-19 symptoms. 
The most common long-term symptoms were cardiopulmonary symptoms, including chest 
tightness after activity (39/187, 20.9%), palpitations on exercise (27/187, 14.4%), sputum 
(21/187, 11.2%), cough (15/187, 8.0%) and chest pain (13/187, 7.0%), followed by systemic 
symptoms including fatigue (34/187, 18.2%) and myalgia (20/187, 10.7%), and digestive 
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symptoms including constipation (14/187, 7.5%), anorexia (13/187, 7.0%), and diarrhea 
(8/187, 4.3%) (Table 1). There were no differences between the symptomatic group and the 
asymptomatic group in terms of sex, age, BMI, comorbidities, and diseases severity in acute 
infection stage (Table 1). 66 (35.9%) RPs presented either anxiety or depression (42/187 
[22.8%] and 53/187 [28.8%], respectively), and the proportion of anxiety or depression 
in the symptomatic group was significantly higher than that in the asymptomatic group 
(41/187 [50.6%] vs. 25/187 [24.3%], P < 0.001). Scores of all the SF-36 domains except for 
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Table 1. Demographics and clinical characteristics of RPs at one-year after discharge
Characteristics Total  

(n = 187)
Symptomatic group  

(n = 84)
Asymptomatic group  

(n = 103)
P value

Sex 0.084
Male 91 (48.7) 35 (41.7) 56 (54.4)
Female 96 (51.3) 49 (58.3) 47 (45.6)

Age, yr 58.00 (48.00–66.00) 57.00 (45.00–67.00) 59.00 (48.00–66.00) 0.729
BMI, kg/m2 25.39 (23.31–27.59) 25.27 (23.33–28.00) 25.82 (23.31–27.47) 0.699
Smokers 34 (18.2) 12 (14.3) 22 (21.4) 0.212
Comorbidities

Hypertension 65 (34.8) 24 (28.6) 41 (39.8) 0.109
Diabetes 27 (14.4) 15 (17.9) 12 (11.7) 0.230
Coronary heart disease 16 (8.6) 6 (7.1) 10 (9.7) 0.533
Chronic pulmonary diseasesa 34 (18.2) 13 (15.5) 21 (20.4) 0.386
Chronic digestive system diseasesb 34 (18.2) 18 (21.4) 16 (15.5) 0.299
Hyperlipidemia 30 (16.0) 12 (14.3) 18 (17.5) 0.554
Hypothyroidism 5 (2.7) 3 (3.6) 2 (1.9) 0.659
Chronic hepatitis B 3 (1.6) 1 (1.2) 1 (1.9) 1.000
Cancer 2 (1.1) 0 (0.0) 2 (1.9) 0.503
Chronic kidney disease 2 (1.1) 2 (2.4) 0 (0.0) 0.200

Information during hospitalization
Disease severity status 0.350

Moderate 105 (56.1) 45 (53.6) 60 (58.3)
Severe 62 (33.2) 32 (38.1) 30 (29.1)
Critical 20 (10.7) 7 (8.3) 13 (12.6)

Highest oxygen support mode 0.783
No oxygen 36 (19.3) 18 (21.4) 18 (17.5)
Nasal catheter or mask 123 (65.8) 54 (64.3) 69 (67.0)
HFNC or NIV or IMV or ECMO 28 (15.0) 12 (14.3) 16 (15.5)

ICU admission 7 (3.7) 4 (4.8) 3 (2.9) 0.703
Antibiotic therapy 147 (78.6) 71 (84.5) 76 (73.8) 0.075
Length of hospital stay, days 27.00 (18.00–39.00) 25.00 (17.00–40.00) 27.00 (20.00–38.50) 0.410

Symptoms after discharge
Any one of the following 84 (44.9) - - -
Cardiopulmonary symptoms

Chest tightness after activity 39 (20.9) - - -
Palpitation on exercise 27 (14.4) - - -
Sputum 21 (11.2) - - -
Cough 15 (8.0) - - -
Chest pain 13 (7.0) - - -

Digestive symptoms
Constipation 14 (7.5) - - -
Anorexia 13 (7.0) - - -
Diarrhea 8 (4.3) - - -

Systemic symptoms
Fatigue 34 (18.2) - - -
Myalgia 20 (10.7) - - -

Data are given as median (interquartile range) or number (%).
RPs = recovered patients, BMI = body mass index, HFNC = high-flow nasal cannula for oxygen therapy, NIV = non-invasive ventilation, IMV = invasive mechanical 
ventilation, ECMO = extracorporeal membrane oxygenation, ICU = intensive care unit.
aChronic pulmonary diseases include chronic bronchitis, emphysema, chronic obstructive pulmonary disease, tuberculosis, and bronchiectasis, etc.
bChronic digestive system diseases include chronic gastritis and chronic ulcer, etc.



the role-emotional domain of RPs were lower than the norm, especially that of general 
health and healthy transition domains, and the scores of all domains in the symptomatic 
group were lower compared to the asymptomatic group (all P < 0.05). The medians of all the 
laboratory findings including lymphocyte subset counts of RPs were within the normal range 
at one-year after discharge, while in the symptomatic group, the medians of CD3+ T cells and 
CD4+ T cells were lower than that in the asymptomatic group (Table 2). The 99.4% RPs had 
positive SARS-CoV-2 IgG antibodies at one-year after discharge, while 11.8% still had positive 
SARS-CoV-2 IgM (Supplementary Table 1). One hundred seventy-eight participants finished 
PFTs. Most patients had anomalies of diffusion capacity, with a reduced carbon monoxide 
diffusing capacity (DLCO)%pred in 43.2% RPs. Forced expiratory volume in 1 second 
(FEV1)%pred, forced vital capacity (FVC)%pred, FEV1/FVC%pred, vital capacity (VC)%pred, 
total lung capacity (TLC)%pred, residual volume (RV)%pred, and functional residual capacity 
(FRC)%pred were not within normal ranges in 9.6%, 4.5%, 16.3%, 5.6%, 19.5%, 39.6% and 
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Table 2. Anxiety or depression, SF-36, and laboratory findings of RPs at one-year after discharge
Variables Total Symptomatic group Asymptomatic group P value
Anxiety or depression status (n = 184, 81/103)

Either anxiety or depression 66 (35.9) 41 (50.6) 25 (24.3) < 0.001
Anxiety 42 (22.8) 30 (37.0) 12 (11.7) < 0.001
Depression 53 (28.8) 32 (39.5) 21 (20.4) 0.004

mMRC dyspnea scale 0.001
0 86 (46.0) 26 (31.0) 60 (58.3)
1–2 93 (49.7) 54 (64.3) 39 (37.9)
3–4 8 (4.3) 4 (4.8) 4 (4.8)

SF-36 (n = 183, 80/103)
PF 85.00 (70.00–95.00) 75.00 (51.25–85.00) 90.00 (80.00–95.00) < 0.001
RP 100.00 (50.00–100.00) 75.00 (0.00–100.00) 100.00 (75.00–100.00). < 0.001
BP 84.00 (74.00–100.00) 74.00 (64.50–87.50) 84.00 (74.00–100.00) < 0.001
GH 55.00 (40.00–75.00) 40.00 (30.00–60.00) 70.00 (50.00–85.00) < 0.001
VT 75.00 (60.00–85.00) 65.00 (50.00–75.00) 80.00 (70.00–90.00) < 0.001
SF 87.50 (62.50–100.00) 75.00 (50.00–87.50) 100.00 (75.00–100.00) < 0.001
RE 100.00 (33.30–100.00) 66.70 (0.00–100.00) 100.00 (66.70–100.00) < 0.001
MH 72.00 (60.00–80.00) 68.00 (52.00–75.75) 76.00 (68.00–88.00) < 0.001
HT 50.00 (25.00–75.00) 25.00 (25.00–75.00) 50.00 (25.00–75.00) < 0.001

Laboratory findings (n = 176, 100/76)
WBC, G/L 6.23 (5.25–7.19) 6.09 (5.20–7.40) 6.31 (5.26–7.06) 0.911
Neutrophils, G/L 3.53 (2.84–4.23) 3.63 (2.96–4.17) 3.49 (2.74–4.31) 0.544
Lymphocytes, G/L 2.02 (1.68–2.45) 1.98 (1.66–2.52) 2.05 (1.70–2.44) 0.682
NLR 1.64 (1.32–2.22) 1.63 (1.35–2.26) 1.66 (1.27–2.20) 0.482
Monocyte, G/L 0.38 (0.32–0.43) 0.38 (0.32–0.43) 0.37 (0.31–0.43) 0.670
ALT, U/L 23.50 (16.00–31.00) 25.00 (17.25–40.75) 21.50 (16.00–29.75) 0.035
AST, U/L 25.00 (21.00–29.00) 26.00 (21.00–30.00) 24.00 (21.00–28.00) 0.167
TBIL, µmol/L (n = 102, 43/59) 14.55 (11.00–18.75) 14.40 (10.20–18.20) 14.60 (11.20–19.70) 0.205
Scr, µmol/L 67.85 (55.95–79.98) 66.40 (56.50–82.15) 68.10 (54.26–79.85) 0.979
BUN, mmol/L 5.34 (4.69–6.23) 5.27 (4.67–6.27) 5.36 (4.71–6.21) 0.908
GFR, mL/min/1.73m2 (n = 102, 43/59) 94.72 (79.20–104.96) 94.57 (75.71–104.52) 96.30 (82.02–105.83) 0.730
CRP, mg/L (n= 146, 63/83) 4.93 (2.60–5.32) 4.94 (2.90–5.32) 4.87 (2.55–5.29) 0.498

Percentages of lymphocyte subset count (n = 40, 18/22)
CD3+ T cells 64.00 (55.18–72.88) 57.40 (47.98–71.38) 68.15 (59.80–76.25) 0.036
CD4+ T cells 33.40 (25.75–39.30) 28.20 (24.05–35.60) 35.75 (30.13–40.60) 0.040
CD8+ T cells 21.65 (20.53–28.05) 22.35 (17.35–26.08) 21.65 (20.80–29.40) 0.422
B cells 10.15 (7.43–14.43) 10.35 (8.23–15.30) 9.95 (7.38–12.88) 0.488
NK cells 20.40 (15.73–34.15) 27.85 (16.48–38.05) 19.40 (14.65–25.10) 0.068

Data are given as median (interquartile range) or number (%).
SF-36 = 36-Item Short Form General Health Survey, RPs = recovered patients, COVID-19 = coronavirus disease 2019, mMRC dyspnea scale = modified medical 
research council dyspnea scale, PF = physical functioning, BP = bodily pain, RP = role physical, GH = general health, VT = vitality, SF = social functioning, RE = 
role-emotional, MH = mental health, HT = healthy transition, WBC = white blood cells, NLR = neutrophil/lymphocyte ratio, ALT = alanine aminotransferase, AST = 
aspartate aminotransferase, TBIL = total bilirubin, Scr = serum creatinine, BUN = blood urea nitrogen, GFR = glomerular filtration rate, CRP = C-reactive protein, 
NK = natural killer.



30.2% RPs, respectively. However, there were no significant differences in all parameters of 
lung functions between the symptomatic group and the asymptomatic group. The median 
of 6-minute walk distance (6MWD) of RPs was 477.00 (434.25–537.00) m with no statistical 
difference between the symptomatic group and the asymptomatic group. 185 subjects 
completed lung CT. The proportions of normal, ground-glass opacity (GGO), fibrosis and 
GGO + fibrosis were 48.1%, 12.4%, 19.5%, and 20.0% respectively, and the median of CT 
score was 1.00 (0.00–6.00). The symptomatic group and the asymptomatic group had 
similar CT image proportions and CT scores (Supplementary Table 2).

Correlations between long COVID-19 symptoms and laboratory findings, lung 
functions, total CT scores as well as 6MWD
The white blood cells and neutrophils were positively correlated with diarrhea (R = 0.205, P 
= 0.006; R = 0.183, P = 0.015). The lymphocytes were negatively correlated with palpitation 
(R = −0.158, P = 0.036) and fatigue (R = −0.194, P = 0.010). Alanine aminotransferase (ALT) 
was positively correlated with palpitation (R = 0.174, P = 0.021). Total bilirubin (TBIL) 
was negatively correlated with constipation (R = −0.200, P = 0.030). CRP was positively 
correlated with chest tightness (R = 0.217, P = 0.008), chest pain (R = 0.163, P = 0.049) and 
myalgia (R = 0.247, P = 0.003). CD3+ T cells and CD4+ T cells were negatively correlated with 
“any symptoms” (R = 0.335, P = 0.034; R = 0.329, P = 0.038). CD8+ T cells were negatively 
correlated with palpitation (R = −0.341, P = 0.031). FEV1%pred was negatively correlated with 
sputum (R = −0.153, P = 0.042). DLCO%pred was negatively correlated with chest tightness 
(R = −0.218, P = 0.004), palpitation (R = −0.188, P = 0.015), anorexia (R = −0.196, P = 0.011), 
and fatigue (R = −0.262, P = 0.001). TLC%pred was negatively correlated with chest tightness 
(R = −0.152, P = 0.049), chest pain (R = −0.176, P = 0.022), anorexia (R = -0.229, P = 0.003), 
fatigue (R = −0.178, P = 0.020) and myalgia (R = −0.178, P = 0.021). 6MWD was negatively 
correlated with myalgia (R = −0.210, P = 0.006). Correlations analysis results are shown in 
Fig. 1 and Supplementary Table 3.

Gut microbiota composition and alteration among the symptomatic group, 
the asymptomatic group of RPs and HCs
Fifty-five symptomatic RPs, 75 asymptomatic RPs, and 32 age, sex, BMI and comorbidities 
matched HCs performed gut microbiota analysis (Table 3). After merging and filtering, 
8,023,050 high-quality sequences were acquired from 165 fecal samples by 16s rRNA 
sequencing with an average sequence number of 49,524 per sample. As estimated by the 
Sobs and Shannon index, the community richness and diversity of gut microbiota in the 
symptomatic RPs were significant decreased than that in HCs (P = 0.002 and P = 0.003, 
respectively) with increasing tendencies between the symptomatic group, the asymptomatic 
group, and HCs (Fig. 2A and B). The number of operational taxonomic units (OTUs) in the 
symptomatic group, the asymptomatic group, and HCs were 881, 943, and 855 respectively, 
and 638 OTUs overlapped among the three groups (Fig. 2C). Principal coordinate analysis 
(PCoA) of Bray-Curtis distances was performed to display microbiome space between 
samples, and the result showed that there were significant differences in gut microbial 
communities among the three groups (P = 0.005), especially between the symptomatic 
group and HCs (P = 0.004) (Fig. 2D). To investigate changes in the gut microbiota of RPs, we 
subsequently assessed relative abundance at the phylum, class, family, and genus levels. At 
the phylum level, Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota were the 
most dominant phyla in all three groups. Firmicutes was less abundant, but Actinobacteriota 
and Proteobacteria were more abundant in the symptomatic RPs compared to HCs although 
the differences were not significant (Fig. 3A). At the class level, the relative abundance 
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of Clostridia and Coriobacteriia were significantly decreased in the symptomatic group 
of RPs than HCs (P = 0.008 and P = 0.002, respectively), while Bacilli, Actinobacteria, 
and Gammaproteobacteria were enriched in the symptomatic group than HCs although 
significant differences were not detected (Fig. 3B). In the class Clostridia of the phylum 
Firmicutes, seven genera including Eubacterium_hallii_group, Agathobacter, Subdoligranulum 
belonging to Oscillospiraceae family, Ruminococcus belonging to Ruminococcaceae family, Dorea, 
Coprococcus, and Eubacterium_ventriosum_group, which were almost short-chain fatty acids 
(SCFAs)-producing symbionts, significantly depleted in the symptomatic group than HCs, 
and the relative abundance of Eubacterium_hallii_group, Subdoligranulum, and Ruminococcus 
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*P < 0.05, **P < 0.01.
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Table 3. Characteristics of matched RPs and HCs of whom the stool samples performed gut microbiota analysis
Characteristics RPs HCs (n = 32) P value

Symptomatic group (n = 55) Asymptomatic group (n = 75)
Sex 0.089

Male 23 (41.8) 44 (58.7) 13 (40.6)
Female 32 (58.2) 31 (41.3) 19 (59.4)

Age, yr 57.00 (53.00–68.00) 62.00 (51.00–67.00) 57.5 (51.25–64.80) 0.599
BMI, kg/m2 25.10 (23.37–26.87) 25.39 (23.18–27.14) 24.05 (22.86–26.00) 0.143
Comorbidities

Hypertension 16 (29.1) 31 (41.3) 7 (21.9) 0.106
Chronic pulmonary diseasesa 10 (18.2) 16 (21.3) 3 (9.4) 0.335
Chronic digestive system diseasesb 12 (21.8) 13 (17.3) 4 (12.5) 0.542
Hyperlipidemia 8 (14.5) 15 (20.0) 4 (12.5) 0.555
Diabetes 10 (18.2) 11 (14.7) 4 (12.5) 0.780
Coronary heart disease 4 (7.3) 9 (12.0) 2 (6.3) 0.635
Hypothyroidism 2 (3.6) 3 (4.0) 3 (9.4) 0.559
Chronic hepatitis B 0 (0.0) 1 (1.3) 1 (3.1) 0.471
Cancer 0 (0.0) 1 (1.3) 0 (0.0) 1.000
Chronic kidney disease 0 (0.0) 0 (0.0) 0 (0.0) -

Data are given as number (%) or median (interquartile range).
RPs = recovered patients, HCs = healthy controls, BMI = body mass index.
aChronic pulmonary diseases include chronic bronchitis, emphysema, COPD, tuberculosis, and bronchiectasis, etc.
bChronic digestive system diseases include chronic gastritis and chronic ulcer, etc.
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showed decreasing tendencies between HCs, the asymptomatic group, and the symptomatic 
group. In the class Bacilli of the phylum Firmicutes, Veillonella genus belonging to 
Veillonellaceae family was enriched in the symptomatic RPs (Fig. 4A and B).

Correlations between altered gut microbiota and laboratory findings
We found that the relative abundance of Eubacterium_hallii_group was positively correlated 
with lymphocytes (R = 0.224, P = 0.006), Agathobacter was positively correlated with TBIL (R = 
0.210, P = 0.048), and negatively correlated with CRP (R = −0.238, P = 0.008). Subdoligranulum 
was positively correlated with lymphocytes (R = 0.169, P = 0.040), TBIL (R = 0.219, P = 0.039), 
and B cells (R = 0.357, P = 0.036). Ruminococcus was positively correlated with lymphocytes (R 
= 0.202, P = 0.014), and negatively correlated with CRP (R = −0.215, P = 0.017) and natural 
killer (NK) cells (R = −0.348, P = 0.040). Dorea was negatively correlated with neutrophils (R = 
−0.188, P = 0.022). Eubacterium_ventriosum_group was positively correlated with lymphocytes 
(R = 0.207, P = 0.012), and negatively correlated with ALT (R = −0.182, P = 0.027) and NK cells 
(R = −0.411, P = 0.014). Erysipelatoclostridium was positively correlated with CRP (R = 0.259, P = 
0.004). Veillonella was negatively correlated with lymphocytes (R = −0.184, P = 0.025) (Fig. 5, 
Supplementary Table 4).
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DISCUSSION

In this work, we evaluated the long-term symptoms and clinical indices of RPs at one-year 
after discharge and compared the differences between RPs with long-term symptoms and 
those without. Simultaneously, we explored the differences in the gut microbiota between the 
symptomatic RPs and the asymptomatic RPs, as well as HCs, and analyzed the associations of 
altered gut microbiota with clinical parameters. We found that long-term symptoms, physical 
function impairment, psychiatric disorders, lung functions reduction, and radiographic 
abnormalities persisted to 12 months in a proportion of individuals. The differences between 
the symptomatic RPs and asymptomatic RPs were mainly in anxiety or depression, SF-36 
domains and CD3+ T cells and CD4+ T cells. The gut microbiota of RPs still did not restore 
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at one-year after discharge, mainly manifested as lower bacterial diversity and significantly 
reduced SCFAs-producing symbionts, especially in the symptomatic group, and altered gut 
microbiota was significantly correlated with clinical indices of the recovery stage.

In our study, the participants enrolled were inpatients with relatively serious conditions at 
acute phase during the early stage of the pandemic. According to our results, 44.9% RPs 
still had one or more symptoms including chest tightness after activity, chronic fatigue, 
palpitation on exercise, sputum, myalgia, and so on at one-year after discharge, and many 
of the symptoms tended to become chronic which reduced quality of daily life and had a 
psychological impact on RPs. The largest follow-up study of COVID-19 published in the 
Lancet suggested that 4.5% and 10.8% of people, who were infected with delta and omicron 
variants respectively, experienced long COVID-19,17 but our patients were infected with the 
earliest SARS-CoV-2 which was more virulent and with relatively serious conditions in acute 
stage, thus, there were more patients experiencing long COVID-19 in our study. We found 
that there was persistent impairment of the health-related quality of life of RPs and 35.9% 
RPs were assessed as having anxiety or depression. The results were similar with previous 
follow-up research on SARS that reported decreased health-related quality of life and 
reduced mental health at one-year discharge.18-20 A study of SARS had observed that even 
after 2–4 years of discharge, over 39% of the respondents had depression issues, 40.3% had 
chronic fatigue problems, and 27.1% met the modified 1994 Centers for Disease Control and 
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Prevention criteria for chronic fatigue syndrome.21 These results indicate that long COVID-19 
deserves constant attention.

We explored the composition and alteration of gut microbiota in RPs with long-term 
symptoms and those without, as well as HCs. The results suggested that RPs, especially the 
symptomatic group, had lower bacterial diversity, and depleted SCFAs-producing symbiotes 
than HCs. Gu et al.22 found that acutely infected COVID-19 patients had significantly 
reduced bacterial diversity, and the abundance of the Ruminococcaceae family and several 
genera from the Lachnospiraceae family (such as Agathobacter, unclassified Lachnospiraceae, 
and Eubacterium_hallii_group) was dramatically reduced compared with HCs. Zuo et al.23 
showed that Eubacterium rectale, Ruminococcus obeum, and Dorea formicigenerans were significantly 
depleted in COVID-19 patients. These data were consistent with our results, but Gu et al. 
also suggested that COVID-19 patients had an increased relative abundance of opportunistic 
pathogens, including Streptococcus, Rothia, Veillonella, Erysipelatoclostridium, and Actinomyces.22 
Our previous work also indicated an increase in opportunistic pathogens and inflammation-
related pathogens, including Escherichia, Intestinibacter, Clostridium, and Flavonifractor in RPs at 
three-month after discharge.12 However, in this study, we only found Veillonella was enriched 
in RPs, and the enrichment of other opportunistic pathogens was not presented in our data, 
indicating the relative abundance of these taxa gradually reduced or returned to normal at a 
long-term time after discharge.

In fact, we had also analyzed the gut microbiota of healthcare workers with COVID-19 
in the acute phase and three-month discharge, and the results had been issued in other 
journals.12,13 Results showed that the alpha diversities were all lower, and the relative 
abundance of beneficial commensals mainly SCFAs-producing strains were decreased 
compared with HCs, which were consistent with the results in this study. However, due to 
the strict prevention and control of the epidemic situation and policies, we were unable to 
collect stool samples from a large number of relatively severe patients during the acute phase. 
In this study, we enrolled patients with different disease severities in the acute phase, and the 
number of subjects was larger, so it was more representative. Our work indicated that the gut 
microbiota dysbiosis persisted even at one-year after discharge.

The gut microbiota is vital for the development of the human immune system and 
homeostasis, and it has a profound impact on human health and disease.24,25 A healthy 
intestinal microbiota maintains homeostatic immune responses through the exposure 
of structural ligands (for example, lipopolysaccharide or peptidoglycan) and secreted 
metabolites (for example, SCFAs). Dysbiosis of the gut microbiota can cause systemic 
inflammation and an outgrowth of opportunistic pathogens, which can lead to chronic 
inflammation at distal sites. The gut microbiota can implicate in the pathogenesis of lung 
injury via several potential mechanisms, including direct translocation of bacteria from 
the gut to the lung, immune modulation effects of microbes-related metabolites, and so 
on, which we call the link as gut-lung axis.7,26,27 Although COVID-19 mainly involves the 
lungs, the gut microbiota may play an important role in the rehabilitation process through 
the gut-lung axis. In addition, a lot of investigations have reported gut microbiota dysbiosis 
in subjects with mental disorders including anxiety and depression,28,29 and our results 
showed that the symptomatic RPs had increased proportions of anxiety or depression 
which indicated the gut microbiota may have an influence on anxiety or depression of long 
COVID-19 patients through the gut-brain axis.30
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In our study, the SCFAs-producing salutary commensal bacteria were dramatically reduced 
in RPs, including Eubacterium_hallii_group, Subdoligranulum, Ruminococcus, Dorea, Coprococcus, 
and Eubacterium_ventriosum_group.31-34 SCFAs, as paramount microbiota metabolites of the 
intestine lumen, play an important role in the modulation of the immune system not only 
for the intestine but also for distal sites or organs,35,36 including influencing pulmonary 
diseases or psychiatric illness through the gut-lung axis or gut-brain axis. Many studies 
have demonstrated that SCFAs are involved in the lung inflammation of influenza, bacterial 
pneumonia, chronic obstructive pulmonary disease, and asthma.37-41 It was reported that 
SCFAs enhanced antiviral CD8+ T-cells and macrophages to protect against respiratory 
infection.42-45 Tian et al.39 demonstrated that increased production of propionate is 
associated with reduced lung inflammation through animal experiments. In addition, one 
study suggested that propionate can attenuate the lipopolysaccharide-induced epithelial-
mesenchymal transition and even fibrosis.46 There were also studies reported that SCFAs 
especially butyrate in the central nervous system can affect the function of hippocampus and 
promote the expression of brain-derived neurotrophic factor, which has been shown to have 
antidepressant-like effects in animal models.47,48 Taken together, we posit that significantly 
reduced levels of SCFAs and SCFAs-producing commensal bacteria may delay rehabilitation 
of pulmonary and psychiatric symptoms and cause long COVID-19.

Our study has several limitations. First, this was a single-center study, but the number of 
participants was enough and the sample quality was high. To our knowledge, our study has 
the largest number of participants and was the first study investigating the gut microbiota 
of RPs with COVID-19 at one-year after discharge. Second, this was a cross-sectional study. 
We did not conduct dynamic monitoring of RPs. Next, we will continue paying attention to 
the convalescence and gut microbiota of COVID-19 RPs for a longer time. Third, lifestyle 
and diet may affect gut microbiota, and we did not have detailed information on them, 
but all participants in the study came from Hubei province and shared similar diet habits 
and lifestyles (mainly wheat flour, rice, pork, eggs, vegetables), which can largely reduce 
the impact of diet on outcomes. Fourth, while we discussed the potential roles of aberrant 
bacteria, the deep mechanism of association between gut microbiota alteration and SARS-
CoV-2 infection and convalescence was not identified. In the future study, multi-omics 
analysis beyond 16S rRNA sequencing can be a good way to investigate the deep-seated 
mechanism of the gut-lung axis.

In conclusion, this study provides evidence for the presence of long COVID-19 in RPs at one-
year after discharge, and gut microbiota may play an important role in long COVID-19.
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