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INTRODUCTION

Parkinson’s disease (PD) is widely known as a movement 
disorder, but, recently, non-motor symptoms of PD such as 
cognitive difficulties have begun to receive attention.1 A longi-
tudinal study reported that dementia was diagnosed in about 

26% of PD patients, and the prevalence of dementia increased 
to about 80% after 8 years.2 In addition, PD patients have an 
almost six-fold increased risk of developing dementia com-
pared to the general population.3

Subjective cognitive impairment (SCI) is defined as subjec-
tive complaints of cognitive declines with normal levels of cog-
nitive performance on objective measures.4 Several lines of re-
search have shown that SCI may predict the development of 
mild cognitive impairment (MCI) or dementia in PD patients5,6 
as well as in the healthy elderly.7 Despite the potential of imag-
ing techniques in providing valuable insight for early detec-
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tion and development of management strategies, only a few 
in vivo neuroimaging studies have investigated the neural cor-
relations of SCI in PD. Previous magnetic resonance imaging 
(MRI) studies in PD patients with SCI demonstrated reduced 
gray matter density in the medial frontal, angular, and anterior 
cingulate cortex when compared to PD patients without SCI.8 
Cortical thinning in the frontal, parietal, and parahippocam-
pal areas were reported in PD patients with SCI compared to 
healthy controls.9 In addition, a single photon emission com-
puted tomography (SPECT) study found that PD patients 
with SCI showed hypoperfusion in the frontal, inferior tempo-
ral, and anterior cingulate cortices and in the thalamus com-
pared to those without SCI.10 However, since these studies ad-
opted a cross-sectional design, there is a compelling need to 
elucidate longitudinal brain changes.

The current prospective SPECT study was intended to ex-
amine perfusion changes in PD patients with SCI in compari-
son with those in PD patients without SCI. SPECT with 99mTc-
hexamethylpropyleneamine oxime (HMPAO) is widely avai-
lable and especially advantageous in detecting subtle cognitive 
decline related to SCI in PD patients.10 There are an insufficient 
number of previous studies on this topic to draw a specific hy-
pothesis, but evidence from literature on PD patients with MCI 
may be useful in anticipating brain perfusion changes specific 
to the progression of SCI in PD. In neuroimaging studies, the 
frontal regions of PD patients with MCI consistently showed 
cortical atrophy,11,12 decreased functional connectivity,13 and 
hypometabolism.14 Furthermore, executive dysfunction is the 
most common neuropsychological deficit in PD patients with 
MCI.15,16 Finally, the frontal cortex is also consistently impli-
cated in imaging studies of PD patients with SCI.8-10 Therefore, 
we hypothesized that excessive decreases in regional cerebral 
blood flow (rCBF) would be prominent in the frontal areas of 
PD patients with SCI as compared to those without SCI at 
follow-up.

METHODS

Participants
Patients with PD were recruited at Incheon St. Mary’s Hos-

pital (Incheon, South Korea). Owing to the lack of general co-
nsensus on the diagnostic criteria of SCI, it was defined as self-
reported memory complaints in spite of normal cognitive per-
formance on formal neuropsychological tests. Patients were 
classified into the PD with SCI group or the PD without SCI 
group based on clinical diagnosis by a board-certified neurolo-
gist. PD was diagnosed according to the United Kingdom 
Parkinson’s Disease Society Brain Bank Clinical Diagnostic 
Criteria for PD. Fluorinated N-3-fluoropropyl-2β-carbome-

thoxy-3β-(4-iodophenyl) nortropane positron emission to-
mography (18F-FP-CIT PET) was also used to establish a diag-
nosis of PD. Exclusion criteria were patients who have had 1) 
past or present neuropsychiatric disorders including stroke, 
head trauma, epilepsy, depression, or brain surgery; 2) signif-
icant medical comorbidities such as diabetes mellitus, hyper-
tension, or hypercholesterolemia; 3) cerebrovascular lesions 
on MRI; 4) any other detectable cause of memory deficits; or 5) 
lifelong memory complaints. Patients who were taking any 
psychotropic medications were also excluded. Written in-
formed consent was obtained from all study participants and 
the study protocol was approved by the Research Ethics Com-
mittee.

Clinical assessment
Physical and neurological examinations were performed by a 

board-certified neurologist. The severity of PD symptoms was 
assessed with the Hoehn-Yahr Scale.17 The Clinical Dementia 
Rating (CDR)18 and Global Deterioration Scale (GDS)19 were 
used to evaluate the overall severity of dementia. Global cogni-
tive function was measured with the Mini-Mental State Exami-
nation (MMSE).20

Image acquisition and processing
Brain SPECT scans were conducted at baseline and follow-

up. All patients were intravenously injected with 1110 MBq of 
HMPAO in a dark, quiet room. After approximately 40 min-
utes, perfusion images were acquired with a dual-head gamma 
camera (NM640; GE Healthcare, Milwaukee, WI, USA) equi-
pped with a low-energy, fan-beam collimator. All images were 
attenuation corrected and reconstructed in a 128×128 matrix 
with a voxel size of 3.9×3.9×3.9 mm (field of view=240 mm) 
using filtered back projection.

We used Statistical Parametric Mapping 12 (SPM; Wellcome 
Department of Cognitive Neurology, Institute of Neurology, 
London, UK) for image processing and statistical modeling. 
All images were spatially normalized to the SPM SPECT 
template (Montreal Neurological Institute, McGill University, 
Montreal, Canada), resliced with a voxel size of 2×2×2 mm3, 
and then smoothed with a 16 mm full-width half-maximum 
isotropic Gaussian kernel.

Statistical analysis
Differences in continuous demographic or clinical variables 

were assessed with the independent t-test or Mann-Whitney 
U test, while the gender difference was evaluated with the chi-
square test. A two-tailed p value of less than 0.05 was consid-
ered statistically significant. All analyses were conducted with 
Stata version 13.1 (StataCorp., College Station, TX, USA).
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A series of SPM statistical analyses were conducted with 

age and sex as nuisance covariates. A two-sample t-test was 
used to investigate differences in rCBF between the two groups 
at baseline. A relative threshold masking of 0.8 was applied 
and global counts were normalized to 50 mL/100 g/min with 
proportional scaling. The statistical threshold was set at an un-
corrected p<0.001 at voxel level with an extent threshold of 
100 voxels. 

A paired t-test was performed to examine perfusion differ-
ences between baseline and follow-up in the PD with SCI gr-

oup. Reference cluster normalization was used since it pro-
vides a significant increase of statistical power in studies on 
neurodegenerative diseases.21 In brief, analysis with default 
normalization was performed to identify rCBF increases at 
follow-up using a threshold of t>2.0.22 The mean rCBF value 
in the significant area was extracted from each image using 
MarsBaR toolbox version 0.44 (http://marsbar.sourceforge.
net/) and used as a scaling factor for the subsequent analysis 
of rCBF decreases in follow-up images. The statistical thresh-
old was set at an uncorrected p<0.001 at voxel level with an ex-

Table 1. Demographic and clinical characteristics of the study participants*

Characteristics
Baseline Follow-up

PDSCI PD p† PDSCI PD p†

Age (year) 64.2±10.1 66.0±11.2 0.55 64.1±9.3 67.7±10.4 0.29
Sex (male/female) 13/17 11/12 0.75 7/13 8/6 0.20
Duration of PD symptoms (year) 3.0±2.5 2.3±1.8 0.28 5.6±2.2 5.1±2.0 0.56
Hoehn–Yahr score 2 (1.0–2.0) 2 (1.0–2.0) 0.64
Levodopa equivalent dose (mg/day) 340.6±162.9 289.7±240.3 0.36
MMSE 27.8±1.4 27.1±2.7 0.35 27.2±1.3 25.8±2.0 0.12
CDR 0.5 (0–0.5) 0 (0–0.5) 0.15 0.5 (0.5–0.5) 0.5 (0.5–0.5) 0.20
GDS 2.0 (2.0–3.0) 2.0 (1.0–2.0) 0.06 3.0 (3.0–3.0) 3.0 (3.0–3.0) 0.69
*Data are presented as mean±standard deviation or median (interquartile range), †Independent t-test or Wilcoxon-Mann-Whitney test for continu-
ous variables and chi-square test for sex.
CDR: Clinical Dementia Rating, GDS: Global Deterioration Scale, MMSE: Mini-Mental State Examination, PD: Parkinson’s disease, PDSCI: Parkin-
son’s disease with subjective cognitive impairment.

Table 2. Brain areas showing significant differences in regional cerebral blood flow

Region t Voxel-level p Cluster size (voxels) Coordinates (x, y, z)*
PDSCI (B)>PD (B)

None
PDSCI (B)<PD (B)

L angular gyrus 4.36 <0.001 200 -46, -56, 26
PDSCI (B)>PDSCI (F)

R middle temporal gyrus 7.10 <0.001 708 58, -48, 6
L inferior occipital gyrus 6.10 <0.001 239 -38, -70, 8
R fusiform gyrus 5.89 <0.001 280 36, -26, -22
R precuneus 5.76 <0.001 2497 6, -64, 48
R lingual gyrus 5.73 <0.001 522 22, -58, -8
L cerebellum 5.15 <0.001 233 -28, -72, -48
R cerebellum 4.38 <0.001 307 18, -84, -38
R calcarine cortex 4.22 <0.001 179 20, -88, 2
L fusiform cortex 4.09 <0.001 142 -34, -52, -20

PDSCI (B) < PDSCI (F)
None

[PDSCI (B) > PDSCI (F)] > [PD (B) > PD (F)]
L middle frontal gyrus 3.25 0.001 52 -38, 40, 6

[PDSCI (B) < PDSCI (F)] > [PD (B) < PD (F)]
None

*Coordinates are given in mm and refer to the Montreal Neurological Institute coordinate system.
B: baseline, F: follow-up, L: left, PD: Parkinson’s disease, PDSCI: Parkinson’s disease with subjective cognitive impairment, R: right.
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tent threshold of 100 voxels.
A flexible factorial design was used to assess the group-by-

time interaction effect. Perfusion increases specific to the PD 
with SCI group were determined by the contrast of [(PD with 
SCI at baseline<PD with SCI at follow-up)>(PD without SCI 
at baseline<PD without SCI at follow-up)], whereas decreases 
were revealed by the contrast of [(PD with SCI at baseline>PD 
with SCI at follow-up)>(PD without SCI at baseline>PD with-
out SCI at follow-up)]. Reference cluster normalization was 
applied and the statistical threshold was set at an uncorrected 
p<0.005 at voxel level with an extent threshold of 50 voxels.

RESULTS

The demographic and clinical characteristics of the study 
participants are presented in Table 1. A total of 53 PD patients 
were recruited at baseline. Among them, 30 patients were clas-
sified into the PD with SCI group. At follow-up, 20 PD with 
SCI patients and 14 PD without SCI patients participated in 
the study. The mean follow-up interval was 2.3±0.9 years. 
None of the participants showed significant cognitive decline 
when assessed with objective measures (MMSE, CDR, and 
GDS) at baseline and follow-up. In addition, differences be-
tween the two groups were not significant for age, sex, dura-
tion of PD symptoms, Hoehn-Yahr score, levodopa equiva-
lent dose, MMSE, CDR, or GDS at baseline and follow-up 
(all p>0.05).

The results from the SPM analysis are demonstrated in Ta-

ble 2. At baseline, the PD with SCI group showed decreased 
perfusion in the left angular gyrus (t=4.36, voxel-level p<0.001, 
cluster size=200 voxels) compared to the PD without SCI 
group (Fig. 1). In comparison, the PD with SCI group showed 
widespread reductions in rCBF in the bilateral cerebellum and 
temporo-parieto-occipital areas including the right middle 
temporal gyrus, left lateral occipital cortex, and right precune-
us at follow-up (Fig. 2). In addition, we identified an excessive 
perfusion decrease specific to PD patients with SCI in the left 
middle frontal gyrus compared to PD patients without SCI 
(t=3.25, voxel-level p=0.001, cluster size=52 voxels) (Fig. 3).

DISCUSSION

The current study investigated longitudinal changes in cere-
bral perfusion in PD patients with SCI using HMPAO SPECT. 
First, we compared the differences between PD patients with 
SCI and those without SCI at baseline. Then, changes in rCBF 
in the PD with SCI group were examined at follow-up. Finally, 
we examined the group-by-time interaction in order to test for 
a difference in perfusion changes between the two groups.

At baseline, the PD with SCI group showed rCBF decreases 
in the left angular gyrus when compared with the PD without 
SCI group. This is in line with a previous PET study that re-
vealed reduced parieto-temporal glucose metabolism among 
healthy subjects with SCI.23 Moreover, a structural MRI study 

Fig. 1. Decrease in cerebral perfusion in the PD with SCI group 
compared with the PD without SCI group. The color bar repre-
sents voxel-level t-values. PD: Parkinson’s disease, SCI: subjec-
tive cognitive impairment.

Fig. 2. Decreases in brain perfusion at follow-up in the PD with 
SCI group compared with baseline. The images are shown in 
neurological conventions and the color bar represents voxel-level 
t-values. PD: Parkinson’s disease, SCI: subjective cognitive im-
pairment.
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indicated significant reductions in gray matter density in the 
angular gyrus among PD patients with SCI compared to those 
without SCI.8 The angular gyrus has a strong connection with 
the parahippocampal gyrus24 and is closely involved in atten-
tion and memory retrieval.25 Abnormalities in this area may 
contribute to the subjective feeling of memory decline.

At follow-up, the PD with SCI group demonstrated wide-
spread rCBF reductions in the temporal, parietal, and occipital 
cortical regions and the cerebellum compared to the baseline 
measurements. In line with these results, hypoperfusion has 
been found primarily in the parieto-occipital areas in studies 
of PD.26-28 Additionally, a meta-analysis of PD suggested that 
cerebellar perfusion may be unchanged or slightly decreased.26 
In support of this view, hypoperfusion29 and hypometabo-
lism30 were found in the cerebellum of PD patients. Increasing 
evidence indicates certain roles for the cerebellum in the path-
ophysiology of PD.31 The progressive perfusion decrease in the 
cerebellum may reflect pathological changes induced by do-
paminergic degeneration.31

When the longitudinal perfusion changes of the PD without 
SCI group were subtracted from those of the PD with SCI 
group, an excessive decrease in rCBF was found in the middle 
frontal gyrus in the latter group. Similarly, a previous cross-
sectional SPECT study in PD patients with SCI reported re-
duced rCBF in the medial frontal regions.10 Moreover, PD pa-
tients with MCI14 also showed decreased glucose metabo-
lism14,32 and cortical atrophy11,12 in the middle frontal cortex. 
During the progression to dementia, neuropathological chang-

es generally start in the memory-related hippocampal and 
entorhinal cortex, spread into the parieto-temporal areas, and 
finally affect the frontal cortices.33,34 However, neurological 
deficits in the prefrontal regions may occur in the earlier stages 
of cognitive decline in PD.35 The prefrontal cortex is known to 
play an important role in various domains of cognitive func-
tioning by interacting with other brain areas including the hip-
pocampus.36 Functional alterations in the prefrontal regions 
during the course of SCI in PD may account for subjective ne-
uropsychological symptoms, such as deficits in memory re-
trieval, attention, and executive function.

Potential limitations of this study include classification of the 
patients with SCI based on self-reported subjective cognitive 
complaints, which was done because diagnostic criteria for SCI 
is not yet established. Levels of SCI were not assessed on a con-
tinuous scale owing to the lack of validated tools and, therefore, 
correlations between rCBF and symptom severity could not be 
examined. Secondly, the MMSE may be not sensitive enough 
to evaluate frontal dysfunction or exclude patients with MCI or 
dementia. Detailed neuropsychological batteries will be needed 
in future studies. Thirdly, the follow-up period was too short to 
observe a progression from SCI to MCI or dementia. Fourth, 
depressive symptoms were not assessed despite the fact that de-
pression is a major comorbid condition in PD and might have 
exerted an influence on SCI.37 In addition, cerebral artery ste-
nosis was not evaluated by angiography. Finally, the Hoehn-
Yahr score and levodopa equivalent dose were assessed only at 
baseline. Although PD symptoms were not of primary interest 
in the current study, detailed descriptions of PD severity such 
as the Unified Parkinson Disease Rating Scale scores would be 
helpful to define patient characteristics.

In conclusion, the current longitudinal SPECT study provid-
ed insights into rCBF changes in PD patients with SCI and sug-
gested that perfusion deficits in the middle frontal gyrus can be 
detected in a preclinical stage of both MCI and dementia. Fu-
ture studies in larger samples using comprehensive neuropsy-
chological test batteries are warranted to investigate whether a 
perfusion decrease in the prefrontal regions can serve as a reli-
able and valid biomarker for SCI in PD. In addition, longitudi-
nal comparison of rCBF changes between PD patients with SCI 
and healthy comparison subjects would be of clinical relevance.
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Fig. 3. Excessive decrease in cerebral perfusion specific to the 
PD with SCI group compared with the PD without SCI group. The 
color bar represents voxel-level t-values. PD: Parkinson’s dis-
ease, SCI: subjective cognitive impairment.
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