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Since the mitochondrial pyruvate dehydrogenase complex (PDC) controls the rate of carbohydrate oxidation, impairment of PDC 
activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic 
syndrome, and the onset of type 2 diabetes (T2D). There are also situations where muscle insulin resistance can occur indepen-
dently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same un-
derlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome prolif-
erator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycae-
mia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell’s 
ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D’s compli-
cations are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and pe-
ripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of 
muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be vi-
able strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.
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INTRODUCTION

Regulation of glucose disposal by skeletal muscle and 
exercise
There are globally more than 1 billion overweight adults, at least 
300 million of whom are obese. The key causes of obesity are: 1) 
increased consumption of foods rich in saturated fats and sug-
ars, and 2) the lack of physical activity, which leads to a rise in 
blood circulating free fatty acids (FFAs). A chronic elevation of 
circulating FFA leads to a metabolic syndrome, which is a clus-
ter of risk factors such as insulin resistance, hypertension, and 
dyslipidaemia (Fig. 1). Insulin resistance can be described as 

the inability of skeletal muscle to switch from fat to carbohy-
drate (CHO) oxidation in response to a diet-mediated increase 
in CHO or insulin availability.
 The main function of skeletal muscle in vertebrates is the 
motor function. It is known that when muscle contracts (exer-
cise) to produce force it also increases pyruvate generation by 
enhancing muscle glycogen degradation and leg glucose uptake 
from the circulating blood. Pyruvate can either be reduced to 
lactate or oxidised by pyruvate dehydrogenase complex (PDC) 
in mitochondria to produce acetyl-CoA according to the fol-
lowing irreversible reaction: pyruvate+coenzyme A (CoASH)+ 
nicotinamide adenine dinucleotide (NAD+)→ acetyl-CoA+ 
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nicotinamide adenine dinucleotide hydrogen (NADH)+CO2. 
Through this reaction and its ability to increase the volume of 
glucose oxidised in response to exercise and insulin stimulus, 
skeletal muscle PDC activity (PDCa) plays an important role in 
the whole body glucose homeostasis.
 While 10% of the O2 from the blood circulatory system is 
supplied to skeletal muscle at rest, this value can increase to 
80% during strenuous exercise to support the oxidative energy 
delivery to the contracting muscle. At the fuel substrate level, 
over 50% of the available glucose after a mixed-meal at rest 
will be stored as glycogen or oxidised by the skeletal muscles. 
Depending on exercise intensity the metabolic rate can in-
crease up to 10-fold from the resting rate to meet the energy 
expenditure of the contracting muscle and most of energy is 
provided by the PDC-mediated CHO oxidation (Fig. 2) [1].
 In keeping with this observation, at the onset of submaxi-
mal muscle contraction (75% VO2max) PDCa raises rapidly, al-
beit at a slower rate than pyruvate formation, which may ex-
plain the initial muscle lactate accumulation, from resting val-
ues of around 0.3 to 0.5 (high value in trained subjects) to 2.0 
to 3.0 (high value in trained subjects) mmol acetyl-CoA/min/
kg wet muscle. Therefore, it is not unusual for muscle to oxi-
dise 3 to 4 g of glucose per minute during the steady-state seg-
ment of a prolonged submaximal exercise [2].
 In summary, it seems that maximal food-borne glucose dis-
posal, especially oxidatively, would require optimisation of 
three interrelated responsive fundamentals: muscle mass, ex-
ercise, and a suitable activation of PDC.

REGULATION OF PDC ACTIVITY

PDC is a multicomplex mitochondrial enzyme, in fact the larg-
est mammalian enzyme complex. PDC is composed of multi-
ple copies of three catalytic (E1α/β-pyruvate dehydrogenase 
PDH, E2, and E3), one structural (E3-binding) and two regula-
tory proteins: PDH kinase (PDK) and PDH phosphatase 
(PDP). The enzyme complex is organised around a core con-
sisting of component E2 to which E1 and E3 are joined by non-
covalent bonds. Interaction of the three enzymes is brought 
about by lipoyl groups that visit sequentially the active sites on 
the three enzymes. The activation status of the PDC is con-
trolled covalently via phosphorylation-dephosphorylation of 
three serine residues (Ser232, Ser293, Ser300) on the E1α subunit 
[3] by a competing kinase (PDK) and phosphatase (PDP) reac-
tions [4]. The resulting interconversion cycle determines the 
amount of PDC existing in dephosphorylated or active form, 
i.e., PDCa [5]. When PDC is fully dephosphorylated the activ-
ity of PDC (maximal attainable for a given amount of protein) 
is labelled as total PDC (PDCt). Previous evidence from our 
laboratory has suggested that in humans there is a strong cor-
relation between the amount of PDC protein and the whole 
body VO2max [5-7]. In other words, trained subjects have a 
greater maximum capacity to oxidise CHO-derived-pyruvate 
than sedentary subjects. Although there is no apparent expla-
nation for this observation at a first glance, it would appear 
that the protein level one of the catalytic components of PDC, 
(E1α/β-PDH), is increased when muscle specific peroxisome 
proliferator-activated receptor γ coactivator 1-α (PGC-1α) is 
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Fig. 1. Metabolic inflexibility in type 2 diabetes.

Fig. 2. Energy expenditure and fuel selection during cycling 
exercise at 75% of VO2max. Adapted from van Loon et al. J 
Physiol 2001;536(Pt 1):295-304 [1]. FFA, free fatty acid.
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overexpressed [8]. Since PGC-1α seems also to control mito-
chondrial biogenesis and VO2max [9] then a link between 
PDCa and VO2max can be made.
 The PDK family comprises of four isoforms (PDK1 to 4) 
[10], whilst PDP has two isoforms (PDP1 to 2) [11]. Although 
PDK2 and PDK4 mRNA are expressed in most tissues, includ-
ing skeletal muscle and heart, the specific activity of PDK4 is 
8-fold greater than that of PDK2 [10], thereby assigning a 
greater regulatory significance to PDK4. PDK1 and PDK3 ap-
pear to be limited to heart, pancreatic islets and kidney [10]. 
Upon muscle stimulation following a nerve-initiated electrical 
impulse, calcium ions (Ca2+) are released from the sarcoplas-
mic reticulum, which surrounds each myofibril and floods the 
muscle cell, which then contracts. At the same time the mito-
chondrial Ca2+ uptake facilitates activation of PDP1, but not 
PDP2 [11], and thereby dephosphorylating/activating of mus-
cle PDC (Fig. 3).
 Of particular importance to our understanding of how mus-

cle PDCa is regulated during muscle contraction are the early 
findings from in vitro studies working with purified PDC iso-
lated from kidney, heart, and skeletal muscle, which showed 
that increased levels of intracellular acetyl-CoA and NADH, 
the FFA oxidation end products, can inhibit PDCa either by 
activation of PDK4 activity, and thereby covalently reducing 
the amount of PDCa, or by allosterically inhibiting the activity 
of PDCa (Fig. 3) [12,13]. Nevertheless, it is worth noting here 
that in vivo experiments with high intensity involuntary con-
traction induced by percutaneous electrical stimulation in hu-
mans showed that regardless of the contraction-induced rise in 
the muscle acetyl-CoA/CoASH or NADH/NAD+ ratios a com-
plete transformation or activation of muscle PDC to PDCa oc-
curred [7]. A similar finding was observed during voluntary 
submaximal exhaustive exercise where the increased muscle 
acetyl-CoA/CoASH ratio during exercise did not cause inhibi-
tion of either the PDC activation or the calculated catalytic ac-
tivity of active PDC [5]. Collectively, these in vivo data would 
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Fig. 3. Physiological factors that control muscle pyruvate dehydrogenase activity. NAD, nicotinamide adenine dinucleotide; 
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suggest that following a standard mixed-meal (55% to 60% 
CHO, 30% to 35% fat, and 10% to 15% protein) the exercise 
mediated muscle acetyl-CoA and NADH accumulation do not 
inhibit the transformation/activation of PDC to PDCa. How-
ever, allosteric inhibition of flux through a given amount of 
PDCa does occur by limiting the mitochondrial NAD+ and 
CoASH availability [14,15].
 During muscle contraction the activation of PDC is achieved 
by the accumulation of mitochondrial calcium and pyruvate 
[16], which activate PDP1 and inhibit PDK2 and 4, respectively. 
Jointly, this ensures that CHO utilisation and activation of PDC 
increase in parallel with exercise intensity (Table 1) [5,17].
 Pertinent to type 2 diabetes (T2D), however, when exercise at 
submaximal workloads is preceded by several days of high-fat 
dietary intake, calcium and pyruvate seem unable to activate 
PDC to the same extent as in the control diet condition [18,19], 
though they may at lower exercise intensities [20], resulting in 
reduced CHO oxidation compared to control at exercise intensi-
ties where muscle glycogen is an important contributor to ener-
gy production. 

MUSCLE PDC ACTIVITY AND MUSCLE 
ACETYLCARNITINE ACCUMULATION 

It would be inappropriate to discuss exercise and activity of 
PDC in contracting muscle without mentioning the signifi-
cance of muscle acetylcarnitine accumulation. Studies in hu-
mans have demonstrated a decrease in muscle free carnitine 
levels, which was matched by an almost equivalent increase in 
acetylcarnitine during muscle contraction [6,21]. These ob-
served changes are consistent with the suggestion that carni-
tine, regulates the mitochondrial acetyl-CoA/CoASH ratio. By 
acting as an acceptor of acetyl groups from acetyl-CoA, carni-

tine may help to maintain a pool of free CoASH under condi-
tions where the rate of acetyl-CoA condensation with oxaloac-
etate is less than its rate of formation from PDC mediated py-
ruvate decarboxylation. Thus, assuming that human muscle 
PDC was fully activated during exercise, it can be calculated 
that the rate of pyruvate decarboxylation to acetyl-CoA would 
be in excess of 30 µmol/sec/kg wet muscle [5]. If this rate of 
decarboxylation were supported solely by the CoASH avail-
able in muscle, i.e., 10 µmol/kg wet muscle [6], the entire pool 
of muscle CoASH would have been acetylated within one sec-
ond of muscle contraction. Without the buffering effects of 
carnitine the PDC reaction and β-oxidation would be inhibit-
ed, since both reactions require a readily available pool of free 
CoASH (Fig. 4). These findings have recently prompted re-
search into a novel approach to treating the metabolic impair-
ment in T2D by attempting to reduce the competition for 
CoASH between fat and CHO oxidation by increasing muscle 
carnitine pool [22].

PDC AND PDK4 IN HUMAN SKELETAL 
MUSCLE

Activity of PDC in resting muscle appears to decline whenever 
muscle PDK4 expression is selectively up-regulated by its 
main physiological regulators, i.e., changes in FFA and insulin 
availability, in response to starvation, hormonal and substrate 
changes [23-25], in pathologies such as insulin resistance and 
T2D [26-28], inflammation [29,30], or following medication 
with peroxisome proliferator-activated receptor (PPAR) ago-
nists or statins [31,32]. T2D related muscle metabolic inflexi-
bility is often attributed to a low level of circulating inflamma-
tory cytokines. Indeed, in a rodent model of lipopolysaccha-
ride (LPS) induced endotoxemia we showed that a continuous 
infusion of LPS over 24 hours in conscious rodents increased 
extensor digitorum longus muscle PDK4 mRNA expression 
24-fold, PDCa decreased by 65% lower and muscle lactate ac-
cumulation increased several-fold compared with the control 
(saline) [30]. These changes were preceded by early marked 
increases in muscle tumor necrosis factor-α and interleukin-6 
mRNA expression. It was concluded that the elevation in 
muscle lactate concentration during LPS infusion is not attrib-
utable to limited muscle oxygen availability or adenosine tri-
phosphate (ATP) production, but rather results from inhibi-
tion of muscle PDCa, most probably due to cytokine-mediat-
ed up-regulation of PDK4 transcription. Interestingly, in an-

Table 1. Metabolite levels in human skeletal muscle at rest and 
after 3×30 minutes bouts of exercise at 40%, 55%, and 75% of 
VO2max

Rest 40% VO2max 55% VO2max 75% VO2max

Glycogena 526±26 414±24 386±31 200±32

Lactatea 6.3±0.9 11.5±1.7 15.6±3.4 29.5±2.4

PDCab 0.57±0.08 1.18±0.10 1.23±0.17 1.67±0.32

Acetylcarnitinea 2.3±1.1 7.3±1.1 8.4±1.3 12.5±1.1

Values are presented as mean±standard deviation. 
PDCa, pyruvate dehydrogenase complex activity.
ammol/kg dry muscle, bmmol/min/kg wet muscle.
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other similar rodent inflammatory model it was observed that 
concomitant with the up-regulation of skeletal muscle PDK4, 

there was also a down-regulation of the muscle Ca2+-depen-
dent PDC phosphatase (PDP1) (Fig. 5) [33].
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Fig. 5. (A) Muscle pyruvate dehydrogenase kinase isoform 4 (PDK4) and (B) pyruvate dehydrogenase phosphatase catalytic sub-
unit 1 (PDP1) are concomitantly up- and down-regulated, respectively, in a lipopolysaccharide (LPS)-inflammation model com-
pared with their corresponding control (saline). Adapted from Crossland et al. J Physiol 2008;586(Pt 22):5589-600 [33]. HMBS, 
hydroxymethylbilane synthase. aSignificantly different from control; P<0.05.
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 In T2D and starvation, states which are well associated with 
high circulating FFA levels, PDP1 level in heart and presum-
ably skeletal muscle is lower than in control [34]. It is pertinent 
therefore to suggest that a double setback (increased PDK4 
and decreased PDP1) is imposed on the muscle PDCa in T2D 
patients. This may potentially account for the inability of mi-
tochondrial Ca2+/pyruvate accumulation to fully activate hu-
man muscle PDC during single bouts of submaximal intensity 
cycling when they were preceded by short (3 days) [2,19], or 
medium length (6 days) high fat dietary intake [35], when 
otherwise 10 minutes of exercise at 75% of VO2max, which was 
preceded by a normal Western diet should be sufficient to fully 
dephosphorylate/activate PDC [5]. 
 Expression of the human PDK4 gene is increased in fasting 
and other conditions associated with a shift from glucose utili-
zation to fatty acids as an energy provider. However, muscle 
PDK4 mRNA expression can be also increased under condi-
tions of reduced muscle glycogen availability (exercise mediat-
ed), which the authors proposed to be attributable to glycogen 
regulatory enzymes such as protein phosphatase 1 and glyco-
gen synthase kinase 3, which are bound to the glycogen struc-
ture only to be released when the glycogen level decreases 
[36]. The authors concluded that exercise-induced expression 
of metabolic genes may be co-ordinately linked to signalling 
mechanisms sensitive to glycogen level. However, this conten-
tion along with the proposed central role of pyruvate to mus-
cle PDC activation in vivo may be overstated, at least during 
muscle contraction. Thus, the importance of glycogen avail-
ability and pyruvate formation to PDC activation during in-
tense exercise in human skeletal muscle were investigated after 
glycogen depleting one-legged cycling exercise [16]. During a 
subsequent 10 minutes of two legged-exercise at 75% VO2max, 
it was clear that regardless of whether pre-exercise muscle gly-
cogen content was at a typical resting concentration or deplet-
ed, the increase in PDC activation from its resting value was 
the same, despite pyruvate accumulation in the glycogen de-
pleted leg during exercise being 3-fold lower than in normal 
glycogen leg. However, as a result of the reduction in pyruvate 
availability, calculated flux through PDC reaction was several-
fold lower in the glycogen depleted state compared with nor-
mal. It is therefore pertinent to conclude that whilst muscle 
glycogen and pyruvate availability appear to be important to 
the rate of flux through PDC reaction during in vivo contrac-
tion, they are not of primary importance to the control of PDC 
activation under these conditions, which is probably princi-

pally regulated by muscle calcium availability. 

INHIBITION OF MUSCLE PDC ACTIVITY BY 
DRUGS

After medication with PPARs agonists and statins, which were 
prescribed in the diabetic population to improve blood lipid-
emic profile by increasing fat oxidation and reducing circula-
tion cholesterol levels, unfortunately inhibition of muscle PDCa 
via increase in expression of muscle PDK4 mRNA and protein 
can also occur. By way of illustration, in a rodent model 6 days 
of medication with the PPAR-δ agonist GW610742 inhibited 
the activity of PDC-dependent CHO oxidation (Fig. 6) [37] via 
up-regulation of PDK4 [31]. This impaired muscle function 
during a sustained contraction over 30 minutes where the de-
mand on CHO use was markedly increased (Fig. 7).
 The importance of PDCa to the force development was also 
illustrated in a PDK4 knockout mice model whose extensor 
digitorum muscle was able to produce 40% more force than 
the corresponding muscle isolated from the wild type during 
high intensity electrically evoked contractions [38]. Since ad-
ministration of PPAR agonists to humans and rodents has 

Fig. 6. Muscle pyruvate dehydrogenase complex (PDC) activi-
ty at rest and after 30 minutes of electrically evoked submaxi-
mal intensity isometric contraction after 6 days of medication 
with different doses of peroxisome proliferator-activated recep-
tor (PPAR)-δ agonist GW610742 (0 mg [control; empty bar], 5 
mg [grey bar], and 100 mg kg-1 body weight [black bar]). Adapt-
ed from Constantin-Teodosiu et al. J Physiol 2009;587(Pt 1): 
231-9 [37]. a,bSignificantly different from the corresponding 
control; P<0.05.
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been linked to lower blood glucose levels, it seems therefore 
appropriate to suggest that any PPAR-δ mediated blood glu-
cose lowering effect will be unlikely to be attributable to an in-
crease in PDC-mediated oxidative glucose disposal as this 
route would be inhibited following PPAR-δ mediated inhibi-
tion of PDCa. Indeed, molecular and functional analyses sug-
gest that PPAR-δ activation reduces blood glucose levels by re-
ducing hepatic glucose output following increased glycolysis 
and the pentose phosphate shunt and promoting fatty acid 
synthesis in the liver [39].
 Statins are the most prescribed class of drugs worldwide. 
Statins inhibit formation of mevalonate, and thereby the rate 
of hepatic cholesterol biosynthesis, by inhibiting 3-hydroxy-
3-methyl glutaryl CoASH reductase. Therefore, statins are 
used clinically for blood cholesterol reduction in hypercholes-
terolaemia, and their use has been associated with a reduction 
in mortality in patient populations with pre-existing cardio-
vascular diseases [40]. However, treatment with simvastatin at 
80 mg/kg body weight/day over 12 days in a rodent model up-
regulated gene expression consistent with increased oxidative 
stress and inflammation in skeletal muscle [32]. Important to 
the present discussion, simvastatin markedly up-regulated 
muscle PDK2 and PDK4 mRNAs and glycogen level, which 
strongly suggests that muscle glycogen oxidation was im-
paired. Collectively, these findings indicate instauration of a 

muscle insulin resistance state after simvastatin treatment. 
Therefore, it may not be surprising that a recent meta-analysis 
of five human statin studies associated intensive high dose 
statin therapy with increased risk of new onset T2D [41]. The 
authors cautiously concluded that while the benefits of taking 
statins outweighs the negative effects there is a need to make 
patients aware of this possible risk and to monitor patients for 
development of diabetes, especially on intensive dose therapy.

MECHANISM OF PDK4 ACTIVATION BY 
PPARs/FOXO1

Increases in circulating insulin level under normal dietary 
conditions, together with an increase in muscle Ca2+ availabili-
ty during exercise appear to be the main physiological activa-
tors of muscle PDC in humans and they act by controlling the 
PDK4 and PDP1 activity, respectively. Activation of muscle 
PDC by insulin seems to occur via increased PDP1 and PDP2 
activity following activation and translocation into mitochon-
dria of the protein kinase Cδ [42]. 
 Conditions with high circulating FFA levels as seen after a 
high-fat diet or in T2D, inflammation, PPAR agonist, or statin 
treatment are associated with an increase in muscle PDK4 
mRNA and protein expression, thereby inhibiting activity of 
PDC at rest and during exercise. It has previously been sug-
gested that activation of PPAR transcription factors (PPAR-α, 
-δ, -γ) by ligands, such as FFAs might be a mechanism respon-
sible for the up-regulation of muscle PDK4 mRNA expression 
[31,43-45]. Conversely, others have indicated that although 
PDK4 protein expression in an oxidative skeletal muscle is 
regulated by a lipid-dependent mechanism this is not obliga-
torily dependent on the PPAR-α signalling [46]. Secondly, the 
more rapid increase in PDK4 mRNA expression compared to 
PPAR-α mRNA expression following administration of a 
PPAR-α receptor agonist speaks against any involvement of 
PPARs in up-regulation of PDK4 [47]. Thirdly, a distinct asso-
ciation between levels of plasma FFA and levels of muscle 
PDK4 mRNA expression, together with a lack of any change 
in muscle PPAR-α mRNA or protein expression were docu-
mented during a 40 hours fast in humans [35]. Collectively, 
these data suggest other factors than PPARs could be respon-
sible for the increase in PDK4 mRNA expression under condi-
tions of increased circulating FFA availability.
 Since FFAs can also indirectly induce the translocation of 
forkhead box (FOXO) transcription factors 1 and 3 to the nu-

Fig. 7. Rat skeletal muscle force during 30 minutes of electri-
cally evoked submaximal intensity isometric contraction after 
6 days of medication with different doses of peroxisome pro-
liferator-activated receptor (PPAR)-δ agonist GW610742. 
Adapted from Constantin-Teodosiu et al. J Physiol 2009;587 
(Pt 1):231-9 [37]. aSignificantly different from vehicle; P<0.05.

M
us

cle
 fo

rc
e d

ur
in

g 
co

nt
ra

ct
io

n 
aft

er
 P

PA
R-

δ 
tre

at
m

en
t 

100

80

60

40

20

0
Peak Electrical

stimulation
5’ 15’ 25’10’ 20’ 30’

Vehicle
5 mg kg-1

100 mg kg-1

a



308

Constantin-Teodosiu D

Diabetes Metab J 2013;37:301-314 http://e-dmj.org

cleus [48,49], and FOXO1 can bind directly to the promoter 
region of the PDK4 gene [48], it is reasonable to suggest that 
FOXO factors could also play an important role in promoting 
the up-regulation of PDK4 mRNA in response to increased 
FFA availability. Indeed, the FOXO family of transcription fac-
tors have been implicated in induction of muscle insulin resis-
tance in vivo following the upstream dysregulation of insulin 
mediated stimulation of phosphoinositol 3-kinase and Akt1 
[50,51]. This is a pathway known to be sensitive to circulating 
insulin and FFA availability in humans [30]. Since FOXO1 can 
sense changes in availability of FFAs or insulin and relay the 
message downstream by modulating transcription of many 
skeletal muscle genes, including PDK4 [48,50], it could inhibit 
the PDC controlled CHO oxidation (Fig. 8). 
 While these findings were documented in in vitro or in ani-
mal models [48,50], a recent study in humans in whom a mus-
cle insulin resistant state was induced by consuming a high-fat 
diet for 3 days, has recognized FOXO1’s involvement in up-

regulation of muscle PDK4 mRNA and depression of muscle 
PDCa at rest and during a bout of 60 minutes of submaximal 
exercise [2]. Though PPAR-α mRNA was up-regulated by the 
high-fat diet, but to a smaller extent than PDK4 mRNA, the 
strong relationship between FOXO1 and PDK4 mRNA ex-
pression at rest and during exercise together with the less ro-
bust association between PPAR-α and PDK4 mRNA expres-
sion, support the notion that FOXO1 plays a more significant 
role than PPAR-α in the control of PDK4 expression and mus-
cle CHO oxidation in insulin resistant state.

EFFECT OF DICHLOROACETATE ON PDC 
ACTIVITY AND CHO OXIDATION

Dichloroacetate (DCA) is a halogenated carboxylic acid that 
has been shown to increase the activity of PDC in animal [52] 
and human muscles [2,53,54] by competitively inhibiting 
PDK2 and PDK4 [10]. Several studies have demonstrated that 

Fig. 8. Mechanism of forkhead class O (FOXO) 1 mediated pyruvate dehydrogenase kinase isoform (PDK) 4 up-regulation and 
thereby pyruvate dehydrogenase complex (PDC)-mediated inhibition of carbohydrate oxidation. GLUT4, glucose transporter 
isoform 4; IGF, insulin-like growth factor; FFA, free fatty acid; TNF, tumor necrosis factor; PTEN, phosphatase and tensin ho-
molog; PI3K, phosphoinositol 3-kinase; GSK, glycogen synthase; IRS-1, insulin receptor substrate 1. 
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DCA increases CHO oxidation, reduces muscle lactate accu-
mulation simultaneously. Consistent with this, DCA has also 
been shown to lower blood glucose concentration in patients 
with T2D [55], probably due to increased muscle and liver ox-
idative glucose disposal [54,56]. 
 Although several studies using resting [54] or contracting 
human muscle [53] showed that DCA infusion resulted in in-
creased resting muscle PDCa no study, until recently, has de-
termined whether DCA administration at rest can offset the 
reported high-fat diet mediated PDK2 and PDK4 inhibition of 
PDC activation and CHO oxidation during subsequent exer-
cise in humans [2]. 
 A recent study has shown that indeed DCA administration 
is able to rescue the negative effects of 3-day of high-fat diet-
mediated inhibition of muscle PDC activation both at rest and 
during subsequent exercise, and increased the rate of whole 
body CHO oxidation during exercise towards that seen in 
subjects receiving only an isocaloric control diet (Fig. 9). The 
authors concluded these findings support the view that PDC 
plays a central role in the regulation of fuel selection and insu-
lin resistance in muscle [2]. 
 As discussed earlier in the present paper, administration of 

statins, especially at high doses, is associated with an increased 
prevalence of insulin resistance due to an up-regulation of 
muscle PDK4 isoform and decreased muscle PDCa, which 
collectively impair CHO oxidation. We were therefore inter-
ested to investigate whether administration of DCA could 
correct the impairment of CHO oxidation induced by simvas-
tatin in a rodent model [57]. Compared with control, simvas-
tatin (80 mg/kg/body weight) increased PDK4 protein expres-
sion and reduced muscle PDCa. However, when Simvastatin 
was administered with DCA (40 mg/kg/body weight) muscle 
PDK4 mRNA and protein were decreased while inhibition of 
muscle PDC activation was abolished. 
 Although DCA has proved once again to be an efficient oral 
antidiabetic agent that could reduce blood glucose and lactate 
by inhibiting hepatic glucose synthesis and stimulating glu-
cose clearance [58] and use by peripheral tissues [59], includ-
ing skeletal muscle, concerns about its lack of tissue specificity 
and long-term safety continue to hamper its therapeutic use as 
an antidiabetic agent. 

DOES THE HYPOXIA-INDUCIBLE FACTOR-
1α MEDIATED PDK4 UP-REGULATION MAKE 
CHUVASH POLYCYTHEMIA PATIENTS 
INSULIN RESISTANT?

Hypoxia is a state that occurs in tissues when oxygen supplied 
by the cardiovascular system does not meet the demand for 
oxygen at cellular level. Tissue hypoxia occurs in normal phys-
iological conditions such as contracting muscle as well as in 
pathophysiological settings such as inflammation [60], myo-
cardial infarction and tumor formation [61]. In response to 
the low oxygen availability, the hypoxia-inducible factor (HIF) 
family of transcription factors are activated. One of them, 
HIF-1α, drives up-regulation of glycolytic enzymes to support 
an increase in glycolytic ATP production to bridge the decline 
in oxidative ATP production when mitochondrial oxygen 
availability is low. Experiments in cell culture have also identi-
fied a role for HIF-1α in down-regulating mitochondrial oxy-
gen consumption by directly or indirectly inducing PDK1, 
which would inhibit PDCa [62]. However, these observations 
were restricted mainly to cell cultures or to a single PDK iso-
form (PDK1), and their significance for the intact organism 
remained largely unexplored. An opportunity to investigate 
the effects of altered HIF-1α levels in human skeletal muscle 
on all muscle PDK isoforms and PDCa was made possible by 
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Fig. 9. Human quadriceps muscle pyruvate dehydrogenase 
complex activity (PDCa) at rest, 10 and 60 minutes of sub-
maximal intensity exercise (75% VO2max) with dichloroacetate 
(DCA) or saline infusion prior to exercise after 3 days of either 
a standard diet (CD) or high-fat diet (HFD). Adapted from 
Constantin-Teodosiu et al. Diabetes 2012;61:1017-24, with 
permission from American Diabetes Association [2].
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the condition of Chuvash polycythemia (CP), which is an au-
tosomal recessive disorder with an endemic prevalence in the 
region of Chuvashia in the central European part of Russia. 
The CP patients have a mutation in the gene that controls for 
the von Hippel-Lindau (VHL) protein causing an arginine-to-
tryptophan change at amino-acid residue 200 [63]. When 
bound to HIF-1α, the VHL protein allows complex recogni-
tion and subsequent destruction by the ubiquitin-proteasome 
proteolytic system. The change in VHL’s primary amino acid 
structure impairs the interaction with HIF-1α, and thereby re-
duces the rate of HIF-α degradation and increases levels of 
HIF-downstream target genes under normoxic conditions. In 
a recent study, we measured metabolism after challenging the 
CP patients with a metabolic stress of exercise [64]. Exercise 
was a major metabolic stress for CP patients, since they had 
lower maximum exercise capacities and early muscle acidosis 
(lactate accumulation) compared with age- and gender seden-
tary-matched subjects. As expected for conditions character-
ised by high-level of HIF-1α, the skeletal muscle of the CP pa-
tients had elevated expression of glycolytic genes (i.e., hexoki-
nase isoform 1 and 2, phosphofructokinase, M1 and M2 iso-
form of muscle pyruvate kinase, lactate dehydrogenase A). 
What was also novel was the evidence of a broad up-regula-
tion of muscle PDK isoforms in the muscle of CP patients. 
Thus, three out four PDK isoforms (PDK1, 2, and 4) were 
markedly up-regulated compared with control. Of particular 
interest was PDK4 mRNA, which showed levels varying from 
2- to 18-fold higher, compared to control. Recent evidence 
would suggest that the HIF-1α mediated up-regulation of 
PDK4 occurs via the orphan nuclear receptor estrogen related 
receptor γ [65]. Important to our understanding of why CP 
patients have lower exercise tolerance was the finding that the 
patients’ muscle have lower PDP1 levels and lower muscle 
PDCt compared with controls. Since CP patients have high 
muscle PDK4 levels and low PDCt activity, if consistent with 
our previous discussions, they should be insulin resistant. 
Nevertheless, their blood glucose is lower than controls [66]. 
A possible explanation for this inconsistency could be that 
HIF-1α also promotes decreased hepatic gluconeogenesis, in-
creased skeletal muscle glucose uptake via increased expres-
sion of GLUT1 and increased glycolysis that all contribute to a 
systemic decrease in blood glucose concentrations [66]. 

CONCLUSIONS

Activation of muscle PDC is the most important tool for oxi-
dative glucose disposal. The increase in muscle acetyl-CoA 
and NADH, which is normally associated with exercise does 
not inhibit activation of muscle PDC, but can inhibit flux 
through PDC pathway.
 Pyruvate availability is not important for activation of mus-
cle PDC during exercise, but again it can limit the flux through 
PDC reaction. Calcium release appears to be the most impor-
tant physiological activator of PDC during exercise.
 Elevated muscle PDK4 induced by dietary fat intake or in-
flammation can blunt both activation and the flux through 
PDC reaction. Acute exercise can override to some extent the 
above inhibition, most likely via calcium release.
 Since the response to insulin is blunted in T2D, the use of 
chronic/repetitive short concentric exercise (ideally high inten-
sity training) [67], following close individual clinical control 
(tight monitoring of blood glucose level, the presence of silent 
heart ischaemia, presence of foot injuries, etc.) in combination 
with resistive exercise (to increase the muscle mass and there-
fore the whole body’s ability to dispose glucose) can prove to be 
the norm for improving muscle insulin sensitivity (Fig. 10). A 
short, but intensive exercise regimen, would also not allow the 
glucagon to further precipitate the rise in blood glucose levels 
following activation of glycogenolysis and gluconeogenesis in 
the liver. The exercise should take place early in the morning to 
coincide with the dawn phenomenon, i.e., the early rise in 
blood glucose level. 
 Alternatively, acute administration of DCA prior to exercise 
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Diet Pharmacologically 
(liver/pancreas)

PDC activation Exercise

Skeletal 
muscle mass

Increased oxidative/
nonoxidative glucose disposal

Fig. 10. Ways to improve muscle glucose disposal in type 2 di-
abetes patients. PDC, pyruvate dehydrogenase complex.
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following several days of high-fat dietary intake can also fully 
activate muscle PDC and restore oxidative glucose use during 
exercise.
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