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Purpose
Assessing the status of metastasis in sentinel lymph nodes (SLNs) by pathologists is an 
essential task for the accurate staging of breast cancer. However, histopathological evalu-
ation of SLNs by a pathologist is not easy and is a tedious and time-consuming task. The 
purpose of this study is to review a challenge competition (HeLP 2018) to develop automat-
ed solutions for the classification of metastases in hematoxylin and eosin–stained frozen 
tissue sections of SLNs in breast cancer patients.  

Materials and Methods
A total of 297 digital slides were obtained from frozen SLN sections, which include post–
neoadjuvant cases (n=144, 48.5%) in Asan Medical Center, South Korea. The slides were 
divided into training, development, and validation sets. All of the imaging datasets have 
been manually segmented by expert pathologists. A total of 10 participants were allowed 
to use the Kakao challenge platform for 6 weeks with two P40 GPUs. The algorithms were 
assessed in terms of the area under receiver operating characteristic curve (AUC).     

Results
The top three teams showed 0.986, 0.985, and 0.945 AUCs for the development set and 
0.805, 0.776, and 0.765 AUCs for the validation set. Micrometastatic tumors, neoadjuvant 
systemic therapy, invasive lobular carcinoma, and histologic grade 3 were associated with 
lower diagnostic accuracy. 

Conclusion
In a challenge competition, accurate deep learning algorithms have been developed, 
which can be helpful in making frozen diagnosis of intraoperative SLN biopsy. Whether this  
approach has clinical utility will require evaluation in a clinical setting.
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Introduction

Recently, implementation of digital pathology has been ris-
ing because of workforce crisis and increased need of consul-
tation and collaboration. Digital pathology has many advan-
tages in terms of time saving, slide storage, remote working, 
and second-opinion practice, and is becoming a part of routine 
procedure in diverse areas such as primary diagnosis, multi-
disciplinary clinic, and frozen section diagnosis [1]. Owing  
to rapid progress of technology, machine learning techniques 
using digital histopathological images have been investigat-
ed and showed satisfactory results in the detection of tumor  
areas and lymph node metastases in prostate, lung, and breast 
cancers [2-4].

Breast cancer is the most common cancer in women, accoun- 
ting for approximately one-third of all cancers in women glo-
bally. For patients with localized breast cancer, the treatment 
of choice is surgical removal of the primary tumor [5]. In  
order to reduce disease recurrence or metastasis, lymph node 
sampling or dissection should be performed during surgery. 
Because axillary lymph node dissection may cause morbidity, 
such as arm-lymphedema and nerve injury, sentinel lymph 
node (SLN) sampling is recommended in order to determine 
the nodal metastases status and if extensive lymph node dis-
section is required [6-9]. Although some recent studies sug-
gested that the role of SLN biopsy has been diminished in 
early breast cancer patients [10-13], SLN sampling is still con-
sidered important due to its cost- and time-effectiveness and 
usually performed intraoperatively using the frozen section 

technique and which allows surgeons to make immediate  
decisions during surgery [14]. However, pathologists fre-
quently experience problems while making diagnoses of fro-
zen sections.

First, frozen section diagnosis should be made as quickly as 
possible in order to minimize the waiting time for surgeons 
which can cause surgical and anesthetic complications. The 
turnaround time of the frozen section diagnosis is usually 
kept less than 20 to 30 minutes, including the gross exami-
nation, tissue cutting, and staining, and the microscopic exa-
mination [15]. Second, microscopic examination of a frozen 
section is more difficult than that of a conventional section 
because of inferior quality of the sections due to the frozen 
artifact. There are also components, such as capillaries, histio-
cytes, and germinal centers, in lymph nodes and which can 
be mistaken for metastatic carcinoma. Furthermore, frozen 
section diagnosis is extremely difficult in some patients who 
have underwent neoadjuvant systemic therapy before sur-
gery. In order to overcome such difficulties, the deep learn-
ing algorithm might be helpful. For example, the ‘CAncer 
MEtastases in LYmph nOdes challeNge’ (CAMELYON16 and 
CAMELYON17) competitions disclosed that some deep learn-
ing algorithms achieved better diagnostic performance than a 
panel of 11 pathologists participating in a simulation exercise 
designed to mimic routine pathology workflow [4,16]. How-
ever, digital slides which were used in most of those previous 
studies had not been created from frozen tissue sections, but 
from formalin-fixed paraffin-embedded (FFPE) tissue sec-
tions. To our best knowledge, there has not been any reported 

Table 1.  Clinicopathologic characteristics of the patients (resolution [width×height] of digital slide: 93,970×234,042)

	 Training set (n=157)	 Development set (n=40)	 Validation set (n=100)	 p-valuea)

Age (yr)	 50 (28-80)	 49 (30-68)	 47 (34-75)
Sex				  
    Female	 157 (100)	 40 (100)	 100 (100)	 > 0.99
Metastatic carcinoma				  
    Present, size > 2 mm	 68 (43.3)	 14 (35.0)	 40 (40.0)	 0.158
    Present, size ≤ 2 mm	 35 (22.3)	 5 (12.5)	 15 (15.0)	
    Absent	 54 (34.4)	 21 (52.5)	 45 (45.0)	
Neoadjuvant systemic therapy				  
    Not received	 80 (51.0)	 28 (70.0)	 45 (45.0)	 0.027
    Received	 77 (49.0)	 12 (30.0)	 55 (55.0)	
Histologic type				  
    IDC	 149 (94.9)	 32 (80.0)	 86 (86.0)	 0.005b)

    ILC	 8 (5.1)	 5 (12.5)	 11 (11.0)	
    MC	 0 (	 0 (	 3 (3.0)	
    Metaplastic carcinoma	 0 (	 3 (7.5)	 0 (	
Histologic grade				  
    1 or 2	 118 (75.2)	 34 (85.0)	 86 (86.0)	 0.074
    3	 39 (24.8)	 6 (15.0)	 14 (14.0)	
Values are presented as median (range) or number (%). IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; MC, mucinous car-
cinoma. a)p-values, calculated using the chi-square test, b)For the histologic type, a chi-square test was conducted between IDC and non-IDC.
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study using frozen tissue section of SLNs until the present 
time. In addition, the previous studies did not include post–
neoadjuvant cases, which has been increasing but difficult to 
histologically examine [17].

In the challenge competition originating from the HeLP 
(HEalthcare ai Learning Platform), several models have been 
developed. In this challenge setting, we aimed to evaluate 
the models’ performances for classification of metastases per 
slide in hematoxylin and eosin–stained frozen tissue sections 
of SLNs of breast cancer patients.

 

Materials and Methods

1. Data description
During routine surgical procedure for breast cancer in our 

institution, the excised SLNs were immediately submitted 
for frozen section. All of the SLNs were cut into 2-mm slices, 
entirely embedded in optimum cutting temperature com-
pound, and frozen in –20°C to –30°C. For each lymph node, 
5-μm-thick frozen sections were cut and one or two sections 
were picked up on glass slides and stained with hematoxylin 
and eosin. In this study, a total of 297 digital slides of SLNs 
from 132 patients were retrospectively collected. Among 
those, 144 slides were made from SLNs of patients who had 
received neoadjuvant therapy (48.5%). The slides were divi-
ded into a training set, a development set, and a validation 
set (157, 40, and 100 digital slides, respectively) without con-
sideration of distribution of histologic type. Slides before a 
specific point in time were used as the training and develop-
ment sets, and the other digital slides after that were used as 
the validation set. Patient demographics are summarized in 

Table 1. The slides were scanned using a digital microscopy 
scanner (Pannoramic 250 FLASH, 3DHISTECH Ltd., Buda-
pest, Hungary) in MIRAX format (.mrxs) and with a resolu-
tion of 0.221 μm per pixel. 

2. Reference standard
All the imaging datasets were segmented manually by one 

rater, and their annotations were confirmed by two clinically 
expert pathologists with 6 and 20 years’ experience in breast 
pathology. Regions of metastatic carcinoma larger than 200 
μm in the greatest dimension were annotated as cancer with 
the in-house labeling tool, as shown in Fig. 1. 

3. Challenge competition environment
The challenge competition platform developed by Kakao 

was used to allocate two GPUs to each team. All of the com-
petitors were allowed to access only paths of digital slides 
and corresponding mask images with Kakao platform. Dock-
er image files that enables any of deep learning platform to 
run were used to train models and inference development 
and validation sets. Each team was given two P40 GPUs 
(NVIDIA, Santa Clara, CA) resources for training models. 
Kakao platform used CUDA 9,0 and cuDNN 7.

During the first stage for four weeks, competitors were 
given 197 digital slides as the training and development 
set for four weeks. The training set (157 digital slides) with  
annotated masks was given for training the model, while the 
development set (40 digital slides) without masks was given 
for tuning the model. Model performance calculated by the 
evaluation matrix was listed on the leader board after infer-
encing the development set which was used for tuning the 
model. During the second stage for additional 2 weeks, the 

Fig. 1.  Representative microscopic images of various metastatic carcinomas with annotation (H&E staining). (A) Invasive ductal carcino-
ma, histologic grade 2, consists of medium-sized tumor cells with moderate glandular formation. (B) Invasive ductal carcinoma, histologic 
grade 3, shows large-sized tumor cells with poor glandular formation. (C) Tumor cells are small- to medium-sized and poorly cohesive in 
invasive lobular carcinoma. (D) Mucinous carcinoma contains abundant extracellular mucin. (E, F) Invasive ductal carcinoma after neoad-
juvant systemic therapy shows fragmented clusters of tumor cells (E) or singly scattered, atypical tumor cells (F) in the fibrotic background.
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competitors were given 100 additional digital slides for final 
evaluation of their models with the optimal model derived 
from the development set.  

4. Evaluation metric
The algorithms were assessed for classifying between  

“metastasis” or “normal.” Area under receiver operating cha- 
racteristic curve (AUC) was evaluated by receiver operating 
characteristic (ROC) analysis.

5. Competitors
Forty-five competitors who were interested in digital  

pathology or machine learning registered for this challenge 
within 4 weeks from the beginning of November 2018. Ten 
competitors were selected according to their inner commit-
ments in accordance with the limited platform environment. 
Ten competitors were composed of students, researchers, 
and doctors experienced in medical image analysis using 
machine learning or deep learning. Only four competi-
tors submitted their results on the leaderboard. The meth-
odological description is summarized in Table 2. All of 

the competitors selected only deep learning as the main  
architecture such as Inception v3 [18] for classification of the 
tumor patch or U-Net [19] for segmentation of the tumor 
region. Instead of modifying their models, they focused on 
pre- and post-processing steps to achieve optimal results. In 
one team which ranked high, random forest regression [20] 
was used to inference confidence by extracting high level 
features including the number of tumor regions, percentage 
of the tumor region over the entire tissue region, the area of 
the largest tumor regions, etc., from the heat map generated 
using the deep learning method. Real time-based augmenta-
tion methods were adjusted while training models. Detailed 
descriptions of each algorithm are listed in Table 2.

6. Ethical statement
The institutional review board for human investigations 

at Asan Medical Center (AMC) approved the study proto-
col with removal of all patient identifiers from the images 
and they waived the requirement for informed consent, in 
accordance with the retrospective design of this study. 

Table 2.  Algorithm descriptions and hyper parameters

Team	 Architecture
	 Input size 	 Optimization	 Augmentation	

Pre-processing
	 Post-processing;

		  (slide layer level)	 (learning rate)	 real-time		  inference for confidence

Fiffeb	 Inception v3,	 256×256×3 (6)	 SGD (0.9)	 Color 	 Otsu	 Generation of heat map
	   RFC	   Patch		    augmentation, 	   thresholding,	   with image level 7 and
				      horizontal flip,	   tumor (> 90%)	   feeding morphological
				      random rotation	   and non-tumor	   information into FRC;
					       (0% and > 20%)	   RFC output
DoAI	 U-Net	 512×512×3 (0)	 SGD 	 Rotation, 	 None	 De-noising for
		    Patch	   (1e-1, decay 0.1	   horizontal and 		    false-positive reduction;
			     each 2 epochs)	   vertical flip		    CNN output
GoldenPass	 U-Net, 	 256×256×3 (4)	 Adam 	 Rotation, 	 Otsu	 None;
	 Inception v3	   Patch	   (1e-3, 5e-4)	   horizontal and	   thresholding, 	   Max value for heat-map
				      vertical flip,	   tumor (> 100%)
				      brightness (0.5-1)
SOG	 Simple CNN	 300×300×3 (4)	 Adadelta	 None	 None	 None; CNN output
		    Slide	   (1e-3)	   

SGD, stochastic gradient descent; RFC, random forest classifier; CNN, convolutional neural network.

Table 3.  Performance and average time comparison for classification of tumor slide

Team
	 Development	  Validation			   Validation set			   Time

	 set AUC	 set AUC	 ACC 	 TPR	 TNR	 PPV	 NPV	 (min)

Fiffeb	 0.986	 0.805	 0.770	 0.727	 0.822	 0.833	 0.712	 10.8
DoAI	 0.985	 0.776	 0.750	 0.800	 0.689	 0.759	 0.738	 0.6
GoldenPass	 0.945	 0.760	 0.730	 0.782	 0.667	 0.741	 0.714	 3.9
SOG	 0.595	 0.540	 0.510	 0.145	 0.956	 0.800	 0.478	 -
AUC, area under the curve; ACC, accuracy; TPR, true positive rate; TNR, true negative rate; PPV, positive predictive value; NPV, negative 
predictive value. 

1106     CANCER  RESEARCH  AND  TREATMENT



Young-Gon Kim, Diagnostic Assessment of Deep Learning Algorithm

Results

Model performances were sorted in descending order for 
the validation set as shown in Table 3 and Fig. 2. Four teams 
submitted their results on the leader board in development 
and validation sets. For the development set, the Four algo-
rithms showed 0.986, 0.985, 945, and 0.595 AUCs. For the 
validation set which consisted of 100 digital slides, the Fiffeb 
team showed the highest AUC 0.805 in the validation set 
compared with other teams such as the DoAI, GoldenPass, 
and SOG teams at AUC 0.776, 0.760, and 0.540 respective-
ly. Average times of the first three teams (Fiffeb, DoAI, and 
GoldenPass) in validation set were 10.8, 0.6, and 3.9 minutes, 
respectively.

For more detailed analysis, each algorithm was evaluated 

Fig. 2.  Receiver operating characteristics (ROC) comparisons of 
models trained by four algorithms for the validation set and cut-
off threshold value of each algorithm. The cutoff threshold value 
is dotted on each ROC curve. AUC, area under ROC.
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Table 4.  Performance comparison for determining the clinicopathologic characteristics of tumors

		                                Team

	 Fiffeb	 DoAI	 GoldenPass	 SOG

Metastatic tumor size
    ≤ 2 mm (n=33)				  
        TPR	 0.600	 0.667	 0.667	 0.067
        FNR	 0.400	 0.333	 0.333	 0.933
    > 2 mm (n=22)				  
        TPR	 0.775	 0.850	 0.825	 0.175
        FNR	 0.225	 0.150	 0.175	 0.825
Neo-adjuvant therapy				  
    Not received (n=45)				  
        TPR	 0.731	 0.808	 0.808	 0.154
        TNR	 0.842	 0.737	 0.632	 0.895
    Received (n=55)				  
        TPR	 0.724	 0.793	 0.759	 0.138
        TNR	 0.808	 0.654	 0.692	 1.000
Histologic type				  
    IDC (n=86)				  
        TPR	 0.723	 0.766	 0.766	 0.149
        TNR	 0.795	 0.667	 0.641	 0.949
    ILC (n=11)				  
        TPR	 0.833	 1.000	 1.000	 0.000
        TNR	 1.000	 0.800	 0.800	 1.000
    MC (n=3)				  
        TPR	 0.500	 1.000	 0.500	 0.500
        TNR	 1.000	 1.000	 1.000	 1.000
Histologic grade				  
    1 or 2 (n=86)				  
        TPR	 0.735	 0.816	 0.796	 0.163
        TNR	 0.838	 0.676	 0.649	 0.946
    3 (n=14)				  
        TPR	 0.667	 0.667	 0.667	 0.000
        TNR	 0.750	 0.750	 0.750	 1.000

TPR, true positive rate; FNR, false negative rate; TNR, true negative rate; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; 
MC, mucinous carcinoma.
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with the cutoff threshold determined by the Youden index 
[21] from the ROC curve in the validation set in terms of the 
accuracy (ACC), true positive rate (TPR), true negative rate 
(TNR), positive predictive value (PPV), and negative predic-
tive value (NPV). The first-placed team Fiffeb showed the 
highest AUC (0.805), ACC (0.770), TNR (0.822), and PPV 
(0.833), while the second-placed team DoAI showed the 
highest TPR (0.800) and NPV (0.738).

In addition, model performance comparisons with clini-
cal information for more detail, such as the metastatic tumor 
size (smaller or larger than 2 mm in the greatest dimension), 
whether patients had received neoadjuvant systemic therapy, 
histologic type of tumor, and the histologic grade of the tumor  
was measured, as shown in Table 4. Four teams showed 
higher TPR and lower false-negative rate in lymph nodes 
with larger metastatic tumors. In lymph nodes obtained from 
patients who had received neoadjuvant systemic therapy, 
four teams showed lower TPR and two teams showed lower 
TNR. In terms of the histologic type, three teams showed 
higher TPR and four teams higher TNR in the invasive lobu-
lar carcinoma group than in the invasive ductal carcinoma 
group. When comparing performance between the histologic 
grades, four teams showed higher TPR, but only one team 
showed higher TNR in grade 1 or 2 than in grade 3.

Among the 100 slides in the validation set, 57 slides were 
correctly categorized by all top three teams (35 slides, true-
positive; 22 slides, true-negative), four slides were incor-
rectly categorized as positive (false-positive) by the top three 
teams, and six slides were incorrectly categorized as negative 
(false-negative) by the top three teams, as shown in Fig. 3. 
All of the four false-positive slides were obtained from pati-
ents with invasive ductal carcinoma, histologic grade 2, and 
two slides were from neoadjuvant systemic therapy patients. 
Similarly, all of the six false-negative slides were obtained 
from patients with invasive ductal carcinoma, i.e., five from 
histologic grade 2 patients and one from a histologic grade 3 
patient, and three were from neoadjuvant systemic therapy 
patients. Four of the six false-negative slides had microme-
tastases. The size range of metastatic carcinoma in the false-
negative slides was 0.13 to 4.45 mm.

Discussion

In this current study, all of the competitors adopted convo-
lutional neural network (CNN)–based deep learning meth-
ods as the main idea such as the classification or segmenta-
tion network, and which showed high performance at 0.805, 
0.776, and 0.760 in terms of AUC for the top three teams.

Interestingly, in all four teams, AUC was lower in the 
validation set compared to that in the development set. This 
might be due to the difference in patient demographics, par-
ticularly with regard to neoadjuvant systemic therapy. Distri-
bution of histologic type is different between training, devel-
opment, and validation sets as shown in Table 1. Especially 
in the validation set, the number of slides obtained from  
patients after neoadjuvant systemic therapy was signifi-
cantly higher than that in the development set. Neoadjuvant 
systemic therapy often causes fibrosis and macrophage infil-
tration in the tumor area and fragmentation and/or scatter-
ing of tumor clusters [17], and which can lead to difficulty 
in histologic examination. It might be suggested that this 
neoadjuvant systemic therapeutic effect caused a decrease of 
AUC in the validation set.

Inference time is also key point with this challenge so that 
methods can be adopted in routine clinical practice. Turna-
round time between receiving samples and reporting in con-
ventional frozen section diagnosis has been variably repor- 
ted around 20-30 minutes, including gross examination, free-
zing, cutting, staining, and microscopic examination [22]. 
Time consumed for scanning can be varied upon the size of 
sections, type of scanning machine, magnification, and focus 
layering, but recent studies have reported that 3-9 minutes 
of median handling time for scanning [22,23]. Two different 
types of patch-based CNN methods, classification and seg-
mentation network, have shown pros and cons. The num-
ber of outputs of the classification network in this challenge 
is same with the number of classes that the model classifies  
input patch into (i.e., 1 or 2) by encoding all input dimen-
sions to compressed features for a precise decision. In case of 
segmentation network, the number of outputs is same with 
the number of input dimensions (i.e., 448×448=200,704), 
which is approximately 100K or 200K times more than that 

Fig. 3.  Representative microscopic images of false-positive (A) and false-negative (B) cases. (A) Reactive histiocytes show abundant, eosi-
nophilic cytoplasm and can be misinterpreted as metastatic carcinoma. (B) A very small focus of metastatic carcinoma (approximately 200 
μm in the greatest dimension) is seen and which was missed by all four of the teams.

A B
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of classification network. It is a factor reducing computa-
tional time. In our results, the first-placed team using only 
classification network showed 0.3 higher AUC than that of 
the second-placed team using only segmentation network, 
but too slow to deploy this into the real clinical routine while 
the computational time of the second-placed team took 18.8 
times faster than that of the first-placed team. Ensemble of 
those different types of CNN networks should be considered 
to enhance model performance in routine clinical practice.

Next, we compared model performances according to the 
clinicopathologic factors of the patients. It is generally known 
that in manual examination of intraoperative SLN biopsy, 
false-negative results are more likely in micrometastases and 
favorable and/or lobular histology [24]. In the validation set, 
the top three teams showed better performances in lymph 
nodes with macrometastatic tumor, and which is consistent 
with manual examination and the CAMELYON16 study [4]. 
Lymph nodes which were obtained from non-neoadjuvant 
systemic therapy patients also revealed better performances, 
as discussed above. Lymph nodes from invasive lobular car-
cinoma patients revealed better TPR in the first three teams 
and better TNR in four teams than those from invasive duct-
al carcinoma patients, although the number of slides from 
invasive lobular carcinoma patients is limited. This is in  
accordance with the general results in manual examination 
and the CAMELYON16 study. In the CAMELYON16 study, 
29 among 32 teams showed higher AUC in the invasive duct-
al carcinoma set than in the non-invasive ductal carcinoma 
set. In addition, tumors of histologic grade 1 or 2 showed 
higher TPR in the top three teams, but lower TNR in two of 
the three teams than tumors of histologic grade 3, and which 
requires further studies.

We found that some cases were wrongly categorized by 
the first three teams. All of six false-negative cases showed 
small-sized metastatic carcinoma, and which could result in 
false negativity. In contrast, four false-positive cases did not 
reveal any common clinicopathologic feature. However, we 
assume that reactive histiocytic infiltration or prominent ger-
minal centers in lymph nodes might cause false positivity. 
Manual confirmation is probably necessary, and so a screen-
ing tool that would expedite this process might have broad 
appeal. Interestingly, TPR of mucinous carcinoma cases (0.5-
1.0) was not lower than those of invasive ductal carcinoma 
(0.149-0.766) or invasive lobular carcinoma (0.000-1.000), 
although mucinous carcinoma was not included in training 
and validation sets. This might be due to some histologic 
similarities between mucinous carcinoma and other carcino-
mas, such as cluster formation, bigger cell size than lympho-
cytes, and nuclear size enlargement.

Our study has some strong significance compared to pre-
viously reported studies about possible usefulness of deep 
learning algorithm in diagnosis of SLN metastasis [4,16]. 
First, we used digital slides from frozen sections which were 

made intraoperatively, while previous studies used FFPE sec-
tions. Since frozen sections have lower quality due to tissue 
artifact compared with FFPE sections, it is more difficult to 
examine frozen sections than FFPE sections. However, what 
is used to determine the surgical extent intraoperatively in 
the real world is frozen sections, not FFPE sections. There-
fore, we suggest that studies of the deep learning algorithm 
with SLNs would be more practical if frozen sections are 
used. Second, our dataset includes a high proportion (48.5%) 
of post-neoadjuvant patients. The role of neoadjuvant thera-
py in breast cancer treatment has been increasing these days, 
but it is much more difficult to histologically diagnose SLN 
metastasis after neoadjuvant therapy [17]. During case selec-
tion, we included more post-neoadjuvant cases than clinical 
setting with an intention of making our dataset unique and 
more useful. To reduce false-positive or false-negative issues 
technically, the deep learning models should be re-trained 
with those regions and different hyper-parameters such as 
class weights or loss weights. Those regions with different 
hyper-parameters have deep learning models intensively 
trained as strong positive regions with this strategy. Applica-
tions using these methods can be adopted in routine clinical 
practice by showing attention map with augmented reality 
and training itself robustly with false-positive cases selected 
by pathologists with on-line learning.

Our contest has several limitations. First, only paths to 
access the training, development, and validation sets were 
given to competitors, which means that they had no way to 
check the heat map generated by their models as all dataset 
contests provided were not available in public. Competitors 
were not allowed to check processing in the middle of train-
ing for the same reason. Only less than 1 MB log data could 
be saved and given to competitors for the purpose of debug-
ging after training processing to check if and how the train-
ing is going well. It was also not available how much time 
was spent for training and analyses. This might be one of key 
reasons of the models with relatively low accuracies. Second, 
only two GPUs were given to each competitor, and it could 
be limited resource, although this constraint makes competi-
tors fair. Third, we did not perform immunohistochemistry 
to confirm metastatic carcinoma on frozen section slides. On 
the contrary to FFPE sections, multiple frozen sections which 
were made from the same tissue fragment showed quite dif-
ferent shapes due to the tissue artifact. Therefore, immuno-
histochemistry is not as helpful in frozen sections as in FFPE 
sections to annotate tumor cells. In addition, it is impossible 
to retrospectively perform immunohistochemistry on frozen 
sections. Instead, when we annotate tumor cells in frozen 
sections, we review matched FFPE sections with cytokera-
tin immunohistochemistry in order to minimize annotation  
error. Finally, the high proportion of post–neoadjuvant cases 
or cases with micrometastases could have negatively affec-
ted the diagnostic accuracy of algorithms in this study. It 
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would have been nicer if we could divide the dataset into 
multiple groups and develop different algorithms based on 
patients’ information, such as neoadjuvant status, histologic 
type, or histologic grade of tumor. However, it was impos-
sible due to the limited number of digital slides. We hope 
to expand our dataset and include such analysis in our fur-
ther study. Finally, the model performance can be influenced 
by various parameters including quality of tissue sections, 
staining quality and color differences, type of scanning  
machine, scanning environment, and accuracy of segmenta-
tion. Therefore, further studies for optimization of pre-pro-
cessing of digital images might improve models’ diagnostic 
performances. 

Possibly because of the characteristics of our dataset and 
the above limitations, even the top three algorithms in this 
study showed relatively lower performance than the other 
first prized in CAMELYON16, and lower diagnostic accu-
racy than average of pathologists [25]. However, we believe 
that it is worth holding a digital pathology challenge compe-
tition using frozen tissue sections in open innovation man-
ner. For adjusting algorithms into routine clinical practice, 
HeLP is preparing another challenge competition to handle 
other problems such as localization of micro-metastasis and 
processing time.

Recognition abilities of deep learning and human could be 
complement each other. In addition, algorithms with deep 
learning can be used as computer aided system to help doc-
tors diagnose. For example, virtual reality technology can 
help making quack accurate decision or alert a doctor who 
misses critical parts. 

We held a challenge competition during six weeks to resol-
ve the problem for classification of digital pathology slides 
with metastases in hematoxylin and eosin–stained frozen tis-
sue sections of SLNs of breast cancer patients. The top three 
competitor teams achieved very high AUCs in the develop-
ment set while they performed slightly lower AUC in the val-
idation set. In this open innovation manner, the deep learn-
ing algorithms could be developed and evaluated, which 
might be helpful in the frozen diagnosis of intraoperative, 
SLN biopsy. Further studies are required in order to increase 

the accuracy and decrease the time consuming required to 
apply the deep learning algorithm in the clinical setting.
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