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Background: Dynamic parameters used for predicting fluid responsiveness require special 
equipment and are minimally invasive. Therefore, recent interest in the use of carotid ar-
tery ultrasound parameters, such as carotid corrected flow time (FTc) and peak velocity 
variation (ΔVpeak) has grown. Therefore, we performed this systematic review and me-
ta-analysis to assess the ability of carotid FTc and/or ΔVpeak to accurately predict fluid re-
sponsiveness. 
Methods: We searched the PubMed and Embase databases for articles evaluating the diag-
nostic accuracy of carotid FTc or ΔVpeak for predicting fluid responsiveness. Two inde-
pendent authors performed the search and selected studies published until May 2022. The 
studies were assessed for the inclusion and exclusion criteria using Rayyan (Rayyan Sys-
tems Inc., 2022). 
Results: Ten studies (n = 438) that fulfilled the inclusion criteria were selected. Studies 
were divided into those assessing carotid FTc and those assessing carotid ΔVpeak. Five 
studies (six datasets) assessed FTc. The pooled sensitivity and specificity of carotid FTc 
were 0.76 and 0.88, respectively. The summary receiver operating characteristic (SROC) 
curve for carotid FTc had an area under the curve (AUC) of 0.9092, with a Q value of 
0.8412. Seven studies calculated carotid ΔVpeak. The pooled sensitivity and specificity for 
ΔVpeak were 0.83 and 0.81, respectively. The SROC curve had an AUC of 0.8941 and a Q 
value of 0.8250. 
Conclusions: Our meta-analysis showed that both carotid FTc and ΔVpeak are useful for 
predicting fluid responsiveness in anesthesia and critical care settings with good specificity 
and sensitivity. 
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Introduction 

Adequate preload is necessary for decent cardiac output and is an important determi-
nant of patient outcomes in anesthesia and critical care. A patient is considered fluid re-
sponsive when cardiac output increases in response to increasing preload [1,2]. Histori-
cally, we relied on static markers, such as central venous and pulmonary artery pressures, 
to determine fluid responsiveness. However, the reliability of these markers has recently 
been questioned [3]. Over time, dynamic markers for predicting fluid responsiveness 
such as pulse pressure variation (PPV) and stroke volume variation (SVV) replaced static 
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parameters in clinical practice [4]. 
However, the dynamic determinants of fluid responsiveness 

have their own limitations. For instance, most of these techniques 
require special equipment or expensive devices and are minimally 
invasive. PPV and SVV require arterial cannulation and/or cen-
tral line insertion, which are associated with complications [5]. 
Others, such as transesophageal echocardiography (TEE), require 
the patient to be completely sedated and paralysed. In addition, a 
patient’s movements, such as turning, may displace the TEE 
probe. Therefore, recent interest in the use of carotid artery ultra-
sound parameters has grown. Of these, the carotid corrected flow 
time (FTc) and peak velocity variation (ΔVpeak) have been the 
most studied. FTc is the duration of left ventricular ejection mea-
sured on a systolic pulse waveform from the start of the upstroke 
to the incisural notch [6]. It is corrected to the heart rate using 
Wodey’s or Bazett’s formula or other similar methods [7]. The 
ΔVpeak is the change in the height of the carotid pulse upstroke 
with respiratory variations. 

The use of carotid ultrasound-derived FTc and ΔVpeak has sev-
eral advantages. First, they do not require any specific equipment 
and can be assessed at the bedside. Furthermore, this technique is 
completely noninvasive. M-mode ultrasonography is performed 
at the neck level, which remains accessible during most thoracic 
and abdominal surgeries. Furthermore, these parameters can be 
used even at a tidal volume (TV) as low as 6 ml/kg or in patients 
who are spontaneously breathing, unlike other dynamic markers 
(such as PPV), which require mechanical ventilation with a TV of 
at least 8 ml/kg to accurately predict fluid responsiveness. Howev-
er, the carotid-artery-derived parameters may not be reliable 
markers for the presence of significant carotid artery stenosis (>  
50%). Additionally, in head and neck surgery, the carotid artery 
site may be difficult to access. 

Various studies have assessed the potential use of these parame-
ters for determining fluid responsiveness. These studies included 
diverse patient populations, small sample sizes, and different cut-
off values to identify fluid responders. Therefore, we performed 
this systematic review and meta-analysis to assess the ability of ul-
trasound-derived carotid FTc and/or ΔVpeak to accurately predict 
fluid responsiveness in different clinical scenarios of adult patients 
in anesthesia or critical care settings. 

Materials and Methods 

For our systematic review, we followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 
statement [8]. We registered our protocol using PROSPERO (No. 
CRD42022334313) on June 3, 2022. Since no human subjects 

were directly involved in our study, no institutional ethical ap-
proval was obtained. 

Search strategy 

For our systematic review, we searched the PubMed and Em-
base databases for clinical trials published up to May 2022. The 
search terms were “carotid” and “corrected” and “flow” and “time” 
for the first search and “carotid” and “peak” and “velocity” and 
“variation” for the second search (Supplementary Material 1).

Study selection  

The inclusion criteria were as follows: 1) human adult patients 
(i.e., age >  18 years) in anesthesia and critical care settings; 2) ul-
trasound assessment of carotid FTc and/or ΔVpeak in relation to 
fluid responsiveness; 3) ultrasound performed by a person experi-
enced with the technique; 4) clearly defined criteria to determine 
fluid responders that involved a cardiac output or stroke-volume-
based method to assess fluid responsiveness; and 5) inclusion of 
the cutoff value, sensitivity, specificity, and area under the receiver 
operating characteristic (ROC) curve (AUC) for the investigated 
intervention. The exclusion criteria were as follows: 1) studies not 
involving human participants (i.e., animal and in vitro studies), 2) 
studies involving children, 3) language other than English, 4) full 
text not available online (conference abstracts etc.), 5) studies not 
related to fluid responsiveness, 6) studies not using FTc and/or 
ΔVpeak to assess fluid responsiveness, and 7) no clearly defined 
criteria to determine fluid responders. 

Two independent authors (DS and MM) reviewed all the ab-
stracts for potential inclusion. The full texts of the remaining 
studies were reviewed in a blinded manner for potential inclu-
sion in the meta-analysis. Any disagreements were resolved by 
discussion. 

Data extraction and quality assessment 

Data were extracted using Rayyan software (https://www.
rayyan.ai, Rayyan Systems Inc., 2022). After removing duplicates 
and unrelated studies, the full texts of the remaining studies were 
obtained. After selecting studies based on the inclusion and exclu-
sion criteria, the data were presented in a Microsoft Excel sheet 
(Microsoft Corp., USA). From each study, we extracted data re-
garding the author, title, year of publication, number of partici-
pants, population type (mechanical/spontaneous ventilation, 
medical condition), carotid ultrasound parameters analyzed, ref-
erence methods to check fluid responsiveness, criteria for fluid re-
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sponsiveness, number of fluid responders, and results. For the 
quality assessment, we used the Quality Assessment of Diagnostic 
Accuracy Studies version 2 (QUADAS-2, University of Bristol, 
UK) [9]. Two independent authors (DS and MM) analyzed all the 
data, and any disagreements were resolved by discussion. 

Statistical analysis 

We divided the studies into two separate groups based on 
whether FTc or ΔVpeak were analyzed. Meta-DiSc® (version 1.4, 
XI Cochrane Colloquium, Spain) was used for all statistical analy-
ses. The Spearman correlation coefficient of sensitivity and 
1-specificity log was used to estimate the heterogeneity due to the 
threshold effect. Heterogeneity due to non-threshold effects was 
estimated using the I2 test. I2 values ≤  25% were considered low 
heterogeneity, 25–50% was moderate, and > 50% was high het-
erogeneity. In the presence of heterogeneity, a random-effects 
model was used for further analyses. For each study, we calculated 
the true positive (TP), false positive (FP), false negative (FN), and 
true negative (TN) for the index parameter. The pooled sensitivi-
ty, specificity, NLR, and PLR were determined using 95% CIs. For 

each parameter, a summary receiver operating characteristic 
(SROC) curve was generated and the Q value was calculated. 
Publication bias was evaluated through Egger’s and Begg’s tests 
using MedCalc statistical software (version 20.110, MedCalc Soft-
ware Ltd., Belgium) 

Results 

Study identification, screening, and inclusion 

For the first search (i.e., “carotid” and “corrected” and “flow” 
and “time”), 221 articles on PubMed and 193 on Embase were re-
trieved. For the “carotid” and “peak” and “velocity” and “variation” 
search, we retrieved 139 articles on PubMed and 131 articles on 
Embase. Thus, we identified 684 articles in total (Fig. 1). Of these 
684 articles, 181 duplicate records were excluded. The remaining 
503 abstracts were screened based on the inclusion and exclusion 
criteria. In total, 470 studies were excluded. Of the remaining 33 
studies, 12 were excluded because the full text was not available 
online, four articles were not in the English language, five studies 
had no predefined criteria for fluid responsiveness, and in two 

Fig. 1. PRISMA flow diagram. *PubMed = 221 + 139, Embase = 193 + 131; resulting in a total of 684 articles identified. †No automation tools were 
used.
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studies, the assessments were performed by novice investigators. 
Therefore, a total of ten studies were included in our analysis. 

These ten studies enrolled 438 patients and involved 478 assess-
ments of fluid responsiveness. Of these, 264 (55.23%) were fluid 
responsive (Table 1). To simplify the analyses, we grouped the 
studies based on the parameters analyzed (i.e., FTc or ΔVpeak). A 
total of five studies (and six data sets) investigated FTc. One study 
by Jung et al. [10] used two different formulae to determine FTc. 
Therefore, it was evaluated as two different studies, and both data-
sets (at a physiological tidal volume of 6 ml/kg) were included 
(Supplementary Table 1). We obtained seven studies that evaluat-
ed ΔVpeak (Supplementary Table 2). From the sensitivity and 
specificity data, we calculated the TP, FP, FN, and TN for each 
study (Supplementary Tables 1 and 2). 

Quality assessment 

For the quality assessment of the included studies, we used the 
QUADAS-2 (Table 2). Most studies did not describe whether the 
patients were selected consecutively or randomly. In the studies by 
Soliman et al. [11] and Ibarra-Estrada et al. [12], the criteria for 
septic shock were not clearly defined. Pace et al. [13] did not ex-
plain if both observers performed all ultrasounds, and the num-
ber of examinations for which the third expert was called. Kimura 
et al. [14] and Xu et al. [15] did not assess interobserver reproduc-
ibility. Kimura et al. [14] did not exclude patients with significant 
carotid artery stenoses. In the studies by Kimura et al. [14] and 
Jung et al. [10], cardiac output monitoring was performed using 
the Vigileo-FloTracTM system, which may be affected by changes 
in systemic vascular resistance. Barjaktarevic et al. [16] used the 
NICOMtm study to assess fluid responsiveness and did not define 
the type of shock or exclude patients with carotid artery stenosis. 

Meta-analysis of FTc 

Five studies (six datasets) assessed FTc. The Spearman correla-
tion coefficient was 0.928 (P =  0.008). Therefore, there was a pos-
itive correlation between sensitivity and (1-specificity) and het-
erogeneity due to a threshold effect. The pooled sensitivity of FTc 
was 0.76 (95% CI [0.68, 0.82]) with an I2 value of 44.6% (Fig. 2A). 
This was suggestive of low-to-moderate heterogeneity due to the 
non-threshold effect. The pooled specificity was 0.88 (95% CI 
[0.82, 0.93]) with an I2 value of 2.8% (Fig. 2B), suggesting low het-
erogeneity. Therefore, we used a random-effects model for our 
analysis. The pooled PLR, NLR, and diagnostic odds ratio (DOR) 
were 5.77 (95% CI [3.68, 9.05]), 0.3 (95% CI [0.23, 0.39]), and 
28.13 (95% CI [13.80, 57.33]), respectively. The I2 value for the Ta
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PLR, NLR, and DOR was 0.0%. The SROC curve for FTc had an 
AUC of 0.9092 with a Q value of 0.8412 (Fig. 3A). To assess for 
publication bias, we calculated the standard error using 95% CIs 
and used these along with the AUC values for assessment. No evi-
dence of publication bias was found using Egger’s test (P =  0.4) or 

Begg’s test (P =  0.3). 

Meta-analysis of ΔVpeak 

Seven studies that assessed ΔVpeak were included in the analy-

Table 2. Quality Assessment of Included Studies Using the QUADAS-2

Serial 
number Study Year of

publication

Risk of bias Applicability concerns
Patient

selection Index test Reference 
standard

Time and 
flow

Patient
selection Index test Reference 

standard
1 Soliman et al. [11] 2022 Unclear Low Low Low Low Low Low
2 Pace et al. [13] 2022 Low ? High Low Low Low Low Low
3 Kimura et al. [14] 2022 ? High ? High Low Low Low Low Unclear
4 Jung et al. [10] 2021 Low Low Low Low Low Low Unclear
5 Xu et al. [15] 2020 Low ? High Low Low Low Low Low
6 Kim et al. [18] 2018 Low Low Low Low Low Low Low
7 Barjaktarevic et al. [16] 2018 ? High Low Low Low Low Low Unclear
8 Roehrig et al. [20] 2017 Low Low Low Low Low Low Low
9 Ibarra-Estrada et al. [12] 2015 Unclear Low Low Low Low Low Low
10 Song et al. [21] 2014 Low Low Low Low Low Low Low
QUADAS: Quality Assessment of Diagnostic Accuracy Studies version 2, ? High: may be high.

Fig. 2. (A) Pooled sensitivity and (B) specificity of carotid corrected flow time for diagnosing fluid responsiveness.
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sis. The Spearman correlation coefficient was 0.464 (P =  0.294), 
suggesting an inability to reject the null hypothesis and no thresh-
old effect. The pooled sensitivity for ΔVpeak was 0.83 (95% CI 
[0.76, 0.88]), with an I2 value of 0% (Fig. 4A). The pooled specific-
ity was 0.81 (95% CI [0.74, 0.86]), with an I2 value of 50.5%, sug-
gesting moderate heterogeneity (Fig. 4B). Therefore, in this case, 
the random-effects model was also applied. The pooled PLR, 
NLR, and DOR was 4.13 (95% CI [2.59, 6.59]), 0.22 (95% CI 
[0.16, 0.31]), and 20.85 (95% CI [11.44, 38.00]), respectively. The 
I2 values for the PLR, NLR, and DOR were 42.7%, 0%, and 0%, 
respectively. The SROC curve had an AUC of 0.8941 with a Q val-
ue of 0.8250 (Fig. 3B). The study by Pace et al. [13] only provided 
a P value (0.001) with the AUC and no standard error. We calcu-
lated the standard error for the P value from a study conducted by 
Altman and Bland [17]. 

The standard error was very low (0.0221), and the analysis 
showed publication bias according to Egger’s test (P =  0.0061) but 
not Begg’s test (P =  0.1). However, since the actual standard error 
was not known, after excluding that study, both Egger’s (P =  0.1) 
and Begg’s test (P =  0.35) showed no publication bias. 

Subgroup analysis 

Studies examining FTc provided either an absolute value 
[10,15,18], a percentage change [14], or an absolute change [16] in 
FTc as a cutoff. Therefore, we performed a subgroup analysis of 

the studies that analyzed the absolute value of FTc. The Spearman 
correlation coefficient was 0.8 (P =  0.200). The pooled sensitivity 
was 0.76 (95% CI [0.66, 0.85]) with an I2 value of 0.0%. The 
pooled specificity was 0.87 (95% CI [0.80, 0.930]) with an I2 value 
of 0.0%. The pooled PLR, NLR and DOR were 5.57 (95% CI 
[3.676, 9.17]), 0.28 (95% CI [0.19, 0.42]), and 23.60 (95% CI 
[10.72, 51.9]), respectively. The I2 value for the PLR, NLR, and 
DOR was 0.0%. The SROC curve for the FTc subgroup had an 
AUC of 0.8902 with a Q value of 0.8209. 

Discussion 

This study found that carotid ultrasound-derived FTc and 
ΔVpeak could be useful for predicting fluid responsiveness in an-
esthesia and critical care patients. Although mild-to-moderate 
heterogeneity was noted based on I2 values, both parameters were 
shown to predict fluid responsiveness with good sensitivity and 
specificity. We also performed a subgroup analysis using the abso-
lute cutoff value of FTc, which showed a sensitivity of 0.76 (95% 
CI [0.66, 0.85]) and specificity of 0.87 (95% CI [0.80, 0.930]) for 
predicting fluid responsiveness, with an I2 value of 0.0%. 

Assessing fluid responsiveness is essential for critically ill pa-
tients and patients undergoing major surgical procedures. Al-
though we have gradually shifted from static parameters (such as 
central venous pressure and pulmonary capillary wedge pressure) 
to dynamic parameters (such as PPV, SVV, and inferior vena cava 

Fig. 3. (A) SROC curve for carotid corrected flow time and (B) peak velocity variation. SROC: summary receiver operating characteristic, AUC: 
area under the curve, SE(AUC): standard error in AUC, Q*: Q* index, SE(Q*): standard error in Q* index.
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Fig. 4. (A) Pooled sensitivity and (B) specificity of carotid peak velocity variation for diagnosing fluid responsiveness.

collapsibility), there are certain limitations to the use of these 
techniques in clinical practice [19]. Therefore, a growing interest 
in the use of carotid ultrasound parameters to predict fluid re-
sponsiveness has occurred recently [7,10–16,18,20–22]. These 
studies have assessed FTc [7,10,14–16,18,22], ΔVpeak [11–
13,15,18,20,21], or carotid blood flow [22] to predict fluid respon-
siveness. Because most of the available studies used FTc or 
ΔVpeak, we decided to use these two parameters for our system-
atic review and meta-analysis. 

A study by Abbasi et al. [23] showed that novice sonologists are 
unable to determine fluid responsiveness based on changes in FTc 
or carotid blood flow. Another study [24] showed that ΔVpeak 
could not accurately predict fluid responsiveness when evaluated 
by novice sonologists. These studies suggest that some level of ex-
pertise may be required to correctly evaluate carotid ultra-
sound-derived FTc and ΔVpeak to determine fluid responsive-
ness. Therefore, in our meta-analysis, we only included studies 
that had experts perform and interpret the carotid ultrasounds. 

Previous studies have used either Bazett’s [10,18] or Wodey’s 
[10,14–16] formulas to assess FTc. Bazett’s formula is calculated 

by dividing the flow time with the square root of the cycle time 
while Wodey’s formula gives FTc as measured flow time + [1.25 
(heart rate – 60)]. Wodey’s formula has been shown to be superior 
to Bazett’s formula, as the latter is still affected by heart rate in cer-
tain situations [25]. However, most studies calculating FTc using 
either formula found it to be a reliable indicator of fluid respon-
siveness. Jung et al. [10] used both the formulas (FTcB: Bazett’s, 
FTcW: Wodey’s) for calculating FTc in mechanically ventilated 
patients and found that both predicted fluid responsiveness with 
high sensitivity (FTcB: 68.8, 95% CI [41.3, 89.0] and FTcW: 87.5, 
95% CI [61.7, 98.4]) and specificity (FTcB: 95.0, 95% CI [75.1, 
99.9] and FTcW: 80.0, 95% CI [56.3, 94.3]) at a tidal volume of 6 
ml/kg. We included all studies that calculated FTc using either Ba-
zett’s or Wodey’s formula to predict fluid responsiveness. We 
found a pooled sensitivity of 0.758 and a pooled specificity of 
0.883, with moderate-to-low heterogeneity. The SROC curve 
showed an AUC of 0.9092 with a Q value of 0.8412, which sug-
gests that, as per the available evidence, FTc could be a good pre-
dictor of fluid responsiveness in both mechanically ventilated 
[10,14] and spontaneously breathing [15,18] patients. 
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Furthermore, studies have used either an absolute value of FTc 
or a change in FTc after a fluid challenge, as mentioned above. 
Therefore, we performed a subgroup analysis including only stud-
ies that used the absolute value of FTc as the cutoff. In the sub-
group analysis, we obtained a pooled sensitivity of 0.76, a specific-
ity of 0.87, and an I2 value of 0.0%, suggesting decent sensitivity 
and specificity, with no heterogeneity. A subgroup analysis with 
either absolute or percentage change in FTc could not be per-
formed, as only one study was conducted in each case. 

We also analyzed studies that used ΔVpeak to assess fluid re-
sponsiveness [11–13,15,18,20,21]. All studies included in our 
analysis used a percentage change in ΔVpeak, although the cutoff 
values varied among the studies. The cutoff for ΔVpeak was 9.1% 
in the studies by Xu et al. [15] and Kim et al. [18], while it was as 
high as 26% in the study by Soliman et al. [11]. We calculated a 
pooled sensitivity of 0.828 and pooled specificity of 0.805 (95% 
CI [0.736, 0.864]), with no-to-moderate heterogeneity. Our find-
ings suggest that ΔVpeak is a good predictor of fluid responsive-
ness. Similar findings were reported in a meta-analysis conduct-
ed by Yao et al. [26], which included four studies assessing carot-
id ΔVpeak [12,21,27,28]. The authors found that ΔVpeak from 
both the carotid and brachial arteries could be used to predict 
fluid responsiveness; however, carotid ΔVpeak had a higher diag-
nostic value. 

A systematic review by Beier et al. [29] examined the role of 
carotid ultrasound parameters for predicting fluid responsiveness 
in adults. The authors could not perform a meta-analysis because 
of the considerable heterogeneity among the studies. They found 
that FTc and ΔVpeak were the most frequently assessed parame-
ters, the latter of which was the most well-defined parameter re-
ported at that time. They further concluded that carotid ultra-
sound-derived parameters could be useful for predicting fluid re-
sponsiveness in conjunction with clinical data. We also found 
that both FTc and ΔVpeak could be used to predict fluid respon-
siveness. 

Our meta-analysis had some limitations. First, we only includ-
ed studies in English. This resulted in the exclusion of studies 
[27,28] that could have provided valuable data for our analysis. 
However, this was done to prevent the misinterpretation of the 
findings presented in those studies. Second, only two carotid ar-
tery parameters (FTc and ΔVpeak) were analyzed. Our analysis 
also did not consider other parameters such as carotid blood flow 
and carotid artery diameter since the available studies assessing 
these parameters for predicting fluid responsiveness are limited. 
Therefore, we restricted our analysis to FTc and ΔVpeak only. 
Lastly, our findings showed mild-to-moderate heterogeneity for 
both FTc and ΔVpeak due to the lack of a uniform cutoff value 

among the studies and the use of different criteria for assessing 
the same variable. Therefore, further studies are necessary to im-
prove the diagnostic value of carotid ultrasound parameters for 
predicting fluid responsiveness. 

In conclusion, our meta-analysis showed that both FTc and 
ΔVpeak could be useful methods for predicting fluid responsive-
ness in anesthesia and critical care settings with good specificity 
and sensitivity. However, a uniform cutoff value was not used for 
either parameter. Therefore, further studies are required to estab-
lish more consistent cutoff values and to improve the diagnostic 
accuracy of both parameters. 
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