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INTRODUCTION

The abilities of skeleton to articulate in various opposing direc-

tions and to serve as levers for muscle action are fundamental to 

mobility and locomotion in vertebrates. Skeleton also plays impor-

tant roles in maintaining blood calcium levels, supporting haema-

topoiesis, and housing the brain and the spinal cord [1]. Conse-

quently, skeletal defects often incur considerable morbidity. Con-

ventional medical strategies have barely cured irreversible tissue 

defects, focusing on the removal of causes of diseases. For the re-

pair of tissue defects, they mostly rely on natural healing abilities 

of tissues, helping the abilities to be exerted efficiently. In bone and 

cartilage, irreversible tissue defects are caused by aging, trauma, 

disease, tumor, and developmental abnormalities.

Bone grafts and prosthetic implant devices have been used to 

repair irreversible bone defects. Autograft is superior to the other 

techniques in function and engraftment, because it is a bone tissue 

derived from the same individual containing live cells and growth 

factors. Autograft is thought to have both the ability to facilitate 

bone regeneration (osteoconductivity) and the ability to actively in-

duce bone regeneration (osteoinductivity) and is speedily fused 

and integrated to the bone of the implantation site. However, the 

donor site morbidity often occurs, because autogaft requires highly-

invasive bone collection surgery from healthy sites [2]. Although al-

lograft is free from the invasiveness and less restricted in quantity, it 

runs a biological risk of contamination by pathogens as well as an 

ethical risk [3]. In allograft, no live cells are present, and growth 

factors are inactivated to some extent, since it is usually heat-treated 

and kept frozen in order to reduce immunological reactions. There-

fore, its osteoconductivity and osteoinductivity are inferior to those 

of autograft.

Several strategies for the treatment of cartilage defects have been 

reported: autograft of periosteum and perichondrium, cartilage 

transplantation, and mechanical penetration of subchondral bones 

for the bone marrow entry into the defect site. However, they failed 

to provide reproducible results or complete repair of the defects [4]. 

In addition, common to the procedures for both bone and cartilage 

defects, physicians have to manually carve grafts to fit them to de-

formities during surgery, which is often time-consuming and labo-

rious and associated with low precision [5]. Thus, grafts have short-

comings concerning both quantity (availability of suitable graft ma-

terial) and quality (donor site troubles, graft rejection and disease 

transmission). Prosthetic implants overcome some problems asso-

ciated with grafts, but have shortcomings concerning biocompati-

bility, function, and longevity.

Tissue engineering of bone and cartilage has drawn attention as 

an approach which provides solutions to such problems. Back in 

1993, Langer and Vacanti [6] proposed three components for the 

creation of new tissues: cell sources, tissue-inducing factors (signal-

ing factors), and scaffolds. To bring tissue engineering into reality, it 

is crucial to justify and optimize the use of each component as well 

as to sufficiently advance and combine the three components [7].

This paper aims to review current progress on tissue engineer-

ing of bone and cartilage, focusing on important translational stud-

ies as well as preclinical studies. We also discuss major obstacles 

and future perspectives in this field. According to the three com-

ponents for tissue engineering, the review is composed of the fol-

lowing sections:

1. Signaling factors

2. Cells

3. Scaffolds for bone tissue engineering

4. Scaffolds for cartilage tissue engineering
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5. Conclusions and future perspectives

1. Signaling factors

Substantial evidences have been accumulated in the past few 

years to understand major osteogenic signaling molecules and 

genes: bone morphogenetic proteins (BMPs) [8], Hedgehogs (Hh) 

[9,10], runt-related transcription factor 2 (Runx2) [11,12], Wnts [13], 

fibroblast growth factors (FGFs) [14] (ref) and insulin-like growth 

factors (IGFs) [15]. Among them, BMPs have been most extensively 

studied in clinical settings. Efficacy of recombinant human BMP-2 

(rhBMP-2) and rhBMP-7 in fracture repair of tibia and spine fusion 

has been shown by several clinical trials [16]. However, a large 

amount of BMP is required for the treatments, and BMP-containing 

devices often fail, raising concerns over costs and safety [17-19]. 

The reasons may be related to a lack of delivery systems which en-

ables the release of BMPs in a controlled- and sustained-manner, 

short biological half-life of BMPs, and difficulties to mimic the bio-

logical condition [20]. The efficacy of FGF-2 on bone repair was 

also examined in clinical settings as well as in preclinical studies. 

In a randomized and placebo-controlled trial, Kawaguchi et al. re-

vealed that a local application of gelatin hydrogel containing rh-

FGF-2 accelerated healing of tibial shaft fracture without any signif-

icant difference in the profiles of adverse events between treatment 

and control groups [21,22]. With regards to transcription factors, in 

vitro and preclinical studies point to Runx2 as a useful factor for 

bone regeneration using stem cells, osteoblast lineage cells, or cell 

populations containing either one [23-26].

Because the above studies focused on a single factor, the possi-

bility still remained that other signaling molecules besides BMPs 

and Runx2 or those combinations might induce bone regeneration 

more potently than a single factor. Optimization of osteogenic sig-

naling molecules through comprehensive screening addressed the 

concern. We screened cDNA libraries and the combination of acti-

vators or inhibitors of osteogenesis-related pathways (BMP, Hh, 

Runx2, Wnt, and IGF-1), and found that the combination of BMP 

signaling and Runx2 was the most potent for osteogenic differenti-

ation. The combination induced the differentiation in mouse em-

bryonic stem (ES) cells, human dermal fibroblasts, and non-osteo-

genic cell lines. We also succeeded in inducing rapid bone regen-

eration by transplantation of a monolayer sheet of fibroblasts trans-

duced with the combination [27].

Another strategy for bone regeneration is to activate osteogenic 

signaling pathways by small chemical compounds. Statins [28], iso-

flavone derivatives [29,30], and TAK-778 [31] were reported to stim-

ulate osteogenic differentiation, but their osteogenic activity was 

shown only in specific cell types including osteoblastic cells and 

stem cells. We have identified a couple of osteogenic small com-

pounds including 4-(4-methoxyphenyl)pyrido[4’,3’:4,5]thieno[2,3-b]

pyridine-2-carboxamide (TH) [32], icariin isolated from the herb 

Epimedium pubescens [33], and an isoflavone derivative, glabriso-

flavone [34]. These compounds may be candidates for small com-

pound-mediated bone regeneration in the future.

A number of chondrogenic factors have been clarified: sex deter-

mining region Y-type high mobility group box (Sox) 5/6/9 [35], 

IGF-1 [36], FGF-2 [37], Hhs [38], BMP-2 [39], transforming growth 

factor β (TGF-β) [40], and Wnts [38]. Indrawattana et al. [41] reported 

the use of three factors, TGF-β3, BMP-6 and IGF-1 in pellet cultures 

of human bone marrow cells for chondrogenic induction. IGF-1-

loaded fibrin clots induced cartilage repair in critical-sized, full 

thickness defects in adult horses [42] and partial thickness ones in 

mini pigs [43]. Implantation of chondrocytes loaded on IGF-1-con-

taining fibrin clots improved the overall continuity and consistency 

of the cartilage repair, as compared with that of chondrocytes 

alone, in the horse model [44]. TGF-β1 was shown to repair a full-

thickness cartilage defect by improving chondrocyte integration 

into the endogenous tissue and to induce the differentiation of 

MSCs to form ectopic cartilage in vivo [45]. Regarding FGFs, Ishii et 

al. [46] reported that the implantation of the fibrin sealant incorpo-

rating FGF-2 successfully induced healing of the surface with hya-

line cartilage and concomitant repair of the subchondral bone in 

cartilage defects in rabbits’ knees. FGF18 also stimulated repair of 

damaged cartilage [47].

To identify potent combination of chondrogic factors, we isolated 

ES cells from transgenic mice expressing green fluorescent protein 

(GFP) under the control of a Col2a1 promoter region. The cells 

were expected to fluoresce solely upon chondrogenic differentia-

tion. Using this system, we examined the effects of gain and loss of 

function of representative factors that are known to be important 

for chondrogenesis: SOX5, SOX6, SOX9, IGF-1, FGF-2, Indian 

hedgehog, BMP-2, TGF-β, and Wnts. GFP expression was observed 

only upon treatment with the SOX 5/6/9 (SOX trio). The SOX trio 

successfully induced chondrocyte differentiation in all cell types 

tested, including ES cells, mesenchymal stromal cells (MSCs), and 

human skin fibroblasts. Contrary to the conventional chondrogenic 

techniques, the SOX trio suppressed hypertrophic and osteogenic 

differentiation at the same time [48]. However, there was still room 
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for improvement in matrix synthesis.

Aiming at the clinical application of autologous chondrocytes to 

cartilage regeneration, the combination of growth factors was opti-

mized to expand human chondrocytes and to re-differentiate de-

differentiated chondrocyes in culture [49,50]. The combination of 

FGF-2 with insulin or IGF-I was suggested to be useful for promo-

tion of chondrocyte proliferation [49]. Also, the combination of 

BMP-2, insulin, and triiodothyronine was found to be the most ef-

fective for the re-differentiation of the de-differentiated cells after 

repeated passages [50].

2. Cells

In bone and cartilage tissue engineering, autologous cell trans-

plantation of MSCs derived from bone marrow (bone marrow MSCs) 

has been widely used. The website of United States National Insti-

tute of Health (http://www.clinicaltrials.gov) discloses that several 

clinical trials are ongoing to evaluate the safety and/or efficacy of 

autologous MSC transplants in bone and cartilage defects. Bone 

marrow MSCs were initially identified as bone marrow-derived ad-

herent cells proliferating in culture and having a property of bone 

and cartilage progenitors [51,52]. The cells have been reported to 

have abilities to differentiate into nerve cells [53] and hepatocytes 

[54] as well as cells derived from mesenchyme such as osteoblasts, 

chondrocytes, adipocytes, and muscle cells [55,56]. When infused 

into children with osteogenesis imperfecta, bone marrow MSCs in-

duced new lamellar bone formation and an increase in the total 

body mineral content with the increased number of osteoblasts 

[57,58]. Quarto et al. [59] described treatment of patients with large 

bone defects with autologous MSCs in combination with porous 

ceramic scaffolds. In the treatment of non- or delayed union, clini-

cal studies have been performed to examine the efficacy of bone 

marrow cells [16].  

As for the use of autologous MSCs in cartilage defects, Wakitani 

et al. and Kuroda et al. [60-63] reported cartilage repair in human 

by the implantation of autologous bone marrow MSC-containing 

collagen gels into knees. To examine the possibility that MSCs might 

form tumors during long-term follow-up, they further investigated 

tumor development and infections in 41 patients who had under-

gone autologous bone marrow implantation for cartilage repair. In 

the follow-up ranging from 5 to 137 months (11 years and 5 months), 

they found that none of the patients had infections or tumors [64].

Synovium has also drawn attention as another source of MSCs. A 

couple of studies have shown that MSCs isolated from synovium 

(synovial MSCs) show higher chondrogenic capacity than MSCs 

isolated from other tissues. Sakaguchi et al. [65] found in vitro that 

human synovial MSCs had higher capacity to differentiate into chon-

drocytes than MSCs derived from any other tissues including bone 

marrow, periosteum, muscle, and adipose tissue. Synovial MSCs 

induced cartilage repair more potently than muscle- or adipose tis-

sue-derived ones in a rat cartilage defect model [66]. Moreover, syno-

vial MSCs were reported to expand more than bone marrow MSCs 

with autologous human serum in vitro [67]. These data suggest that 

synovial MSCs are a more potent cell source for cartilage repair than 

bone marrow MSCs. However, isolating MSC from synovium is more 

difficult than that from bone marrow, which is a reason why bone 

marrow MSCs have been used more widely [68].

MSCs still have technical limitations both in quantity and differ-

entiation capacity. More than 109 cells are supposed to be required 

for the treatment of clinical bone defects [69]. However, only 103 to 

106 cells can be isolated from 10 mL of bone marrow fluid or adi-

pose tissue [69,70], and it is difficult to expand MSCs by several rounds 

of passages without affecting their differentiation capacity [71].

On the other hand, embryonic stem cells (ESCs) proliferate prac-

tically indefinitely and possess pluripotency (an ability to give rise 

to all cell types of embryo) [72]. The cells, isolated from the inner 

cell mass of blastcysts, were initially established from mouse em-

bryo in 1980s [73,74] and later in 1998 from human [75]. In vitro stud-

ies have shown that human and mouse ES cells can differentiate 

into osteoblatic cells under certain conditions. In a basic differenti-

ation protocol [76], embryoid bodies (EBs) derived from ESCs are 

cultured in an osteogenic medium containing dexamethazone, beta 

glycerophosphate, and ascorbic acid, which was originally devel-

oped for osteogenic induction of bone marrow MSCs and primary 

osteoblasts [77]. The protocol has been modified with the addition 

of BMP-2 [78], BMP-4 [79], compactin [78], vitamin D3 [80], or Leu-

cine-rich amelogenin peptide [81]. Compared with substantial evi-

dences for in vitro osteogenic differentiation of ESCs, their capaci-

ties of in vivo bone formation appeared to be poor [82]. Jukes et al. 

[83] reported in 2008 that they successfully achieved bone regener-

ation in rat bone defect model using mouse ESCs by mimicking the 

process of endochondral ossification, where cartilage first formed 

and then it was replaced by bone tissues.

Mouse ESCs are likely to have the ability to spontaneously differ-

entiate into chondrocytic cells, since cartilageous tissues were fre-

quently observed in teratomas which arose from undifferentiated 

ESCs implanted in vivo. Consistent with the in vivo findings, Kramer 
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et al. [84] reported that cartilageous tissues that appeared to be in 

various stages of chondrogenesis were formed in mouse EBs when 

they were cultured on tissue culture plastic with basic ES culture 

media. To further enhance the differentiation efficiency, serum-free 

chondrogenic media supplemented with several growth factors 

have been examined. The media, originally established in MSCs, 

contained insulin, transferring, selenious acid insulin, transferrin, 

and selenious acid, dexamethasone, ascorbic acid, sodium pyru-

vate, proline, and TGF-β1 or TGF-β3 [82]. Co-cultures with limb 

bud cells or chondrocytes enhanced chondrogenic differentiation 

of ESCs [85-87]; direct cell-cell contact was important for chondro-

genic differentiation of ESCs in co-culture of ESCs with limb bud 

cells, whereas co-culture with chondrocytes did not require the di-

rect contact. Tanaka et al. [88] found that chondrogenic differentia-

tion of ESCs was enhanced in the three-dimensional culture. Old-

ershaw et al. [89] recently reported a protocol to differentiate hu-

man ESCs into chondrocytes by driving the differentiation through 

primitive streak-mesoderm and mesoderm intermediates to chon-

drocytes, which was a sequence of chondrocyte formation in de-

velopment. It is noteworthy that they achieved the highly-efficient 

differentiation using chemically-defined media supplemented with 

known growth factors. 

Despite these extensive studies performed so far, four major prob-

lems remain to be solved for the use of ESCs in tissue engineering. 

The first is low efficiency of differentiation protocols. The second 

is teratoma formation by residual undifferentiated cells. The third 

is immunological reaction. The fourth is ethical issues accompany-

ing the use of human embryo. Although the immunological and 

ethical problems of ESCs may be solved by induced pluripotent stem 

cells (iPSCs) to some extent, problems concerning low differentia-

tion efficiency and teratoma formation still remain. For the osteo-

genic differentiation of iPSCs, protocols established in ESCs have 

been modified. Overexpression of Runx2 [90], a master regulator 

of osteoblast differentiation, and treatment with resveratrol [91], a 

polyphenol antioxidant, enhanced in vitro osteogenic differentia-

tion of iPSCs. Subcutaneous implantation of a gelfoam matrix con-

taining iPSC-derived osteoblasts induced bone formation with vas-

culature recruitment [92]. Ye et al. [93] achieved in vivo bone regen-

eration in a mouse calvarial bone defect model, by transplantation 

of iPSCs overexpressing SATB2, a nuclear matrix protein promot-

ing osteogenesis by interacting with Runx2 and activating transcrip-

tion factor 4 [93]. They claimed that no tumor development was 

observed in any of mice that had undergone the transplantation of 

SATB2-overexpressing iPSCs. However, to apply this methods to 

clinical settings, it is necessary to examine how many cells are still 

in an undifferentiated state and completely sort out them, if any, 

after the osteogenic induction with SATB2. Chondrogenic ability of 

iPSCs was also tested using differentiation protocols established in 

ESCs [94].

Utilizing abundant autologous adult cells such as skin fibroblasts 

may overcome problems associated with the use of stem cells. We 

and others have shown that skin fibroblasts can be a cell source for 

bone and cartilage regeneration. Hirata et al. [95] and Krebsbach et 

al. [96] described in vivo bone regeneration using dermal fibroblasts 

that were infected with adenoviruses expressing BMP-7 and BMP-2, 

respectively. We reported the efficacy of optimized osteogenic sig-

nal on in vivo bone regeneration using mouse dermal fibroblasts 

[27] and the induction of chondrocyte markers in human skin fibro-

blasts in vitro by overexpressing the SOX trio [48]. Because the fibro-

blast-derived chondrocytes appeared to form fibrocartilage rather 

than hyaline cartilage, Hiramatsu et al. [97] hypothesized that type 

I collagen expression still persisted in the cells and reprogramming 

factors might eliminate fibroblastic properties during chondrogenic 

differentiation of fibroblasts. Indeed, they achieved the generation 

of hyaline cartilage with fibroblasts retrovirally-infected with two 

reprogramming factors, c-Myc and Klf4, and Sox9 [97]. 

3. Scaffolds for bone tissue engineering

In bone tissue engineering, three biomaterials (metals, ceramics, 

and polymers) have been widely used. Titanium, a traditional inert 

biomaterial for implants, is characterized by a minimal immune re-

sponse, which is the biggest advantage of this material. Some stud-

ies have shown that titanium fiber meshes or titanium with Zinc-

containing hydroxyapatite enhance the osteogenic activity or the 

proliferation of seeded cells [98-100]. However, Tortelli and Can-

cedda [101] pointed out that the difficulty in performing histologi-

cal analyses was a serious drawback in further investigating the bi-

ological activity of this material.

Hydroxyapatite- and beta-tricalcium phosphate (beta-TCP)-based 

scaffolds are widely used, and several different bioceramics have 

been developed in order to improve their properties [102-105]. In 

particular, calcium phosphates are the most popular materials for 

artificial bones [106,107]. Their biocompatibility and biosafety are, 

in a sense, already tested in the living body, since approximately 

70% of bone of our body is made of the calcium phosphates [108]. 

The calcium phosphates are known to be naturally osteoconduc-
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tive [108] and metabolized and degraded by the endogenous bone 

remodeling system. Thus, the artificial bones made of the calcium 

phosphates are superior to autograft and allograft, in terms of bio-

safety, unlimited quantity, and low invasiveness. Given that inter-

connectivity of the pores was the primary determinant for osteo-

conductivity, Tamai et al. [109] developed a fully interconnected 

porous calcium hydroxyapatite ceramics by a foam-gel technique. 

We also developed a novel tetrapod-shape granular artificial bone 

using micro-particles of alpha-TCP by injection molding, (manu-

script in preparation). When stuffed in a space, the artificial bones 

were proven to form more effective intergranular pores for cell and 

vascular invasion because of their homogeneous shape and size.

The artificial bones usually require post-fabrication sintering pro-

cess to increase their mechanical properties, which causes contrac-

tion in size and often decreases biodegradability, as well as shape 

adjustment during surgery [110-113]. Therefore, there is a need for 

novel artificial bones that have better shape compatibility to defor-

mities, appropriate mechanical strength without the post-fabrica-

tion sintering, and biodegradability. By controlling the three dimen-

tional (3D) shape of the scaffolds, we have developed artificial bones 

with good dimensional compatibility, which results in reduction in 

the operation time, invasiveness, and speedy union with the host 

bone tissues [114-116]. Oka et al. [117] also reported the use of cus-

tomized hydroxyapatite implants which had preoperatively cut into 

a shape, based on a computer simulation with 3D-computed tomog-

raphy (CT) data, in opening wedge osteotomy.

Biodegradable synthetic polymers applied to bone tissue engi-

neering include poly (lactic acid) (PLA), poly (glycolic acid) (PGA), 

poly (-caprolactone), and poly (lactic-coglycolide) (PLGA) copoly-

mers [118-126]. Cellular adhesion to PLGA is significantly higher 

than on PLA surfaces, and PLGA scaffolds were shown to induce 

osteoblast proliferation and differentiation. PLGA supported prolif-

eration and differentiation of osteoblasts, as shown by high alka-

line phosphatase activity and deposition of a mineralized matrix 

[127,128]. PLGA has been also utilized for encapsulation and release 

of several growth factors including TGF-β, BMPs, IGFs, vascular 

endothelial growth factor, and nerve growth factor. Several studies 

have tested variable sized PLGA microspheres with growth factors 

and subsequent embedding of them in other polymer matrices 

with variable degradation rates [129]. Nie and Wang [130] reported 

the delivery of plasmids expressing BMP-2 using PLGA/Hydroxy-

apatite composite scaffolds. Takaoka and their colleagues studied 

PLA derivatives and their composites with other materials as a car-

rier of rhBMP-2 [131-134]. They combined a block co-polymer of 

PLA-p-dioxanone-poly (ethylenglycol) (PEG) and beta-TCP (PLA/

PEG/beta-TCP) [135]. The efficacy of the rhBMP-2-loaded PLA/

PEG/beta-TCP in bone repair has been shown by various animal 

models relevant to clinical situations [136-139]. Although Poly 

(ε-caprolactone) carries biocompatibility and processability, it is 

less suitable for long term applications because of its high hydro-

phobicity and low degradability in vivo [140].

Among natural polymers, bovine type I collagen has been used 

as a promising biomaterial. Several type I collagen-based materials 

are commercially available including CollapatII (Biomet Inc., War-

saw, IN, USA), Healos (Depuy Spine Inc., Raynham, MA, USA), Col-

lagraft (Neucoll Inc., Palo Alto, CA, USA; Zimmer Inc., Warsaw, IN, 

USA) and Biostite (Vebas S.r.l., San Giuliano Milanese, Italy) [141]. 

Given that collagens are dominant and important matrix in bone 

tissues, it makes sense that the scaffold has biocompatibility as well 

as the activity to facilitate osteogenesis or cell proliferation. How-

ever, two major concerns, disease transmission from other species 

and its poor mechanical property, remain to be solved.

4. Scaffolds for cartilage tissue engineering

Scaffolds for cartilage tissue engineering are classified into three 

groups: polysaccharide-based natural, protein-based natural, and 

synthetic biomaterials. Polysaccharide-based materials include algi-

nate, chitosan, cellurose, and hyaluronic acid [4]. Hyalograft C, the 

combination of a hyaluronic-acid-based matrix HYAFF-11 (Fidia 

Advanced Biopolymers, Abano Terme, Italy), and autologous chon-

drocytes, is used in clinical settings [142].

Among protein-based materials, bilayer collagen type I and III 

membranes are clinically available for autologous chondrocyte im-

plantation (ACI): MACI (Matrix-induced ACI; Verigen, Leverkusen, 

Germany), Maix (Matricel, Hezoenrath, Germany) and Chondro-

gide (Geistlich Biomaterials, Wolhusen, Switzerland) [4]. Atelocolla-

gen (Koken Co., Ltd., Tokyo, Japan) is a type I collagen gel, from 

which telopeptide causing antigenecity is removed. The material 

has an advantage in generating 3D structure of implant. Ochi et al. 

[143,144] have applied the aterocollagen as a carrier of chondrocytes 

in ACI. However, when implanted, the ateloacollagen-cell compos-

ites should be covered with periosteum not to be detached from 

implantation sites [145]. In addition, fibrin glue (Tissucol, BAXTER, 

Vienna, Austria) was used for cartilage repair, and its 1-year clinical 

results were reported by Visna et al. [146].

PEG is used to create synthetic-based hydrogels in cartilage tissue 
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engineering. Chondrocytes remained viable and synthesized carti-

lage-specific extracellular matrix, even when they were encapsu-

lated in a PEG hydrogel under a compressive modulus (i.e., 260-

900 kPa) similar to that of human cartilage (i.e., 790 ± 360 kPa) 

[147,148]. Bio-Seed-C (BioTissue Technologies, Freiburg, Germany) 

is a clinically-available synthetic material, in which a porous 3D 

scaffold consisting of PGA, PLA, and polydioxanone is combined 

with autologous chondrocytes embedded in fibrin gel. Bio-Seed1-

C (BioTissue Technologies) induced the formation of hyaline carti-

lage and a significant clinical improvement of joint function [149]. 

5. Conclusions and future perspectives

Since human multipotent MSCs were isolated, expanded, and 

characterized in the late 1990s [56], researchers in this field have 

explored suitable ways to apply the cells to tissue engineering of 

bone and cartilage. Despite a large number of preclinical and clini-

cal studies providing several promising results, we still struggle with 

finding ways to utilize stem cells more safely and effectively. Although 

no one disputes that stem cells are a promising cell source for tis-

sue regeneration, we need to keep in mind that stem cells are not 

necessarily a panacea. It is about time to think if the use of stem 

cells is really required for all cases with irreversible skeletal defects. 

In bone tissue engineering, for example, it appears possible to re-

pair some bone defects without cell transplantation by inducing host 

tissues’ regeneration abilities with scaffolds alone or the combina-

tion of scaffolds and signaling factors (Fig. 1). Therefore, it seems 

advisable to start by considering simple strategies before resorting 

to complicated strategies using cells. We believe that in tissue engi-

neering, using stem cells is not an end, but a means that has to be 

justified and optimized for individual cases. To advance this field 

more steadily and rapidly than ever before, we should attempt to 

build multi-disciplinary collaboration, which will open a new ave-

nue for the realization of tissue-engineering-based therapies. 
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