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      Re-differentiating Agents

  Thyroid cancers of follicular cell origin (papillary and follicular
 cancers) are usually well differentiated and behave in a non-ag-
gressive manner. However, some lose differentiated functions 
(dedifferentiation) and behave more aggressively. These cancers 
are or become refractor Re-differentiating agentsy to thyroid spe-
cific therapies that are based on differentiated thyroid function 
such as radioiodine therapy and TSH  suppressive therapy. Re-
storing differentiated functions in these tumors may both slow 
tumor growth and also resensitize these thyroid cancers to thyroid 
specific therapy such as treatment with radioactive iodine. 
Redifferentiating therapies are tissue specific and generally less 
toxic than nonspecific chemotherapy. Several redifferentiating 
agents have been reported to be effective in human thyroid 
cancers including: (1) retinoids, (2) aromatic fatty acids, (3) per-
oxisome proliferator-activated receptor gamma (PPARγ) ag-
onists, and (4) histone deacetylase inhibitors.

    1) Retinoids

  Retinoids has been shown to modulate cell growth and dif-
ferentiation by binding to their receptors.(1) The mechanism of 
action of retinods is not completely understood. There are 2 
classes of receptors: retinoic acid receptor (RAR) and retinoid X 
receptor (RXR). Each class has 3 subtypes, i.e. α, β and γ. 
Although RAR and RXR function as either homodimers or 
heterodimers, RAR-RXR heterodimers and RXR-RXR homodimers 
are predominant. To activate transcriptional activity, RAR-RXR 
heterodimers bind to RA response element (RARE) and RXR 
homodimers bind retinoid X response element (RXRE) (Fig. 1). 
(1,2) RXRs also heterodimerize with the vitamin D receptor 
(VDR), thyroid hormone receptor (T3R), and peroxisome pro-
liferator-activated receptors (PPAR).(3)
  There are several natural retinoids/ligands such as alltrans-
retinoic acid (all-trans-RA), 13-cis-RA, and 9-cis-RA. AlltransRA 
binds only with RAR but 9-cis-RA binds with both RAR and RXR. 
13-cis-RA converts to all-trans-RA in vivo. There are also 
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Differentiated thyroid cancer of follicular cell origin (DTC) is 
a fascinating tumor because of its varying aggressiveness. 
Luckily most patients with these cancers, despite regional 
metastasis, can be cured by surgical resection, radioiodine 
ablation and thyrotropin (TSH) suppression therapy. Un-
fortunately some patients with well differentiated thyroid 
cancer that fail to respond to conventional treatment and 
also patients with poorly differentiated thyroid cancers or an-
aplastic thyroid cancers are not successfully treated by this 
combined therapy. These tumors unfortunately may grow 
rapidly, invade adjacent structures and spread to other parts 
of the body. During the dedifferentiation process, these car-
cinomas lose thyroid specific gene expressions including the 
ability to take up and organify radioiodine and to make 
thyroglobulin (Tg). The methods used to treat patients with 
DTC are therefore usually not effective in these patients. 
These tumors also usually fail to respond to alternative 
treatment with external radiation or systemic cancer che-
motherapy. We therefore need to develop new treatments 
for these unfortunate patients.
Recent advances in molecular and cellular biology make it 
possible to develop new therapeutic approaches to thyroid 
cancer. Genes related with thyroid specific functions are also 
promising targets for cancer therapy. Redifferentiation ther-
apy targets thyroid specific genes in order to restore thyroid 
specific differentiated function and thus to make these 
tumors respond to conventional therapy. Redifferentiating 
agents and gene therapy using thyroid specific genes have 
been studied for this purpose. Most of therapeutic ap-
proaches described here have been established effects in 
vitro but have not yet been used clinically. Careful clinical 
trials and analyses should be performed. (Korean J Endo-
crine Surg 2002;2:83-89)
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synthetic ligands such as LGD1550 (RAR α/β/γ agonist), 
tazarotene (RARβ/γ agonist), AM80 (RAR α agonist), and 
LGD1069 (RXR agonist).
  The antiproliferative and redifferentiating effects of retinoids 
have been demonstrated in many human cancers including 
thyroid cancer.(4,5) Retinoic acid (RA) induces cell cycle arrest 
in the G0/1 phase with a reduced level of cyclin D1 and CDK-2 
mRNA and protein which leads to reduced phosphorylation of the 
retinoblastoma protein.(6) RA treatment increased mRNA for the 
sodium/iodide symporter (NIS) and radioactive iodine uptake in 
vitro in human thyroid cancer cells.(7-9) In clinical trials, about 
40% of patients treated with RA have had increased radioiodine 
uptake.(10)
  Although these effects are generally reversible and usually do 
not result in a dramatic clinical response, some patients are 
helped by this treatment and combined treatment with other drugs 
may improve the effect of this therapy.

    2) Aromatic fatty acids: phenylacetate, phenylbutyrate

  There is increasing evidence that aromatic fatty acids such as 
phenylacetate and phenylbutyrate inhibit tumor growth and induce 
redifferentiation in vitro, in vivo, and also in patients in some 
clinical trials.(11-14) Aromatic fatty acids act through multiple 

mechanisms. It can block the tumor cell access to free glutamine 
and also block the isoprenylation of ras family proteins.(15) 
Histone deacetylase inhibition and PPARγ activation are other 
suggested mechanisms of action.(16-18)
  Phenylacetate is a metabolite of phenylalanine. It accumulates in 
phenylketoneuria and is associated with brain damage. It has been 
used to treat children who have urea cycle disorders. Phenylbutyrate 
metabolizes to phenylacetate in humans. Phenylacetate causes 
differentiation and apoptosis in human cancer cell lines at con-
centrations that have been safely used in humans. Phenylbutyrate 
seems to be more potent in inducing apoptosis than pheny-
lacetate.(19) Treatment with aromatic fatty acids also increases the 
sensitivity to chemotherapy when it is combined with chemother-
apeutic drugs.(20-22)
  Kebebew et al reported that phenylacetate induced cytostasis 
in the G0/1 cell phase and increased radioiodine uptake in thyroid 
carcinoma cell lines.(23) Phenylacetate also decreased the growth 
response to TSH, inhibited thyroglobulin secretion, and the se-
cretion of VEGF (vascular endothelial growth factor) in the thyroid 
cancer cell lines.(23)
  Differentiating agents can be synergistic or additive in 
combination with other differentiating agents that act by different 
mechanisms. Thus the combination of retinoic acid and phe-

Fig. 1. Basic mechanisms of action of retinoids and peroxisome proliferator-activated receptor gamma (PPARγ). The retinoid receptors
are activated by specific ligands: retinoic acid receptor (RAR) by all-trans retinoic acid (all-trans RA) or 9-cis retinoic acid (9-cis
RA); retinoid X receptor (RXR) by 9-cis RA. The PPARγ is activated by specific ligands such as thiozolidinedione (TZD) 
derivatives  or aromatic fatty acids. Activated receptors bind with each other and form homo- or heterodimers. These in turn 
bind to specific  response elements to promote the transcription of target genes: retinoic acid response element (RARE), retinoid
X response  element (RXRE), and PPAR response element (PPRE). The transcription of these genes then induces growth
inhibition and  redifferentiation.
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nylacetate had a synergistic antiproliferative effect in follicular 
thyroid cancer cell lines.(24) Phenylbutyrate also seems to induce 
more apoptosis than phenylacetate at the same concentration in 
the thyroid cancer cell lines.

    3) PPARγ agonist

  PPAR belongs to the nuclear hormone receptor superfamily 
implicated in inhibition of cell proliferation and induction of cell 
redifferentiation.(25) PPAR has three isoforms, -α, -δ, -γ. They 
are ligand dependent transcription factors that must form 
heterodimers with the RXRα receptor in order to bind to their 
response elements (PPRE) and activate transcription (Fig. 1).(26)
  Among numerous PPARγ agonists, thiazolidinedione (TZD) 
derivative anti-diabetic drugs such as troglitazone, pioglitazone, 
and rosiglitazone are newly discovered potent PPARg ag-
onists.(27,28) Recent investigations document that TZD de-
rivatives are not only insulin sensitizers but also inhibit pro-
liferation of human breast, prostate, bladder, colon, lung and 
gastric cancer cells in vitro and/or in vivo.(29-34)
  In thyroid carcinogenesis, PPARγ appears to play an im-
portant role especially in follicular thyroid cancer. A chromosomal 
translocation creating a fusion protein of PAX8-PPARγ1 was 
found in five of eight follicular thyroid carcinomas, but not in 
follicular thyroid adenomas or papillary thyroid carcinomas and 
this abnormal fusion protein is a dominant negative suppressor 
of wild-type PPARγ activity.(35)
  Ohta et al reported antiproliferative effects in vitro and growth 
inhibition in vivo of troglitazone in papillary thyroid cancer cell 
lines.(36) Our investigations show that human thyroid cancer cell 
lines express PPARγ variably; chromosomal translocations in-
volving PPARγ are, however, uncommon. Troglitazone induced 
antiproliferation in papillary, follicular, Hurthle cell, and anaplastic 
thyroid cancer cell lines. Its action can be explained in part by 
cell cycle arrest in the G0/1 phase and apoptotic cell death. 
Troglitazone also down-regulated CD97, a thyroid dedifferentiation 
marker, in thyroid cancer cell lines.(37) Treatment with PPARγ 
agonists might become a useful new medical therapy for patients 
who have poorly differentiated thyroid cancers and differentiated 
thyroid cancers that fail to respond to convetional therapy by 
inducing growth inhibition and redifferentiation.

    4) Histone deacetylase inhibitor

  Histone acetylation and deacetylation can modulate chromatin 
structure and regulate gene expression relating to DNA rep-
lication, transcription, differentiation, and apoptosis.(38) Re-
versible acetylation of e-amino groups of lysine residues in the 
N-terminal of histone is controlled by histone acetyltransferases 

(HATs) and histone deacetylases (HDACs) (Fig. 2). HATs lead 
to the relaxation of chromatin structure and transcriptional 
activation, whereas HDACs lead to the chromatin condensation 
and transcriptional repression of target genes.(39) There is 
increasing evidence that abnormalities in histone acetylation can 
be associated with tumor development.(40)
  HDAC inhibitors such as depsipeptide (FR901228), trichostatin 
A, and suberoylanilide hydroxamic acid (SAHA) are promising 
new anticancer agents. HDAC inhibitors induce hyperacetylation 
of chromatin and activate genes that are related with dif-
ferentiation and apoptosis in cancer cells.(41,42) Depsipeptide 
(FR901228) is currently in phase I clinical studies and the results 
of treatments are promising.(43)
  In thyroid cancer cells, HDAC inhibitors inhibit cell proliferation 
by inducing apoptosis through the activation of the caspase 
cascade and cell cycle arrest at G1 and G2/M via a reduction 
in cdk2- and cdk1-associated kinase activities.(44) In addition to 
the antiproliferative effects, HDAC inhibitors can modulate 
expression of several genes. Thyroid specific genes can be 
transcriptional targets controlled by acetylation status of histones. 
In particular, Kitazona et al reported that depsipeptide markedly 
increased mRNA level of sodium/iodide symporter (NIS) and 
resultant radioiodine uptake in low concentrations.(45) Zarnegar 
et al demonstrated NIS expression in different thyroid dis-
eases.(46) They also demonstrated that trichostatin A dra-
matically increases NIS expression and resltant radioiodine uptake 
in low concentrations. Trichostatin A also inhibits cell proliferation 
by inducing apoptosis and cell cycle arrest at G2/M phase in a 
dose-dependent manner.(46) Methylation is another mechanism of 

Fig. 2. Reversible acetylation of histones by histone acety-
ltransferases (HAT) and histone deacetylases (HDAC). 
Acetylation status affects transcriptional activity of spe-
cific genes via a transcriptional factor (TF).



86  대한내분비외과학회지：제 2권 제 2호 2002
ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ

transcriptional repression of certain genes. Combination of these 
inhibitors might have synergistic effects because these two 
epigenetic processes are closely linked.(47)

Gene Therapy 
  

  Cancer gene therapy is the transfer of nucleic acids that can 
replace defective genes or introduce suicide or immune modulator 
genes. Recently, there have been considerable technical 
advances in terms of gene transfection efficiency and tissue 
specificity. Gene therapy for cancer has moved from the success 
in laboratory animals to clinical trials. Several genes have been 
considered as candidates for gene therapy in patients with thyroid 
cancer. Differentiation related genes such as p53, TTF-1, PAX-8, 
and sodium/iodide symporter (NIS) genes were introduced to 
retard cancer cell growth or induce redifferentiation. Recently 
thyroid specific promoters and HDAC inhibitors have been used 
to increase transcriptional activity and tissue specificity in thyroid 
cancer cell lines.(48,49) Investigators continue to improve the 
efficiency of tissue specific, multi-gene, transfection therapy.

    1) p53, TTF-1, PAX-8

  Most well differentiated thyroid cancers do not have p53 gene 
mutations, whereas some poorly differentiated thyroid cancers, 
most anaplastic thyroid cancers and established thyroid cancer 
cell lines have p53 mutations.(50) Several investigations suggest 
that undifferentiated thyroid carcinomas originate from dif-
ferentiated ones. It therefore appears that p53 mutations occur 
as a late genetic event associated with de-differentiation of thyroid 
tumor cells and immortalization of cell lines.
  Gene therapy with wild type p53 in thyroid carcinoma cells in 
culture that had a p53 mutation showed that it (a) induced growth 
arrest (not apoptosis),(51) (b) increased thyroid specific gene 
expression,(52) (c) enhanced the response to chemotherapy and 
radiation therapy,(53,54) and (d) down-regulated TSP (throm-
bospondin)-1 expression (not VEGF).(55,56) However, it seems 
unlikely that gene therapy with wild type p53 gene alone will 
become an effective treatment in patients who have poorly 
differentiated thyroid cancer or anaplastic thyroid cancer, because 
it induced growth arrest rather than apoptotic cell death and it 
rarely induced thyroid specific gene expression, especially for 
radioiodine uptake. To be an effective treatment, co-transfection 
of differentiation related genes or other effective genes might be 
needed. In addition to the role of wild type p53 in dedifferentiation 
of thyroid cancers, thyroid specific transcriptional factors, such as 
TTF-1, TTF-2 and PAX-8 are closely related with thyroid specific 
differentiated functions such as radioiodine uptake.(57-59) 

Induction of overexpression of TTF-1 and PAX-8 restored 
thyroglobulin gene promoter activity in thyroid cancer cell 
lines.(60) Further investigations are necessary to determine 
whether co-transfection of wild type p53 and thyroid specific 
genes will be more effective in inducing redifferentiation than 
when used separately.

    2) Sodium/iodide symporter (NIS) gene

  After total or near total thyroidectomy for patients with 
differentiated thyroid cancer of follicular cell origin, regional or 
distant metastases are often effectively ablated with 131-I. Iodide 
uptake by thyrocytes is mediated by the sodium/iodide symporter 
(NIS). Most differentiated thyroid carcinomas express NIS and NIS 
expression correlates with clinical radioiodine uptake.(61) 
However, some differentiated and most undifferentiated thyroid 
carcinomas fail to express NIS. These tumors lack the ability to 
uptake iodide and are thereby refractory to radioiodine ther-
apy.(62,63)
  Investigators have tried to restore NIS expression in thyroid 
cancer cells.(9,23,57) There are two remarkable advances in this 
field i.e. histone deacetylase inhibitors and gene therapy using 
NIS gene. Cloning and characterization of the sodium/iodide 
symporter (NIS) gene made it possible to try gene therapy using 
this gene in both thyroidal and non-thyroidal malignancies. 
Several clinical trials using NIS gene transfection for triggering 
significant iodide uptake in non-thyroid tumors are currently 
underway.(64-66) In thyroid cancer, transduction of hNIS in a 
follicular thyroid cancer cell line (FTC-133) induced high uptake 
of radioiodine in vitro and also in vivo in a xenograft model.(67) 
Although the transduction of the hNIS gene can induce 
radioiodine influx, it is followed by rapid efflux. Inhibition of iodide 
efflux has to be added for a therapeutic application of the hNIS 
gene. Iodide efflux could be inhibited by co-transfection of 
thyroperoxidase (TPO) gene, decreasing Pendrin (PDS) gene 
activity, or combination with lithium treatment.(68,69) Of interest, 
treatment of thyroid cancer cell lines with trichostatin A both 
increased NIS expression and decreased PDS expression. (46)
  For transcriptionally targeted gene therapy, the thyroglobulin 
(Tg) promoter can be used. Thyroid specific transcription factors 
such as TTF-1, TTF-2, or PAX-8 closely interact with the TG 
promoter. TG promoter activity in poorly differentiated and an-
aplastic thyroid cancer cells, however, may not be enough 
because of other defects in these transcriptional factors. Cotrans-
fection of these genes may enhance TG promoter activity.(70)
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CONCLUSION

  In vitro and in vivo investigations as well as preclinical trials 
suggest that new medical treatments will improve the care of 
patients with thyroid cancer. More basic science research and 
clinical trials are necessary. We hope that these new therapies 
will become available for patients who fail to respond to 
conventional therapy.
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