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Abstract
ObjectiveMesenchymal stem cells (MSC) have been considered as an ideal source of stem cells because of low immunogenicity and availability of autologous cells. Although it has been reported that amniotic membrane contains MSC, the difference between amniotic membrane-derived mesenchymal stem cells (AMSC) and MSC isolated from other tissues is still not clear. This study was designated to compare the characteristics and gene expression profi le of human AMSCs (hAMSC) and adipose tissue-derived mesenchymal stem cells (hADSC).

MethodsMSC were cultured from human amniotic membranes and adipose tissue by enzyme digestion. We compared the growth rate, surface marker expression, differentiation potential to adipogenic and osteogenic lineages, and gene expression of hAMSC with those of hADSC.

ResultshAMSC had growth rate and surface marker expression similar with hADSC. However, cyclopamine inhibited hAMSC proliferation in a dose-dependent manner without affecting hADSC proliferation. hAMSC showed lower differentiation potential to adipogenic and osteogenic lineages and lower in vivo tumor growth promoting effect in lung cancer cells xenotransplantion model of nude mouse than hADSC. Gene expression analysis using microarray revealed that many genes to be expressed differentially between hAMSC and hADSC are related to development and differentiation processes.

ConclusionThese findings indicate that hAMSC have different characteristics with hADSC, and that to use MSC isolated from different sources according to therapeutic purposes may provide more promising results in clinical trials than general use of MSC from a specific source.
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  The cell morphology hAMSC and hADSC. Photographs were taken under phase microscope (×100). hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells.



[BACK]
[image: Figure F2 ]Figure 2


  (A) Proliferation of hAMSC and hADSC. (B) Effect of cyclopamine on the proliferation of hAMSC and hADSC. Cell number was determined 5 days after plating of cells in the presence or absence of cyclopamine. Data represent mean ± standard error of mean (SEM) of three different experiments. (C) Effect of cyclopamine on the viability of hAMSC and hADSC. Cell viability of hAMSC and hADSC in the absence or presence of cyclopamine was determined on days 4 by trypan blue exclusion assay. Data represent mean ± SEM of three different experiments. hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells. aP < 0.05 compared with the data in the absence of cyclopamine.
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  Adipogenic differentiation of hAMSC and hADSC. (A) Cells were grown to confl uence and then induced to osteogenic or adipogenic differentiation in differentiation media. Adipogenic differentiation (AM) was determined with Oil Red O staining as an indicator of intracellular lipid accumulation (×200). (B) The quantitation of adipogenic differentiation was performed by measurement of optical density in isopropanol extract of oil red O staining. Data represent mean ± SEM of three different experiments. hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells. aP < 0.05 compared with hADSC.
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  Osteogenic differentiation of hAMSC and hADSC. Cells were grown to confl uence and then induced to osteogenic differentiation in differentiation media. (A) Osteogenic differentiation (OM) was determined by calcification deposits on the cell monolayer, which were stained with alizarin red S Alizarin Red S. (×200). (B) The quantitation of osteogenic differentiation was performed by determination of density and area of Alizarin Red S staining with an image analysis program (Metamorph, Molecular Devices, LLC., Sunnyvale, CA, USA). Data represent mean ± standard error of mean of three different experiments. hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells. aP < 0.05 compared with hADSC.
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  Effects of hAMSC and hADSC injection on the tumor growth in vivo. (A) Effect of hASCs cotransplantation on tumor growth from xenotransplanted H460 cells. H460 (1×105) were injected subcutaneously and 1×106 hADSC or hAMSC were injected into left ventricle. Representative photograph of H460-derived tumors in nude mice on 14 days after transplantation. (B) Quantification of tumor weights. Data represent mean ± standard error of mean (n=4). hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells. aP < 0.05, significant difference from control data of H460 alone; bP < 0.05, significant difference from H460 + hADSC group.
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  Expression of surface markers in hADSC and hAMSC

Data represent mean ± standard error of mean (n = 4 per group).
hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells.
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  Genes list down-regulated in hAMSC than in hADSC

hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells.
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  Genes list up-regulated in hAMSC than hADSC

hAMSC, human amniotic membrane-derived mesenchymal stem cells; hADSC, human adipose tissue-derived mesenchymal stem cells.





[BACK]
[image: Table  ]Table 4


  Functional annotation clustering by DAVID bioinformatics

DAVID, database for annotation, visualization and integrated discovery.
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