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Abstract
The structural complexity of crossover studies for bioequivalence test confuses analysts and leaves them a hard choice among various programs. Our study reviews PROC GLM and PROC MIXED in SAS and compares widely used SAS codes for crossover studies. PROC MIXED based on REML is more recommended since it provides best linear unbiased estimator of the random between-subject effects and its variance. Our study also considers the covariance structure within subject over period which most PK/PD studies and crossover studies ignore. The QT interval data after the administration of moxifloxacin for a fixed time point are analyzed for the comparison of representative SAS codes for crossover studies.
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Introduction
The confusion about the crossover designs for bioequivalence test[1, 2, 3, 4] starts from understanding the complex treatment combination with confounded alias effects and continues further to choosing a program for analysis. Above all, since each subject is randomly sampled from a population and becomes a blocking factor, crossover designs are mixed-effects models. They are not full factorial designs and each main effect is confounded with a two-way interaction.[5] On the other hand, the crossover design has within-subjects effects since there are measurements over all periods for each subject. Repeated measurements in a subject also cause correlations within subjects. Due to the mixture of these complex statistical concepts, analysts confront a hard choice among various programs.
This paper is to review and compare widely used SAS codes for crossover studies, and will apply them to QT interval data collected after the administration of moxifloxacin. First of all, we review the experimental design terminologies related to crossover studies. Second part of the paper compares five SAS codes for crossover studies and selects one code. For the comparison, our study will consider the covariance structure within subject over period which most PK/PD studies and crossover studies ignore. In the final part, we will fit models in SAS code with the QT interval data for a fixed time point and make a final choice.
This paper reviews two SAS procedures to deal with the complexity of crossover studies: GLM and MIXED. PROC GLM uses least squares or method of moments to fit general linear models.[6] On the other hand, PROC MIXED uses Restricted (or residual) Maximum Likelihood (REML).[7] PROC MIXED is recommended to avoid pitfalls of PROC GLM.[5] This paper uses PROC GLM only to verify the expected mean squares in the analysis of variance and PROC MIXED to test and estimate the effects in the crossover design model.

Methods
Data description
We collected QT interval data from 33 healthy male Korean subjects in order to compare the equality of three treatments: A, B, and C (A: placebo, 240 ml water only; B: moxifloxacin 400 mg; C: moxifloxacin 800 mg). A William's square design, one of the crossover studies, with three periods was used to compare the three treatments by controlling carryover effect. There are 6 sequences and each sequence consists of three periods such as ABC, ACB, BAC, BCA, CAB, and CBA. The subjects were randomly assigned to one of the 6 sequences. Electrocardiograms (ECGs) were measured just before and 1,2,3,4,6,8,12,16, 24 hours after administration of placebo or moxifloxacin. ECGs were taken for two consecutive days: the first day to record diurnal change (baseline data) and the next day to evaluate placebo or drug effect. Fridericia's formula was used to adjust QT interval (QTcF) for heart rate because increased heart rate usually shortens the QT interval. Change from baseline in QTcF (ΔQTcF) at each time point was analyzed for the comparison of three treatments using SAS® version 9.2 (SAS Institute Inc, Cary, USA). Each subject's baseline value (QTcFb) was also used as a covariate.

Experimental design effects
Confounding effects
Cheng et al.[5] reviewed and analyzed the confounding structure in crossover studies as follows. Each main effect is confounded with a two-factor interaction.[5] Since a combination of SEQUENCE and PERIOD subsequently determines a TREATMENT, the main effect of TREATMENT cannot be separated from the two-factor interaction of SEQUENCE*PERIOD. The main effect, its alias two-factor interaction, or both can cause the same significant result. Random assignment of subjects to SEQUENCEs, however, might allow analysts to ignore SEQUENCE effect, SEQUENCE*TREATMENT interaction, and SEQUENCE*PERIOD interaction.[5] A significant SEQUENCE effect is, therefore, likely to result from a PERIOD*TREATMENT interaction not from a difference between SEQUENCEs.[5] Similarly, a significant PERIOD effect can be interpreted as its own effect instead of a SEQUENCE*TREATMENT interaction, and a significant TREATMENT effect can be interpreted as its own effect instead of a SEQUENCE*PERIOD interaction.[5]

Fixed effect vs. Random effect
There are two types of effects in the experimental design: fixed and random. If an experimenter chooses k treatments and wishes to test the hypothesis about the treatment means, then this variable is a fixed effect.[8, 9] In this case, the conclusion is applied only to the chosen k factor levels.[8] Alternatively, if the k treatments are randomly sampled from the population and the conclusion is extended to the population, then this variable is a random effect.[8, 9] For example, since knowledge about particular subjects randomly selected from the population is not of our interest[8] and the subjects can be replaced by other subjects from the population, subject is a random effect. Since the analysts in the crossover studies expect subjects to affect only the variation but not the mean, the subject is a random effect while sequence, period, and treatment are fixed effects.

Between-subject effect vs. Within-subject effect
Between-subject effects are those whose levels remain constant within subject, whereas within-subject effects change those whose levels change within subject.[7] That is, "the levels of the between-subject variables include different subjects and the levels of the within-subject variables contain the same subject".[10] In the crossover design with QT interval data, gender, sequence, and treatment are fixed between-subject effects and subject is a random between-subject effect while period and time are fixed within-subject effects. Since subjects are measured more than once over time, a within-subject variable is also called as a repeated measured variable and the values could be correlated.[10] In NONMEM, between-subject variability is often called inter-individual variability.[11]


SAS codes for crossover studies
PROC GLM with random
As reviewed by Brunelle,[5, 12] in PROC GLM is as in program1
	/*Program 1 [12]*/
PROC GLM data=QT;
CLASS seq subject period trt ;
MODEL QTcF = QTcFb seq subject(seq) period trt;
RANDOM subject(seq) /test;
TEST H=seq E=subject(seq) ;
LSMEANS seq trt;
run;


CLASS specifies all factors in the model and MODEL equates the response variable QTcF to a linear combination of all fixed and random effects. RANDOM specifies random effects and all random interactions, and 'test' option returns the theoretical expected mean squares helping the analysts determine appropriate error terms in hypothesis tests on each effect of the model. TEST performs actual hypothesis tests for each effect in the model with appropriate error terms specified by H and E.[13] LSMEANS calculates the ML means of factors of interest, which is actually the within-group means adjusted for the other factors and especially important for unbalanced data.[13] The pdiff option performs the multiple comparisons based on one of the methods such as Bonferroni, Duncan, LSD, TUKEY, and others to check in which pair of groups the actual difference occur. The default error mean square is the overall residual or MSE.[13]

PROC MIXED with Random
There are several ways of expressing the crossover design model. A common linear model which has been used for the crossover design is as follows:[2] 
yijk = µ + γi + ξi(k) + πj + τd(i,j) + єijk
 where, for γi is the sequence effect, πi is the period effect, and τi is the treatment effect. The 103 subscript d(i,j) is either A or B or C determined by sequence i and period j.
  Since sequence, period, and treatment are fixedeffects and subject is a random effect, a mixed 105 effect model is appropriate to fit crossover studies using three different PROC MIXED as in programs106 2,[12] 3,[5] and 4[2];


	/*Program 2 [12]*/
PROC MIXED data=QT;
CLASS seq subject period trt;
MODEL QTcF = QTcFb seq period trt ;
RANDOM subject(seq) / subject=subject type=cs;
run ;


	/*Program 3 [5]*/
PROC MIXED data= QT;
CLASS seq subject period trt;
MODEL QTcF = QTcFb seq period trt / solution;
RANDOM subject(seq)/VCorr;
LSMEANS trt/alpha=0.1 cl diff adjust=tukey;
run;


	/*Program 4 [2]*/
PROC MIXED data= QT ;
CLASS seq subject period trt;
MODEL QTcF = QTcFb seq period trt/ ddfm= kenwardrodger;
RANDOM subject(seq) / subject=subject;
LSMEANS trt/pdiff cl alpha=0.1;
run;


It primarily uses Restricted (or residual) Maximum Likelihood (REML) whilePROC GLM uses method of moments estimators.[6, 7] REML in PROC MIXED estimates variance components based on the residuals which are free from fixed effects.[14, 15] PROC MIXED provides the best linear unbiased predictors (BLUPs) of the random effects based on REML.[16] On the other hand, the MLE underestimates thevariance parameters. As an easy example, MLE of σ2,, is well known to underestimate the variance σ2.

  PROC MIXED canbetter dealwith missing repeated measures at random, while PROC GLM ignores data with missing repeated measures.[13] The SUBJECT=option enables PROC MIXED to process the model by subjects, which typically takes less time and memory.[17]



Repeated Measures Analysis
Since the QT interval data for a fixed time point have the design structure of crossover studies, 3 measurements on a subject are repeated over time. As measurements are made of the same characteristic on the same observational unit but on more than one occasion or the data structure is considered as one with profiles, REPEATED option is also appropriate.[5, 18] Since measurements on the same experimental unit, subject, could be possibly correlated, the model assumption of independent errors may be violated.[5, 18]
The covariance structures in repeated measures analysis can be 
yi = Xiβ + Ziηi + εi, i = 1,2,...,N, ηi ~ N(0, Ωi), εi ~ N(0, Σi)
 defined in the matrix form as in Pinheiro and Bates:[16]
  where there areN subjects with ni repeated responsesin eachith subject. β is the p-dimensional vector of fixed effects while ηi is the q-dimensional vector of random effects and Ωi to be the correlation between random effects. Xi (ni x p) is the fixed-effect explanatory regressor matrix while Zi (ni x q) is the between-subjects random effect regressor matrix. εi is the ni-dimensional 
y1, y2, ..., yN ~ N(Xiβ, Vi)

  errors ηi and εi are assumed to be independent. Then,

  where Vi = ZiΩiZiT+Σi, the variance-covariance structure of the ith subject. In general, Σi and Ωi are assumed to be the same for all subjects. Typically Σi varies among unstructured, ARMA(1,1), equally correlated, uncorrelated, or compound symmetry, while the software package NONMEM[19] for population pharmacokinetic modeling assumes that Σi = σ2 I.

  The PRINTE statement in PROC GLM carries out Mauchly [20] and Anderson's sphericity tests.[21] The Anderson's test checks whether or not the within-subjects variance-covariance matrix has a Type H covariance structure.[22] If the sphericity test is not significant, then the matrix is of Type H and the standard univariate test for the within-subjects effects is appropriate. Otherwise, the multivariate MANOVA tests like Wilks' Lambda [10] are necessary for the within-subjects effects. The assumption of sphericity is not required to test the between-subjects effect. The sphericity test, however, is not used in this paper since the within-subject correlation structure is of our interest.

  In PROC MIXED as in program 5 [17] all fixed effects, both between- and within-subjects, must be included in the MODEL statement.


	/*Program 5 [17]*/
PROC MIXED data = QT;
CLASS seq subject period trt;
MODEL QTcF = QTcFb seq period trt;
REPEATED / subject=subject type=cs R;
RUN;


The subject=subject option makes the entire variance-covariance matrix to be N block diagonals of ni×ni blocks.There are various options for the ni×ni variance-covariance matrix: unstructured, AR, ARMA, equi-correlation, uncorrelated, compound symmetry, hetero compound symmetry, and more. The compound symmetry is often recommended because of its simplicity[17]since it has less number of parameters to estimate.The variance-covariance with compound symmetry is as follows: 


  The unstructured variance-covariance is as follow: 




  For comparison of models with different covariance structures, the likelihood-based information criteria of Akaike (AIC)[23] and Schwarz (BIC)[24] criteria can be used, which are as follows: 
AIC = -2 log Likelihood + 2 p,
 BIC = -2 log Likelihood + p log(N).

  Here p is the number of parameters in the model and N is the number of observations. We select the model with the smallest BIC or AIC.



Results
Four programs 1, 2, 3, and 5 with both type=un and type=cs were run, ignoring program 4[10] since programs 2 and 4 are almost the same. In order to analyze the crossover designs, PROC MIXED is often recommended to avoid pitfalls of PROC GLM.[5] From the expected mean squares in output from test option in program 1,[12] the sequence effect should be tested based on the subject(seqence)
	The GLM Procedure
Source Type III Expected Mean Square
seq Var(Error) + 2.4035 Var(subject(seq)) + Q(seq)
subject(seq) Var(Error) + 2.4524 Var(subject(seq))
period Var(Error) + Q(period)
trt Var(Error) + Q(trt)


effect instead of MSE (error). Other fixed effects can be tested based on MSE (error). The programs 2 and program 3 gave the same AIC and BIC. The mixed effects model with compound symmetry variance-covariance matrix turned out to be the best among four programs in Table 1.
[image: Table  ]Table 1

  AIC and BIC for programs

AIC, information criteria of Akaike; BIC, information criteria of Schwar





Table 2 presents the type 3 tests of fixed effects and only the treatment effect is significant at the significance level 0.10. Table 3 presents the multiple comparison results adjusted by Tukey. A and B, A and C, B and C are significantly different at the significance level 0.10 and each difference is estimated by lsmeans.
[image: Table  ]Table 2

  Type 3 tests of fixed effects

DF, degree of freedom





[image: Table  ]Table 3

  Differences of least squares means

SE, standard error; DF, degree of freedom; CI, confidence interval





For a subject inapartial SAS output from program 3 shows that , the variance at a particular period is , and the correlation between periods is .
[image: graphic image]

Discussion
The complex structure of crossover studies for bioequivalence test of drugs still leaves many tasks to analysts. The expected mean square table in PROC GLM, however, provides the analysts a first good guide to a correct model frame. PROC MIXED based on REML in SAS, is then recommended since it provides the BLUP of the random between-subject effects and its variance. PROC MIXED with REPEATED is further recommended since it considers the within-subject correlations with the various variance-covariance structures which most PKPD studies and crossover studies have overlooked.
The correlation within subject in our study was 0.6067, which does not seem to be ignorable. Thus both the crossover design and the correlation within subject in the model helped even if fitting the mixed effects model with variance-covariance structure involves more complex mathematics and calculations. Kenwardroger option is also recommended for crossover designs even if we dropped it in some previous programs in order to keep the original codes. We can include the interaction, treatment*period, separately in the Williams design. Since the whole QT interval data were actually collected as a series over time, the model can fit again over the time variable. An additional time dimension will incorporate huge variance-covariance matrix which requires rigorous mathematics and computing work.
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