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Introduction

Acute lung injury due to hyperoxia is a
well-known phenomenon and enhanced produ-
ction of oxidants from the cells are linked to
this lung damage'. Administration of bacterial
endotoxin to the rats which were exposed to
hyperoxia results in increased lung superoxide
dismutase activity, decreased hyperoxic lung
damage and improvement in survival rate’. But
the role of nitric oxide (NO) in the protection of
lung injury during hyperoxia by endotoxin was
not well studied until now. NO is reported to
participate in the physiology or pathophysiology
of every organ systems. Nitric oxide synthase
(NOS) is a key enzyme in the formation of NO
and both the constitutive (cNOS) and inducible
(INOS) isoforms have been described in human
alveolar and bronchial epithelial cells’. The
production of iNOS is stimulated by certain

microbes’, endotoxin (lipopolysaccharide, LPS)’
and type 1 cytokines, including IFN-7 and
TNF-a'. Activation of NF-kB/Rel is critical in
the induction of iNOS by endotoxin®. Nitric oxide
is an important physiological regulator con-
trolling many functions within the pulmonary
sys‘oemg. However, overproduction of nitric oxide
and nitric-oxide derived oxidants such as
peroxynitrite has been associated with pulmo-
nary cellular injury®™ On the other hand,
administration of NO has been shown to be
beneficial in adult respiratory distress syndrome
(ARDS) and experimental models of pulmonary
injury. NO also has been shown to reduce
microvascular and mucosal injury in experimen -
tal models of ischemia-reperfusion injury™® and
attenuate lung endothelial injury caused by
hyperoxia”. These beneficial mechanism can be
partially explained by the phenomenon that NO
inhibits inflammatory cytokine production by
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human alveolar macrophages18 or inhibits neutro-
phil accumulation by inhibiting the expression of
adhesion molecule'®”.

Analogs of L-arginine, such as N-nitro-L-
arginine tethyl ester (L-NAME) and N-monome
-thyl-L-arginine(L-NMMA) inhibits NO syntha-
se (NOS) and has been used in humans as a
potential treatment for septic shock™®. These
inhibitors are nonselective, resulting in similar
inhibition of constitutive NOS (cNOS) and
inducible NOS (NOS). In contrast, aminogu-
anidine (AG) has a greater inhibitory effect on
iNOS than ¢NOS, with a selectivity of 10- to
100 fold™*.

In the present study, we suspect the NO as a
possible candidate in the protection of acute lung
injury by low dose of endotoxin treatment
during exposure to the hyperoxia in the rats. To
support the hypothesis, we used the L-NAME
and AG as a inhibitor of NOS and observed the
relationship between NO inhibition and lung
injury, survival rates in the hyperoxic lung
injury models.

Materials And Methods

Animals and exposure to hyperoxia

Sprague-Dawley adult male rats weighing 250 to
300 g (n=120) were exposed to continuous flow
(7 liters/min) of 100% oxygen for up to 60
hours in 35ft® clear-plastic exposure chambers.
Control animals were raised in room air under

normal vivarium conditions for 60 hours.

Endotoxin and nitric oxide synthase inhibitor

treatment

Endotoxin ( E.coli lipopolysaccharide 065:B5, 500
ug/Kg), L-NAME (30 mg/Kg), or aminoguani-
dine (300 mg/Kg) was given by intraperitoneal
injection for 2 times at 0 and 24 hours after the
beginning of hyperoxic exposure.

Lung analyses

All animals were anesthetized with pentobarbital
sodium, 70 mg/Kg. The lungs were perfused
with 0.9% NaCl through the pulmonary artery
after the abdominal aorta was transected. After
measuring the volume of pleural fluid, broncho-
alveolar lavage was done with 10 ml of cold
HBSS (Hanks Balanced Salt Solution) for 5
times. Then Rt lung was weighed and wet/dry
weight ratio was calculated after measuring the
dry weight 48 hours after placing the lung in a
vacuum oven at 60°C. Lt lung was immediately
put in the liquid nitrogen and later kept at the -
70°C. The lung was homogenized for 2 min. in a
cold homogenizer with a solution of potassium
phosphate buffer, 0.006 M pH 7.8 for the assay
of SOD, catalase and Northern blot assay for
iNOS mRNA. BAL fluid was centrifuged and the
supernatants were also kept at the -70C for the
later assay of IL-6, IL-11 and nitric oxide.

SOD assay

One unit of SOD is defined as that which
causes 50% inhibition of the xanthine-xanthine
oxidase mediated reduction of ferricytochrome C.
The assay is performed in 3 mi of 20 mM
sodium carbonate buffer at pH 10, 0.1 mM
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EDTA, 1 uM of ferricytochrome C, 50 uM of
xanthine, and sufficient xanthine oxidase to
produce a rate of reduction of ferricytochrome C

at 550 nm of 0.025 absorbance unit per min®.

Catalase assay

Catalase activity was measured by measuring
the decomposition of Hx0O; at wavelength 240
nm®. The reaction mixture was consisted of 30
mM H:0; 005 M phosphate buffer, pH 7.0.
Units of catalase activity was calculated by
comparing the standard curve which was made
directly from the known concentration of
catalase standard (bovine liver, Sigma Co.).

Nitric oxide assay

Nitrite production was assayed after the
incubation period by measuring the accumulation
of nitrite in the BAL fluid using the Griess
reaction. Briefly, an aliquot (100 ul) of the BAL
fluid was mixed with an equal volume of Griess
reagent (sulfanilamide, 1% wt/vol; naphthylethy -
lenediamine dihydrochloride, 0.1% wt/vol; and
orthophosphoric acid, 25% vol/vol) and was
incubated at room temperature at 10 min. The
absorbance was read at 540 nm at ELISA
reader. In order to reduce the nitrate to nitrite,
aliquot (50 ul) of BAL fluid was mixed with
equal amount of nitrate reductase buffer (0.1
U/ml nitrate reductase, 50 uM NADPH, 5 uM
FAD), and the reaction was continued for a 2
hour at room temperature. The newly converted
nitrite was determined as above by addition of

100 ul of Griess reagent. Nitrite was determined
using sodium nitrite as a standard,

Cytokine determinants

Concentrations of IL-6 and IL-11 in BAL fluids
were measured by a ELISA kits (R&D, USA).

Northern blotting

The lung homogenate in Ultraspec-II Reagnet
(Biotecx, Houston, Texas) was centrifuged at
12000g. The yield and concentration of RNA
were determined by spectroscopic measurement
of absorbance at 260 nm. Twenty microgram of
RNA per rat was loaded in the gel. The RNA
was analyzed by standard Northern blot and
hybridization techniques with the DIG-labeled
iNOS c¢DNA probe. The cDNA probe was
synthesized from the RNA of lipopolysaccharide
and interferon treated RAW?2647 macrophages
and then DIG labeled using the PCR DIG probe
synthesis kit(Roche, Germany). The cDNA probe
was denatured by boiling and then hybridized to
the blots overnight at 65°C. After the blots were
washed at high stringency, a hybridized probe
was detected.

Statistical analysis

All results are expressed as mean® SEM. Com-
parisons of various parameters between groups
were tested for their significance with the
three-way analysis of variance (ANOVA). Diffe -
rences were regarded as significant if p<0.05.
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Table 1. Mortality of the rats in the five groups

Survived Death Mortality
Room air (n=24) 24 0 0%
Hyperoxia (n=24) 22 2 83%"
O2+LPS (n=24) 23 1 42%
O2+LPS+NAME (n=24) 15 9 375%
O+LPS+AG (n=24) 18 6 25%*

* Signicantly different from air control groups, p < 0.01.

Table 2. Comparative lung changes in adult rats exposed to 100 % O, for 60 hours.

Pleural Effusion, ml

Lung Wet/Dry Wt

Group
Room air control
O 538
O, + LPS 04
0y + LPS + NAME 129
0; + LPS + AG 146

H + + + 2

982 £ 091
3.27* 1269 = 1.64*
124 1073 = 110
1.56 1269 = 1.96*
156 1309 = 3.78*

Values are meanstSD. Pleural effusion was determined by absorbing fluid from both chest cavity
with the syringe with 18 gauge catheter. Lung wet/dry weight ratio was calculated by measuring

the dry weight after 48 hours in oven at 60°C.

* Significantly different from room air control groups. P < 0.05.

Results

Effects of endotoxin with or without nitric oxi-
de synthase inhibitor in the hyperoxia-
exposed rats.

As expected, low dose endotoxin decreased the
mortality from the hyperoxia exposed rats but
L-NAME or aminoguanidine markedly increased
the mortality rate. Data on mortality according to
the different groups are summarized in (Table 1).
Among the alive rats, lung injury was markedly
increased by exposure to hyperoxia for 60 hours;
the lung wet/dry weight ratio of control was 9.8
+09, and this ratio was markedly increased to
127+16 by exposure to hyperoxia. Lipopoly -
saccharide (LPS) decreased the ratio to 10.7%

11. In the case of adding the N-nitro-L-
arginine methyl ester (L-NAME) or aminoguani -
dine (AG), the wet/dry ratio was increased to
127£16 and 131+38 (Table 2).

Pleural fluids were also markedly increased in
the hyperoxia exposed groups (538327 ml) than
in control groups (0 ml) and lipopolysaccharide
decreased the pleural effusion (Table 2).

Superoxide dismutase(SOD) and catalase ac-
tivity

SOD and catalase activity were expressed as
unit/mg protein. The protein amounts in the
homogenized lung tissue was measured by
Bio-Rad protein assay kit(Bio-Rad, USA). The
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Fig. 1. Lung SOD activity in the control and
hyperoxia exposed rats with or without
treatments. Results were expressed as
SOD activity per mg protein. The SOD
activity from each treated groups were not
different from the room air control group.
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Fig. 2. Lung catalase activity of hyperoxia
exposed rats with or without treatme-
nts. Results are expressed as units/mg
protein. There were no significant
differences between different groups.

lung SOD activity (Fig. 1) and catalase activity
(Fig. 2) from each treated groups were not
different from the control group.

IL-6 and IL-11

IL-6 and IL-11 is known as protective cytokine
against acute lung injury. IL-6 level was slightly
increased in hyperoxia plus LPS group (1064 +
895 pg/ml) than control group (389%350 pg/ml)
or hyperoxia alone group (421%80 pg/mb) wi-
thout significance (p>0.05) (Fig. 3). There were
no specific differences in the IL-11 levels
between different groups (p>0.05) (Fig. 4).

Caalla

Q24LPS  O2elPSINAME 02 +LPS+AG

Fig. 3. Effects of different treatments on the IL-6
levels of bronchoalveolar lavage fluid in
the rats. IL-6 levels are expressed as
pg/ml. The IL-6 levels were slightly
increased in the hyperoxia and lipopoly -
saccharide treated groups than room air
control group (p>0.05).
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Fig. 4. Effects of different treatments on the
IL-11 levels of bronchoalveolar lavage
fluid in the rats. IL-11 levels are expres-
sed as pg/ml. There were no specific
differences between groups.

Measurements of nitric oxide (NO) produ-
ction

Hyperoxia and hyperoxia plus lipopolysaccharide
increased the NO production in the broncho-
alveolar lavage fluid of the rats. The treatment
of nitric oxide synthase inhibitor, L-NAME or
aminoguanidine significantly decreased the NO
production (Fig. 5).

Effects on iINOS mRNA

Northern blot analysis was used to determine
the INOS mRNA expression from the lung
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Fig. 5. NO production by hyperoxia or hyperoxia
plus LPS with or without L-NAME or
aminoguanidine. The nitrite and nitrate
concentrations in the bronchoalveolar lavage
fluids were measured as described in
METHODS. NO production was increased
in hyperoxia group (1.53*0.45 uM ) and
hyperoxia plus LPS group (1.99+0.59 uM)
than from control group (1.15%025 uM).
The increased NO production by LPS was
markedly decreased by nitric oxide syn-
.thase inhibitor, L-NAME or aminoguanidine
to 120041 uM and 1284050 uM
respectively. * Statistically significant incre
-ase in nitrite and nitrate production
compared with room air control (p<0.05).

tissues. A representative Northern blot is shown
in Fig. 6. This result demonstrates that there
was no iNOS message in rat lungs exposed to
room air (Fig. 6, lane 1). Exposure of the rats
to hyperoxia for 60 hours or hyperoxia plus LPS
led to a substantial level of INOS mRNA (Fig.

6, lane 2 and lane 3).

Discussion

The findings in this study suggest that low
dose endotoxin protect the lung from the
hyperoxia exposed rats by INOS mRNA
induction and NO production. Neither the known
cytokine IL-6, IL-11 nor the
antioxidant superoxide dismutase(SOD), catalase

protective

were not increased by low dose endotoxin in

INOS =

— |
—

1 2 3

Fig. 6. Northern blot of INOS mRNA in rat lung.
RNA was extracted from right lung using
Ulraspec-I (Biotecx, Houston, Texas,
USA). Twenty micrograms of total RNA
was electrophoresis on 1% agarose conta-
ining formaldehyde and were transferred
to nylon membrane by blotting. The mem-
brane was hybridized with a DIG-labeled
probe specific for iNOS cDNA.

Lane 1: Control, Lane 2: hyperoxia,
Lane 3: Hyperoxia + LPS.

28S
18S

hyperoxia exposed rats.

Administration of bacterial endotoxin in the
hyperoxia exposed rats prevents lung damage
and increase the survival rate’. This protective
mechanism is still unknown although there was
a paper that SOD is involved in this protection®.

Nitric oxide(NQO) is generated in large amounts
by inducible nitric oxide synthase(iNOS) which
is usually only produced after stimulation of
alveolar macrophages by tumor necrosis factor-
a (TNF-e), IL-18, interferon-y or lipopoly -
saccharide(LPS). The synthesis of small amounts
of NO in the vascular endothelium, catalyzed by
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a calcium dependent isoform (eNOS), is regarded
as a key regulator of vascular tone and
integrity, and of regional blood flow™. The iNOS
inhibition may prevent endothelial dysfunction, so
NO may be cytotoxic in certain circumstances®.
By contrast, NO may protect against lung injury
via the inhibition of neutrophil adhesion to the
endothelium, and through its scavenging capacity
for reactive oxygen speciesZg’ao. In this experi-
ment, low dose LPS decreased mortality and
lung injury from the hyperoxia exposed rats and
NOS inhibitor, L-NAME or aminoguanidine (AG)
markedly increased the mortality (Table 1) and
lung injury (Fig. 1). These findings are different
from the previous paper that L-NAME or ami-
noguanidine significantly attenuate the NNMU
(N-nitroso-N- methylurethane) induced alveolar

injury in rats™ and ozone induced airway inflam-

mation in guinea pig532 and mice™. Aminoguani -

dine, containing the guanido-group of L-arginine
linked to hydrazine, in vitro, displays 10 to 100
fold higher potency as inhibitor of iNOS than of
eNOS®. In endotoxemic rodents and dogs, AG
suppresses activation of INOS and peroxynitrite
production in the lungs and decreases plasma
levels of nitrite and nitrates. Moreover, AG
reduces lung edema, improves gas exchange, and
increased survival by counteracting circulatory
failure®®. In contrast, depletion of the 5 region
of the iINOS gene in mice is associated with a
high leukocyte count and exacerbates hyper-
oxia-induced lung injurygg. Reduced lung injury
was associated with increased levels of iNOS
mRNA expression in hyperoxia exposed mice™.
LPS, in association with inflammatory cytokines
such as IL-18, TNF-« or interferon-7 in-

duced nitric oxide synthasels.

The current study revealed that hyperoxia
alone induced iNOS mRNA but two times of
intraperitoneal injection with low dose LPS(500
ug/Kg) markedly increased the iINOS mRNA
expression and NO production. This increased
production of NO by low dose of endotoxin
might be due to interaction with IL-1 or TNF
which were released from the activated alveolar
macrophages in the hyperoxic environ-ment or
by endotoxin stimulation.

Recently, NO inhalation has been used to
improve arterial blood oxygenation in patients
with adult respiratory distress syndrome. High
levels of IL-8 and IL-6 were decreased in these
ARDS patient’s bronchoalveloar lavage fluid after
NO inhalation”. In addition, endogenous NO
limits cytokine~induced damage of murine lung
epithelial cells®, These cytoprotective effects of
NO, such as inhibition of neutrophil or platelet
adhesion to the endothelium are usually
attributed to the constitutive NOS activity. In
contrast, higher concentrations of NO, produced
by activation of iINOS during the inflammatory
process, are generally thought to be cytotoxic.
But, the results from our study suggest that NO
produced by iNOS during endotoxin treatment in
hyperoxia exposed rats decrease the lung injury
and increase the survival ; therefore the induced
form of NOS might serve as a protective role
such as endogenous NOS. NO inhibit the
neutrophil oxidants production via a direct effect
on NADPH oxidase® and by reducing the
availability of ferrous iron”. NO also increase
the cellular glutathione levels in rat lung
fibroblasts® and may contribute to a protective
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effect against oxidant injury. Our data also show
that aminoguanidine, a selective iNOS inhibitor
and L-NAME, nonselective ¢NOS inhibitor
markedly increased the lung injury and
mortality.

The etiology of lung injury during prolonged
exposure to high doses of oxygen appears to be
mediated by free radicals because antioxidant
enzymes which was induced by administration
of endotoxin improves survival of animals
exposed to hyperoxia® . In addition, Inflam-
matory cytokines such as tumor necrosis factor
(TNF) and intercellular adhesion molecule-1
(ICAM-1) is known to be involved in hyperoxic
lung injury®® *.
homogenate  antioxidant

We measured lung tissue
enzyme,
dismutase and catalase activities and there were

superoxide

no increases in the antioxidant activities among
the endotoxin-treated and hyperoxia exposed
rats. This differences might be due to species
variations because rat strain differences affect
the lung to develop edema after exposure to
Among the cytokines, IL-6
induced protection in hyperoxic acute lung injury

T
hyperoxia™ ™.

in mice”’ and IL-11 also protect the lung in the
100% oxygen exposure‘ﬁ. The mechanism of
protection in hyperoxic acute lung injury by
IL-6 is either increase the Mn SOD activities™
or associated with induction of cell-death
inhibitor, Bcl-2 and tissue inhibitor of
metalloproteinase-1  (TIMP-1)".  IL-11  also
attenuates lung inflammation by preventing
neutrophil sequestration, TNF-a production and
pulmonary vasomotor dysfunction in endotoxin-
induced lung injury™.

In our experiment, these protective cytokines

I.-6, IL.-11 and antioxidant enzymes including
SOD and catalase were not increased by
endotoxin treatment during hyperoxic exposure
in the rats.

In summary, our studies show that low dose
endotoxin treatment has impressive protective
effects in the setting of 1009% oxygen induced
acute lung injury in the rats. These protective
effects were mediated by INOS induction and
nitric oxide production and not by protective
cytokines, SOD and catalase. These results
suggest that exogenously administered nitric
oxide or INOS mRNA induction by cytokines
might be useful to protect the lung in the
setting of hyperoxia exposed states.
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