
1/11https://jkms.org

ABSTRACT

Background: This paper proposes a novel method for automatically identifying sleep apnea (SA) 
severity based on deep learning from a short-term normal electrocardiography (ECG) signal.
Methods: A convolutional neural network (CNN) was used as an identification model and 
implemented using a one-dimensional convolutional, pooling, and fully connected layer. 
An optimal architecture is incorporated into the CNN model for the precise identification of 
SA severity. A total of 144 subjects were studied. The nocturnal single-lead ECG signal was 
collected, and the short-term normal ECG was extracted from them. The short-term normal 
ECG was segmented for a duration of 30 seconds and divided into two datasets for training 
and evaluation. The training set consists of 82,952 segments (66,360 training set, 16,592 
validation set) from 117 subjects, while the test set has 20,738 segments from 27 subjects.
Results: F1-score of 98.0% was obtained from the test set. Mild and moderate SA can be 
identified with an accuracy of 99.0%.
Conclusion: The results showed the possibility of automatically identifying SA severity based 
on a short-term normal ECG signal.

Keywords: Automatic Prediction; Sleep Apnea; Short-term Normal ECG;  
Convolutional Neural Network; Deep Learning

INTRODUCTION

Sleep apnea (SA) is one of the most common sleep disorders, characterized by the presence 
of repeated apneas and hypopneas. SA is a respiratory event annotated by a complete 
cessation of airflow (i.e., decreasing amplitude of at least 90%) for at least 10 seconds and 
continued respiratory effort. A hypopnea is similar to an SA, although the decrease in airflow 
amplitude is 30%–90% during sleep.1

Healthy and adequate sleep is essential for people of all ages, because sleep is a basic 
human physiological need that occupies one-third of a person's life. During sleep, the brain 
organizes learned contents, eliminates toxins, and the body recharges itself.2 Therefore, the 
quality and quantity of sleep are very important for maintaining good health. However, SA 
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causes oxygen deficiency and disrupts the normal structure of the sleep.3 It is regarded as the 
main factor influencing sleep fragmentation and sleep efficiency. Furthermore, SA can lead 
to a variety of illnesses, including fatigue,4 headache,5 cardiovascular disease,6 and decreases 
in cognitive function7 and immunity.8 Accurate and advance prediction of SA is necessary for 
people with diagnosed or undiagnosed sleep-related breathing disorders.9,10

Nocturnal laboratory-based polysomnography (PSG) is commonly used as a tool to 
diagnose sleep disorders and to prescribe sleep medication. PSG is a multi-signal recorded 
measurement of the brain, cardiopulmonary, and muscle activity via electroencephalography 
(EEG), electrooculography (EOG), electrocardiography (ECG), respiratory, pulse oximetry 
(SpO2), and electromyography (EMG). PSG can provide an objective assessment of sleep 
disorders, including details on airflow, respiratory effort, and oximetry, and can be used 
to predict SA.11 However, PSG is not user-friendly; inconvenience arises from the number 
of sensors required for multichannel recordings. PSG is also costly and requires trained 
attendants. Furthermore, manual interpretation of PSG recordings is cumbersome and labor-
intensive, requiring licensed technicians.

ECG has been used as an alternative physiological signal source for detecting or classifying 
SA events since the early 2000s.12 SA directly affects ECG through the response of the 
sympathetic nervous system during sleep. Because of sleep apnea there are some ECG 
morphology differences including very small variations in amplitude of the R peaks and 
baseline fluctuation due to respiration, and inter-beat interval decreasing.13 In addition, 
ECG is relatively easy to measure and can provide vital signs including heartbeat, beat-to-
beat intervals, QRS complex, and ECG-derived respiration. Therefore, ECG, especially the 
single-lead signal, has been used in many studies for automatically detecting, classifying, and 
screening SA events based on machine learning techniques.

To date, studies have focused on finding and extracting the most informative features 
from the ECG signal to achieve better performance. For instance, Mendez et al.14,15 have 
proposed a method based on nonlinear and frequency domain analyses for SA screening. 
They extracted 20 features and applied 10 of them to four different classifiers. Chen et 
al.16 proposed a systematic route of the conventional signal processing algorithm for the 
automatic screening of SA events. This method requires only beat-to-beat intervals derived 
from the ECG signals of suspected SA patients. In addition, these studies not only analyzed 
and extracted features from normal ECG but apneic ECG signals also. These methods require 
the applied ECG signal to be only recorded at night. Additionally, the RR interval and heart 
rate variability (HRV) are derived from the raw ECG signal for at least 5 minutes.

The convolutional neural network (CNN) is one of the most common neural networks derived 
from the cognitive model of human vision.17 Recently, the CNN has drawn extensive interest 
because of its demonstrated efficiency as a detector and classifier in the fields of image 
recognition,18 computer vision,19 and biomedicine.20 Several studies on the detection of SA 
events or the classification of apnea and hypopnea events have been conducted using the 
CNN model from a single-lead ECG. For instance, Dey et al.21 demonstrated a deep learning 
framework for SA detection based on the CNN algorithm using a single-lead ECG signal. In 
our previous study, we designed a CNN model to classify multiclass SA events such as apnea 
and hypopnea from a single-lead ECG.22 In these studies, the apneic segment or abnormal 
segments of the ECG signal were used for the automatic detection and classification of SA.
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In this paper, we propose a novel method of automatically identifying SA severity based on a 
short-term normal ECG signal using a deep learning model. To this end, a CNN model with 
a deep structure was designed for identifying the severity of SA using the short-term normal 
ECG. Because of its automatic, high-dimension feature extraction, a deep CNN was selected 
as the automatic identifier for SA severity from a short-term normal ECG signal. Finally, 
we trained and evaluated the designed CNN model by using the diagnostic nocturnal PSG 
dataset containing the training and test sets.

METHODS

The proposed methodology is composed of four main parts: the short-term normal ECG 
datasets, input signal, deep learning model, and outputs (Fig. 1). A detailed description of 
each part is presented in subsequent sections.

Study population
A total of 144 subjects enrolled in the study: fifty-two in a normal group (male: 25, female: 
27) and ninety-two in the OSA group (mild: 22, moderate: 38, and severe: 32) (Table 1). All 
subjects underwent an overnight PSG using a polysomnographic amplifier (Embla N7000; 
Natus, Kópavogur, Iceland). The test involved EEG, EOG, EMG, ECG, SpO2, chest and 
abdomen respiration, nasal pressure, airflow, and snoring recordings. The average recording 
time was 7.2 hours, and mean sleep time was 5.7 hours.

The apnea-hypopnea index (AHI) is compiled based on the averaged frequency of apnea 
and hypopnea per hour of sleep. In accordance with the criteria proposed by the American 
Academy of Sleep Medicine (AASM),23 all sleep events from the PSG recordings were 
manually annotated by licensed and experienced technicians.
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Fig. 1. Proposed method for SA severity identification based on deep learning using a short-term normal ECG. It consists of four main parts: (A) short-term 
normal ECG datasets, (B) input signal, (C) deep learning model, and (D) outputs. 
SA = sleep apnea, ECG = electroencephalography, PSG = polysomnography, ReLU = rectified linear unit.
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Data processing and ECG dataset
The short-term normal ECG datasets (Table 2) were extracted from the study population 
presented in Table 1. All participants were randomly divided into two subject groups for the 
training and test sets. A total of 103,690 segments for the short-term normal ECG dataset of 
144 participants was obtained to train and evaluate the proposed method. The training set 
consisted of 82,952 segments (66,360 training set, 16,592 validation set) from 117 subjects, 
while the test set had 20,738 segments from 27 subjects (Fig. 1A).

The short-term normal ECG segment was used as the input data. The ECG signal was divided 
into 30 seconds segments, and the corresponding annotations of the sleep apnea episodes 
were stored together (Fig. 1B). Because the single-lead ECG signal was recorded at a sampling 
rate of 200 Hz, each segment consisted of 6,000 samples per segment.

Deep learning model
The CNN is a type of deep learning technique that can extract high-dimensional features 
from various types of datasets; it demonstrates excellent performance in both learning and 
testing stages.24 The basic structure of the CNN is a convolutional layer, a pooling layer, 
and a fully-connected layer. The convolution layer is used for extracting various feature 
maps from the input signal. The pooling layer performs the logical functions to increase 
the discriminative power of features and reduce the data dimensions. Finally, the fully-
connected layer is the stage at which the CNN completes the learning process, and the final 
discrimination of the input data is determined. It has a structure in which all the neurons 
of the neural network are completely connected.17 This layer discriminates among the data 
based on the probability values obtained through the softmax function. The designed deep 
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Table 1. Participants' information in detail
Measures Normal Mild Moderate Severe Total
Total

Subjects (female:male) 52 (27:25) 22 (7:15) 38 (7:31) 32 (5:27) 144 (46:98)
Age, yr 47 ± 6 58 ± 14 59 ± 10 56 ± 10 54 ± 10
Body mass index, kg/m2 22.6 ± 1.8 24.6 ± 2.3 26.2 ± 3.4 26.8 ± 3.0 24.8 ± 3.2
Apnea-hypopnea index, events/hr 2.3 ± 2.3 10.1 ± 2.8 21.8 ± 4.3 48.0 ± 13.8 18.8 ± 18.7
Sleep efficiency, % 90.1 ± 10.9 78.9 ± 12.9 81.7 ± 11.1 76.7 ± 14.2 83.2 ± 13.1

Training set
Subjects (female:male) 42 (20:22) 18 (7:11) 31 (6:25) 26 (4:22) 117 (37:80)
Age, yr 48 ± 6 61 ± 13 59 ± 10 56 ± 11 55 ± 11
Body mass index, kg/m2 22.7 ± 1.9 24.4 ± 2.3 26.5 ± 3.6 26.4 ± 2.9 24.8 ± 3.2
Apnea-hypopnea index, events/hr 2.6 ± 2.4 9.7 ± 2.5 22.1 ± 4.3 46.7 ± 13.2 18.7 ± 18.2
Sleep efficiency, % 90.8 ± 11.8 77.9 ± 13.5 81.2 ± 10.7 74.5 ± 14.5 82.6 ± 14.1

Test set
Subjects (female:male) 10 (7:3) 4 (0:4) 7 (1:6) 6 (1:5) 27 (13:14)
Age, yr 49 ± 6 46 ± 9 55 ± 6 56 ± 5 52 ± 8
Body mass index, kg/m2 22.3 ± 1.2 25.5 ± 1.4 24.9 ± 1.7 28.5 ± 2.1 24.8 ± 2.9
Apnea-hypopnea index, events/hr 0.8 ± 0.7 11.6 ± 3.1 20.6 ± 3.8 53.4 ± 13.6 19.2 ± 21.4
Sleep efficiency, % 87.2 ± 4.2 83.4 ± 5.7 84.0 ± 11.5 86.5 ± 4.1 85.7 ± 7.3

Data are presented as mean ± standard deviation or number.

Table 2. The short-term normal ECG dataset for SA severity identification
Measures Normal Mild Moderate Severe Total
Training set 28,922 11,765 15,966 9,707 66,360
Validation set 7,201 2,882 4,026 2,483 16,592
Test set 8,980 3,625 5,041 3,092 20,738
Total 45,103 18,272 25,033 15,282 103,690
ECG = electrocardiography, SA = sleep apnea.
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CNN model for the automatic identification of SA severity from a short-term normal ECG 
was represented in Fig. 1C.

Model optimization
The optimization of the model was performed using trial and error, as shown in Table 3. To 
optimize the model, various techniques, including rectified linear unit (ReLU), dropout, and 
batch normalization, were used. Batch normalization was used to the normalization of input 
data for model optimization at the initial stage of the model.25 The dropout was used with P 
= 0.25 immediately after each max-pooling layer to reduce overfitting and divergence.26 ReLU 
performed the activation function for the designed deep CNN model, and thereby robustly 
improved prediction performance.27 Finally, the performance comparison between the 
models was based on a model constructed with repeated learning of batch sizes of 64 and 256 
epochs.28 Using the results of the experiments, we identified the optimum structure of the 
designed deep CNN model for the automatic identification of SA severity from a short-term 
normal ECG, as shown in Table 3.

Implementation
In this study, PSG recordings were preprocessed using MATLAB (Mathworks, Natick, MA, 
USA). The designed CNN model was implemented by Keras29 with background TensorFlow.30 
In addition, the designed deep CNN model was trained and evaluated using hardware with a 
graphics processing unit, GeForce GTX 1080 (8 GB, GDDR5X).

Data analysis
The F-measure was used to evaluate the proposed automatic identification model for SA 
severity. It evaluates the correct classification of classes according to class equality. To 
calculate the F-measure, two evaluation measures are combined, such as precision and 
recall. These are defined as follows: Precision = TP/(TP + FP); Recall = TP/(TP + FN), where TP 
denotes the true positives, FP denotes the false positives, and FN denotes the false negatives. 
They represent the number of each events.

The F-measure can present the F1-score; it is better known for appropriating the unbalanced 
dataset. It can be computed based on the sample proportion of precision and recall as follows:

F1 −  score =  2 ×  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
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Table 3. Structure of the designed deep CNN model
Layers Filter size Output shape Parameters
batchnorm = 3,000 × 1 4
conv1D_1 20@50 × 1 2,951 × 20 1,020
maxpool_1 2 × 1 1,475 × 20 1,020
conv1D_2 16@30 × 1 1,446 × 16 9,616
maxpool_2 2 × 1 723 × 16 9,616
dropout_2 P = 0.25 723 × 16 9,616
conv1D_3 8@10 × 1 714 × 8 1,288
maxpool_3 2 × 1 357 × 8 1,288
dropout_3 P = 0.25 357 × 8 1,288
flatten_1 2,856 × 1
dense_1 4 × 1 2,856 × 4 11,428
3 Conv. layers 23,354
Stride size is 1 at the convolutional layer.
CNN = convolutional neural network.
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The balanced accuracy was used to the comparison with similar previous studies, and it was 
represented as the balanced value of the accuracy of the training and test phases.

Ethics statement
The protocol of PSG study was carried out at the sleep clinic of the Samsung Medical Center, 
Korea, having obtained permission from the Center's Institutional Review Board (approval 
No. 2012-01-063). Informed consent was submitted by all subjects when they were enrolled.

RESULTS

The results of the designed deep CNN for the automatic identification of SA severity from 
a short-term normal ECG are presented in Table 4. The performance was evaluated using 
measuring indexes such as precision, recall, F1-score and balanced accuracy. We obtained 
very high performances, with an accuracy of 99% for all subject groups in the training set, 
validation set, and test set. Furthermore, the F1-score was greater than 99% not only for the 
training set but also for the validation set and test set for all groups.

The confusion matrix of the performance of the proposed method for the automatic 
identification of SA severity is shown in Fig. 2. All datasets consisted of the equally 
distributed SA severity events as shown in confusion matrix. In addition, the results of the 
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Table 4. Results of the designed deep CNN model for SA severity identification
Dataset Performance Normal Mild Moderate Severe
Training set Precision 1.00 0.97 0.99 1.00

Recall 0.99 1.00 1.00 0.99
F1-score 0.99 0.98 1.00 0.99
Balanced accuracy 0.99 1.00 1.00 1.00

Validation set Precision 1.00 0.97 0.99 0.99
Recall 0.98 1.00 1.00 0.99
F1-score 0.99 0.98 0.99 0.99
Balanced accuracy 0.99 1.00 1.00 0.99

Test set Precision 1.00 0.96 0.99 0.99
Recall 0.98 1.00 1.00 0.99
F1-score 0.99 0.98 0.99 0.99
Balanced accuracy 0.99 0.99 1.00 0.99

CNN = convolutional neural network, SA = sleep apnea.
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SA = sleep apnea, ECG = electroencephalography.
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designed deep CNN model showed very high performances with accuracy of 0.99% for all 
SA severity groups such as normal, mild, moderate, and severe in all datasets. The accuracy 
curve of the learning and evaluation phase to demonstrate the over and underfitting of the 
designed deep CNN model was presented in Fig. 3A. There is no overfitting in the designed 
deep CNN model and we can see that it was well learned and optimized after 50 epochs. 
Lastly, the receiver operating characteristic (ROC) curve and area under the curve (AUC) 
values for each SA severity groups in the training set, validation set and test set are presented 
in Fig. 3B-D. We obtained a very high performance of the ROC curve and AUCs more than 
99% for all SA severity groups.
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DISCUSSION

This study demonstrated a novel method for automatically identifying SA severity from a 
short-term normal ECG based on a CNN model. A designed deep CNN model was used as an 
identifier for estimating the severity of SA using short-term normal ECG. We achieved a very 
high prediction rate, with a mean accuracy of 96.0% for all subject groups. In addition, the 
method accurately predicted the normal and severe groups with an F1-score of 99.0%. Lastly, 
the performance values are almost equal in the training set and test set, demonstrating 
that the designed deep CNN model was well trained and optimized. The ability to identify 
undetected SA with an easy, widely available point-of-care test using a short-term normal 
ECG has important practical implications, particularly for the diagnosis of patients with SA. 
This may be regarded as one of the most important outcomes of this study.

From an engineering perspective, there are many studies on SA screening based on ECG 
signals. Among them, Mendez et al.14 conducted OSA screening based on autoregressive 
models using a single-lead ECG signal. The QRS complexes and RR intervals were 
calculated from the ECG, and these intermediate vital signs were analyzed in the time 
and frequency domains to extract 72 features. The top 10 features were selected based 
on sequential forward selection and applied to the k-nearest neighbor (KNN) and neural 
network (NN) classifiers. They achieved good results, with an accuracy of 88% for KNN and 
NN. Furthermore, Mendez et al.15 proposed a method for SA screening from ECG based 
on nonlinear and spectral analyses. They extracted 20 features using canonical machine 
learning and applied the top 10 features to the linear and quadratic discriminant classifiers. 
Recently, Chen et al.16 suggested a novel approach for automatically screening for SA 
based on conventional signal processing. They used only beat-to-beat intervals derived 
from ECG signals and analyzed the spectral domain to extract features. They also used the 
support vector machine as a classifier for suspected SA patients by using extracted spectral 
domain features. With an accuracy of 92.8%, their method outperformed that of previous 
studies.14,15 In these studies (Table 5), the ECG signal was used to extract physiological 
parameters, including beat-to-beat intervals and QRS complexes. Further, a number of 
features were extracted using various signal processing methods including discrete wavelet 
analysis (DWA) and empirical mode decomposition (EMD). Thus, previous studies used 
manually extracted or hand-crafted features from intermediate vital signs, such as the beat-
to-beat intervals and QRS complex. In addition, features were extracted from both normal 
and apneic ECG signals. Finally, ECG segments were analyzed for at least 5 minutes because 
of HRVs. In this study, no feature extraction or feature selection process was required. 
Using our methodology, only 30 seconds short-term normal ECG is necessary to identify SA 
severity. Therefore, the proposed method can be applied to undiagnosed subjects to predict 
and screen the severity of SA in advance.
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Table 5. Comparison of the current study with previous studies
Author Year Dataset Signal Method Accuracy
Mendez et al.14 2009 PhysioNet, Apnea-ECG RR, QRS KNN, NN 88.0
Mendez et al.15 2010 PhysioNet, Apnea-ECG HRV, QRS LDA, QDA 89.0
Chen et al.16 2015 PhysioNet, Apnea-ECG RR SVM 92.8

SVUH/UCB, Sleep Apnea Dataset
Current study 2019 SMC, Sleep Apnea Dataset ECG CNN 99.0
ECG = electrocardiography, KNN = k-nearest neighbor, NN = neural network, HRV = heart rate variability, LDA = linear discriminant analysis, QDA = quadratic 
discriminant analysis, SVUH = St. Vincent's University Hospital, UCB = University College of Dublin, SVM = support vector machines, SMC = Samsung Medical 
Center, CNN = convolutional neural network.
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In this study, the deep CNN model was used as an automatic predictor that contained a feature 
map extractor and classifier throughout the layers. We have illustrated the entire working 
process of the deep CNN model from input to output for each subject group (Fig. 4). From this, 
we can deduce the difference between outputs, not only in each layer but also within the subject 
groups. We can see that it was difficult to find the difference between the groups of subjects 
in the output of the second convolution layer (conv1D_2). However, the difference between 
the morphology and amplitude of the output signals of the conv1D_3 layer was demonstrated. 
Furthermore, it can be expected that the output signal does not reflect a number of features or 
morphology differences. Some outputs of the conv1D_3 layer have similar morphology with the 
output of EMD and DWA for the ECG signal in previous studies.18 From this, we can infer that 
deep learning methods, including the CNN model, do not only cover conventional features but 
also contain novel feature maps. Their reliable and superior performances in comparison to 
conventional methods may be attributed to this.

The deep learning framework based on the CNN model has been used in several studies to 
detect SA using a single-lead ECG. In those studies, the proposed CNN models performed 
binary or multiclass classification for OSA events based on the ECG signal. Dey et al.21 
conducted the binary classification of SA using ECG signal from only mild group subjects. In 
contrast, our previous study performed the multiclass classification of SA events including 
apnea and hypopnea based on a CNN model using a single-lead ECG signal from diverse 
patient groups.22 However, it neither covered the prediction of SA cases nor detected the 
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Fig. 4. Example of the output of the designed CNN model for the automatic prediction of SA using normal sinus rhythm. Intermediate features of (A) normal, 
(B) mild, (C) moderate, and (D) severe cases. (batch_norm–output signal of the batch-normalization layer; conv1d_1–output of first convolutional layer; 
ReLU+maxpool1–output of ReLU activation and max-pooling layers; conv1d_2–output of second convolutional layer; ReLU+maxpool2–output of second ReLU 
activation and max-pooling layers; and conv1d_3–output of last convolutional layer). The bottom bar graph is the final probability value after discrimination has 
occurred in the fully connected layer (class1– normal group; class2– mild group; class3– moderate group; and class4– severe group). 
CNN = convolutional neural network, SA = sleep apnea, ReLU = rectified linear unit.
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severity of OSA. In this study, we were able to predict the severity of OSA using a 30-second 
normal ECG signal.

The study has the following limitations. First, we did not use the external validation set of 
other institutions, therefore it can be lead to overfitting of the designed deep CNN model. 
It is, therefore, necessary to conduct a further validation study of this method using another 
clinical dataset such as PhysioNet, Apnea-ECG Dataset. A more diverse and larger population 
should be used to reduce the overfitting problem in the following study. Second, we used a 
short-term normal ECG from the recording of nocturnal PSG. The proposed method could 
underestimate when the short-term normal ECG that was measured during daytime was 
applied. Third, we excluded the subjects with any cardiovascular diseases and central or 
mixed sleep apnea. The proposed method could therefore show lower performance for the 
excluded groups. Finally, we cannot calculate the AHI from a short-term normal ECG signal. 
Currently, we can only classify SA into normal, mild, moderate, or severe based on the short-
term (30 seconds) normal ECG signal.

In conclusion, we demonstrated a novel method for automatically identifying SA severity 
based on the deep learning model from a short-term normal ECG signal. Our suggested 
method achieved robust performances with a balanced accuracy of 99.0% for normal, 
mild, moderate, and severe groups. The results demonstrate the possibility of reliable sleep 
screening and monitoring using the short-term normal ECG signal without any feature 
extraction and preprocessing. Thus, the method we propose is a potentially helpful approach 
for sleep studies.
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