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The maximum likelihood estimator is the point estimator of the top priority in statistical data 
analysis because of its optimum properties for large sample size. While the maximum likelihood 
estimator is widely used, it has been an abstruse subject for pharmacometricians without statitics 
bagkround because of high dimensional calculus and asymptotic theories. This tutorial provides a 
general and brief introduction to the maximum likelihood estimator and its related caluculus for 
non-statisticians.

Introduction
  The maximum likelihood estimator (MLE) is a "strongly con-
sistent, asymptotically normal, and asymptotically efficient" 
point estimator of the parameter because of its optimum prop-
erties.[1] In other words, for large sample size, it is unbiased, 
normally distributed, and its variance is  the Cramer-Rao lower 
bound for the variance of unbiased estimators of the parameter.
[2] Because a linear combination of normal random variables is 
again normally distributed,[3] the asymptotic normality and its 
optimum properties are great advantage of the MLE. The model 
of our interest is, however, often nonlinear function of multiple 
PK and/or PD parameters which requires linear approximation 
of the MLE.[4] The high dimensional calculus used in the ap-
proximation steps has been an obstacle for non-statisticians to 
overcome. This tutorial aims to provide a general introduction 
to MLE along with a review of its associated caluculus. See p 144 
of reference,[1] p 318 of reference,[2] and p 157 of reference.[3]
  Calculus plays a vital role in statistics. Among massive amount 
of caluculus, we review the Taylor series to get approximate 
polynomials of nonlinear functions, the Newton-Raphson 

method to get approximate solutions of equations and the ei-
genvalue and eigenvector problem to understand correlation of 
random variables. We will also review the likelihood function 
and the MLE. The Newton-Raphson method will be applied 
to get the approximate MLE from the nonlinear likelihood 
function. Further asymptotic properties of the MLE will be re-
viewed. We assume that readers are familiar with differentiation 
and introductory probability.

Review of calculus

Taylor series
  Polynomials appear in wide application areas because of their 
simple additive form. Functions of our interest, however, is not 
often polynomial and scientists and engineers want to trans-
form their nonlinear functions into polynomials. For this pur-
pose, the Taylor series provides easy approximate polynomials 
around a non-singular point.

Denition 1 If f(x) is defined and infinitely differentiable at x = c, 
then f(x) can be expressed as a power series of the form

   

which is called a Taylor series.
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In order to prove it, let us first express f(x) as a power series as 
follows.
    

Then,
        

Therefore,

                            

  The partial sums of the Taylor series, the Taylor polynomials, 
provide easy linear approximations to the whole function f(x).

Example 1 Let us find a Taylor series of f(x) = ex at x = 0.

Since f '(x) = f"(x) =…= f (n)(x) = ex, f(0) = f '(0) = f"(0) = f (n)(0) 
= 1, and thus the coefficient   We consequently have the 
famous Taylor series of the exponential function f(x) = ex as fol-
lows:

                        

The number e can be approximated by the partial sum of the 
first four terms of the Taylor series. That is,

 

with an error of 0.009948.
  The Taylor polynomials can be easily extended to a bivariate 
function f(x, y) and its second order Taylor polynomial is as fol-
lows:
 

where fx is partial derivative of f with respect to x, fy  is partial 
derivative of f with respect to y, fxx is partial derivative of fx with 
respect to x, and fyy is partial derivative of fy with respect to y, fxy 
is partial derivative of fx with respect to y, and fyx is partial de-
rivative of fy with respect to x.
  Let us now present the first order Taylor polynomial for two 
bivariate functions f(x, y) and g(x, y).

    
 

By rewriting them in a vector form, we have the the first order 
Taylor polynomial for a vector function as follows:

    

  Introducing the gradient of f (x, y)

∇f = grad f = (fx, fy)

and Jacobian J

 

let us define the operater H as follows

The bivariate function f(x, y) represents a surface in R3 like a 
mound in space and its gradient ∇f points to the direction of 
steepest change. This notation will be further used to obtain an 
approximate solution of equations expressed in a vector func-
tion.

Newton-Raphson method
  The Newton-Raphson method is used to look for an approxi-
mate root of a real-valued function f(x) by iteratively solving the 
equation f(x) = 0.
  Let us start with an initial point x0, and the tangent line L1 to 
f(x) at x0. We want to find the equation of the line L1. L1 passes 
through (x0, f(x0)) and its slope is f '(x0). Solving the equation for 
y, we have a line equation

L1 : y = f(x0) + f '(x0)(x - x0)

Note that it is the first order Taylor polynomial of f(x). The x-
intercept of L1 is obtained by solving the equation for x

0 = f (x0) + f '(x0)(x - x0)

and more explicitly it is

We name the x-intercept as x1, a new approximate root. Then,

For further iterations, let us define a sequence of approximate 
roots

Kyungmee Choi and Dong-Seok Yim
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Example 2 Find approximate roots of x2 = 2 using the Newton-
Raphson method. 
Let us first define the equation f(x) such as

f (x) = x2 - 2

Then the derivative of f (x) is given by

f '(x) = 2x

As an exercise, let us start from x0 = 2 and have the first two ap-
proximate roots x1 and x2. Then,

The sequence converges very quickly to  which we know as 
1.414214.

Eigenvalue and eigenvector
  For notational convenience, we use boldface for vectors from 
now on.
Definition 2 For a square matrix A, a scalar  is called an ei-
genvalue of A if the relationship

A x = x

holds for a nonzero vector x, which is called an eigenvector of A.
  In order to look for  and nonzero x, we solve the linear equa-
tions for x. Since Ix = x for an identity matrix I, we have the 
same linear equations such as

Ax - Ix = 0
and

(A - I)x = 0

If l A- I l ≠ 0, then (A - I)-1 exists and x = 0 which is a trivial 
solution and of no use. Equivalently, for x ≠ 0, we need l A- I l
= 0. Two steps are suggested to calculate  and nonzero x for a 
given matrix A.
                      STEP1 : Solve l A- I l = 0 for .
                      STEP2 : Get nonzero x satisfying Ax = x.

Example 3 Find eigenvalues and eigenvectors of  

Since A is 2×2, there can be two eigenvalues.

By solving a quadric equation, we get two eigenvectors 1 = 3 or 
2 = 1.

  Now for each eigenvalue, let us get a corresponding eigenvec-
tor. For 1 = 3 and x = (x1 , x2)

T   R2 , solve

(A - 3I)x = 0

Equivalently,

and from the following two equations

-x1 + x2 = 0
   x1 - x2 = 0

we have
x1 = x2

Therefore, the eigenvector we are looking for can be one of the 
following vectors

Note that there are infinitely many eigenvectors corresponding 
to an eigenvalue and all of them are on the same line x2 = x1. The 
eigenvector is not unique.
  Similarly, for 2 = 1, solve (A - I)x = 0. Then we have

and
x1 + x2 = 0
x1 + x2 = 0

Therefore,
x1 = -x2 

and

In summary, the eigenvalues of A are 3 and 1, and its corre-
sponding eigenvectors of unit length are  and .
  Eigenvalues and eigenvectors have very useful properties 
which determine the characteristics of A. Suppose that Axi =  

ixi for i = 1, … , n.

Theorem 1 The determinant of A is the product of eigenvalues. 
In other words,

MLE and its asymtotics
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If i = 0 for any i, then lAl = 0 and A-1 does not exist. This prop-
erty is important because we often need to know whether or not 
there exists the inverse matrix and zero eigenvalue is an indica-
tor for singularity of the given matrix.

Theorem 2 (Spectral Decomposition Theorem) If A is sym-
metric, then its eigenvalues are real and A can be decomposed as 
follows:

Example 4 (Continued) Let us find the spectral decomposition of 

 .

Definition 3 q(x) = xTAx is called a quadratic form.

In R2,

Definition 4 A is positive definite (pd) if xT Ax > 0 for all x  Rn. A 
is positive semidefinite (psd) if xTAx ≥ 0 for all x  Rn. A is nega-
tive definite (nd) xTAx < 0 for all x  Rn. A is negative semidefinite 
(nsd) if xTAx ≤ 0.

Theorem 3 A is pd if all  > 0 and A is psd if all 's ≥ 0. A is nd if 
all  < 0 and A is nsd if all 's ≤ 0.

If A is either pd or nd, then its inverse exists. Eigenvalues of the 
inverse matrix are the reciprocals of the eigenvalues of A. If A is 
pd, then A-1 is also pd.
  Let us now think about the meaning of eigenvalues and eigen-
vectors in statistics. See p 153 of reference.[3] Let x = (x1, x2, … ,
xp) be a vector of random variables which has a multivariate 
normal distribution with the mean μ and the covariance ∑. The 
contour of a constant density is then an oblique ellipsoid

(x - μ)T ∑-1(x - μ) = c2

which is centered at μ and has axes , where 1 ≥ … ≥ 
p ≥ 0.

  Imagine a contour of an ellipsoidal bell which is rotated on the 
xy-plane. For x  R2, the oblique ellipsoid has two axes e1 and 

e2 which are not parallel to the xy-axes and whose magnitudes 
are proportional to  and , respectively. First of all, each 

 is nonnegative since it is length. In other words, each  is 
nonnegative variation in the data to the direction of the cor-
responding eigenvector. Thus, ∑ is psd. Secondly, if 2 = 0, then 
the ellipsoid becomes a line and a perfect collinearity between 
x1 and x2 emerges to the direction of e1. In summary, if there 
exists a zero eigenvalue, then ∑ is singular, that is, not invertible, 
an ellipsoid becomes a line, and therefore there exists high cor-
relation among variables.
  For the sample covariance matrix S, the followings are equiva-
lent.
1. S is psd, but not pd. 
2. There exist zero eigenvalues.
3. lS l  = 0.
4. S is singular.
5. X1, X2, … , Xp are highly correlated.

Maximum Likelihood Estimator and its opti-
mum properties
  The maximum likelihood estimator is a good estimator of the 
parameter ѳ because it is asymptotically normally distributed 
with mean ѳ and variance which is the Cramer-Rao lower 
bound for the variance of unbiased estimators of ѳ. We use the 
word of "asymptotic" for large sample size. Let us start with the 
definitions of the likelihood function and the maximum likeli-
hood estimator. Read p 318 of reference[2] for the Cramer-Rao 
lower bound and p 359 of reference[2] for the optimum proper-
ties of the maximum likelihood of estimator.

Definition 5 The likelihood function of n random variables X1, 
X2, … , Xn is defined to be their joint probability density function,

where p(xi;ѳ) is the pdf of Xi and ѳ = (ѳ1, ѳ2, … , ѳp) is the un-
known parameter vector.

The likelihood function L(ѳ) is considered as the function of the 
parameter ѳ for the fixed data x1, x2, … , xn.

Definition 6 Maximum likelihood estimator (MLE) of ѳ is de-
fined to be

We want to know which particular value of the random vari-
ables is most likely to occur or equivalently want to know where 
the likelihood becomes the maximum. In other words, we are 
looking for the value of ѳ which makes the likelihood function 
the greatest.
  In order to look for  , we solve  = 0.

Example 5 Let X1, X2, … , Xn be a random sample from N(ѳ1, ѳ2), 

Kyungmee Choi and Dong-Seok Yim
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where - ∞ < ѳ1 < ∞, ѳ2 > 0. Note that  ѳ1 = μ, ѳ2 = σ2. Find the 
MLEs of μ and σ2.

Let us start from the likelihood function by producting the 
pdf 's such as

and maximize l(ѳ1, ѳ2) instead of L(ѳ1, ѳ2). This is easier because 
terms in l(ѳ1, ѳ2) are additive.

Solving the two equations simultaneously, we have

Notice that 's are obtained in closed forms. Let us calculate 
the expectation of   to check their unbiasedness.

where

Note that  is an unbiased estimator of μ. The  is not 
an unbiased estimator of σ2 and it underestimates σ2.
  For large sample size, the variance of MLE is the Cramer-
Rao lower bound which is the minimum among the unbiased 
estimators. It is closely associated with the Fisher's Information 
that is described as the amount of information X carries about. 
Let us  first define the Fisher Information. For notational conve-
nience, we use Eѳ[·] = E[·lѳ].

Definition 7 The Fisher Information is

Note that log p(X; ѳ) is a special form of log-likelihood function 
l(ѳ) when n = 1. l(ѳ) is the function of ѳ which is not a random 
variable, where X is fixed. The log p(X; ѳ) is the function of X 
which is a random variable, where ѳ is given. It is useful to know 
that

Here is the proof.

    

        
where the integral of pdf is 1. From this property, we can con-
jecture that

and derive another efficient form of I(ѳ) such as

See p 320 of reference.[2]

Theorem 4 The maximum likelihood estimator of ѳ, , is 
asymptotically normally distributed with mean   and variance

Note that Var( ) is the Cramer-Rao lower bound for the 
variance of the unbiased estimators of ѳ. Note that for I(ѳ) to be 
invertible, it should be pd. In other words, if its eigenvalues are 
all positive, I(ѳ) is invertible. Especially for two parameters ѳ1 
and ѳ2, I(ѳ) is given by

where I(ѳ) = -Eѳ[Hp].
  Besides, asymptotic properties of the MLE holds for the case of 
multidimensional ѳ = (ѳ1, … , ѳp). The joint distribution of the 
maximum likelihood estimators is asymptotically multivariate 
normal. This is very powerful property because any combina-
tion of normal random variables is again normally distributed 
and it can be used to test the parameters.
  Note that  in Example 5 is biased and underestimates σ2. 
In order to get its unbiased estimator, the Residual (Restricted) 
Maximum Likelihood Estimation (RMLE) are used. See pp 62-
76 of reference.[4]

Approximate MLE in a vector form
  Suppose that the model of our interest is in general

MLE and its asymtotics
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where Yi is a response variable, Xi is a vector of explanatory 
variables in Rp, ѳ = (ѳ1, ѳ2, … , ѳp), and  is multivariate normal 
with mean 0 and variance σ2I.
Note that

E[Yi] = f (Xi; ѳ)

Then, the log-likelihood function is defined as follows:

Unlike Example 5, it is hard to solve ∂l/∂ѳ = 0 to get the MLE in 
a closed form if E[Yi] = f (Xi; ѳ) is nonlinear. Then, using New-
ton-Raphson method, we get an approximate MLE of ѳ and its 
corrected variance as follows:
1. Get ѳ(i) by solving ∇l = 0 at the ith step.
2. Get MLE as the limit of ѳ(i).
3. Get E[ѳ(i)], Var(ѳ(i)) and their limits.

  We review pp 117-130 of Lecture B10 NONMEM Estimation 
of Noh[5] using simpler notaions. Let us start with an example 
of ѳ = (ѳ1, ѳ2) and solve the following equation based on New-
ton-Raphson method:

We are looking for the point ѳ, where l(ѳ) does not change in 
any direction. Then, the first order Taylor polynomial is given 
by

Adopting the gradient ∇l and the matrix H = Hl defined in Tay-
lor series section, we can easily extend the previous equations to 
multidimensional parameters, where ѳ = (ѳ1, … , ѳp). Then, we 
want to solve the equation of more general form as follows:

Solving it for ѳ, we have

Let us define the solution ѳ at the ith step as ѳ(i+1). Then,

Therefore, the limit of the sequence {ѳ(i)} is called the MLE.

  Let us prove that, for large sample size, the MLE is an unbiased 
estimator of ѳ.

since E [∇l(ѳ(i))] = 0.

  Let us obtain the variance of approximate MLE.

where

Note that ѳ(i) does not affect the variance, E [∇l(ѳ(i))] = 0, and 
H, R, and So are symmetric. S is said to be an estimator of So and 
given by

See p 172 of reference.[1] Therefore,

In data analyses, the followings are equivalent.
1. R is positive semidefinite, but singular.
2. H is negative semidefinite, but singular.
3. There are too many parameters and objective function could 

be flat.
S is singular if there are too many parameters.

More asymptotic properties of MLE
  For further asymptotic properties of the MLE, we review 
pp151-154 of reference[1] and pp 83-84 of reference.[4] For 
large sample size

where p is the number of parameters to be estimated in the 
model. It can be used to test the goodness-of-fit. Moreover, it 
can be used to compare the nested model fits. As a general test 
to compare nested models, the likelihood ratio test (LRT) sta-
tistic can be defined. Suppose that Ls is for the restricted model 
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and Lg is for more general model. Then Lg > Ls, -2 ln Lg < -2 ln 
Ls,

If we want to test

H0 : the restricted model ѳ = 0
H1 : the general model ѳ ≠ 0

then the test statistic is given by

Our decision is to reject H0 at the significance level of α if ∆ > 
(Pg - Ps ). Imposing penalty on many parameters, Akaike 

Information Criteria (AIC) and Bayesian Information Criteria 
(BIC) are defined by

The models with smaller AIC and BIC are better in goodness-
of-fit.

Discussion
  Bonate[6] in pp 225-229 gives the nonlinear form of plasma 
concentration curves with both population parameters (ѳ, ∑) 
and individual parameters (η, Ω). Here ѳ is fixed effect and η 
is random effect. Since both the fixed effect and random effect 
appear in a model, it is a mixed-effects model whose likelihood 
function should include the pdf of η. Starting from the likeli-
hood function based on the marginal pdf such as

the objective function of nonlinear mixed-effects model imple-
mented in NONMEM is rigorously derived based on the Taylor 
polynomial.
  More details of MLE and its objective function for linear 
mixed-effects model can be found in pp 62-76 of reference.[4] 
For full algorithm of getting MLE and its objective function for 
nonlinear mixed-effects model, see pp 312-319 of reference.[4]
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