
HIGHLIGHTS
•	 �The primary amine agmatine is neuroprotective after central nervous system (CNS) injury.
•	 �The agmatine downregulates the astrogliosis following the CNS injury.
•	Agmatine attenuates the detrimental effects of activated microglia in CNS injury.
•	 �Agmatine regulates the astrogliosis and microgliosis via modulating the bone 

morphogenic proteins expression.
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ABSTRACT

Recovery from central nervous system (CNS) injury, such as stroke or spinal cord injury 
(SCI), largely depends on axonal regeneration, and the neuronal and glial cells plasticity in 
the lesioned tissue. The lesioned tissue following CNS injury forms a scar that is composed 
of astrocytes and mixed with connective tissues. At the glial scar, the regenerating axon 
forms dystrophic endbulbs which do not regenerate and grow beyond the glial scar without 
a suitable environment. Along with the astrocytes, microglia are also suspected of being 
involved in necrotic and apoptotic neuronal cell death and the early response to axonal 
damage in CNS injury. The inflammatory response, a major component of secondary 
injury and controlled by the microglia, plays a pivotal role in nerve injury and control the 
regenerative response. As a result, it is very important to control the glial cell function 
in order to assure the recovery of the CNS injury. Studies have suggested that agmatine, 
a L-arginine derived primary amine, is a potential modulator of glial cell function after 
CNS injuries. Agmatine was found to possess anti-inflammatory and neuroprotective 
characteristics that benefited the rehabilitation process following CNS injury. In this review, 
we will discuss the effect of agmatine on glial cells in the process of recovery after CNS injury.
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INTRODUCTION

Central nervous system (CNS) injury is an overwhelming event that can lead to neurological 
disorder with many sequelae. Due to the immune-privileged and complex nature of the CNS it 
was believed that the resolution of CNS injury is much more complicated and different from 
other mammalian tissue repair process. Most of the CNS injury victims develop irreversible 
disabilities like cognitive impairment, and even paralysis. In the sequelae of CNS injury, both 
in traumatic brain and spinal cord injury (SCI), the secondary injury following the primary 
insult is mostly responsible for the irreversible tissue damage [1,2]. Following CNS trauma, 
the impaired blood-brain barrier (BBB) alongside the brain-cerebrospinal fluid barrier, allows 
the cellular and chemical infiltration, which disrupts the microenvironment at the lesion site 
causing the acceleration of the cellular damage, degeneration, and scar formation [3,4]. The 
glial scar formation is believed to be the key player in forming the chemical and physical barrier 
for the neuronal regeneration, which impair the rehabilitation process after CNS injury [5].
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Following CNS injury, glial cells play an important role in the injury and repair process. 
The glial cells astrocytes, microglia, oligodendrocytes, and their precursors interact with 
neuronal cells to maintain the cellular and extracellular microenvironments to exert basic 
CNS functions. Astrocytes are known to be the key provider of nutrients to the neurons 
and biochemical support such as ion homeostasis [6], neurotransmitter regulation [7], 
BBB maintenance [8], and the production of extracellular matrix molecules. They are 
also the most abundant cells in the mammalian CNS. Following CNS injury, astrocytes 
can sense the changes in the microenvironment and neuronal activity which influence 
the structural and functional changes in the astrocytes which eventually protects the 
brain or deteriorate the repair process [9,10]. Microglia, the brain-resident macrophages, 
surveilling the CNS environment in resting conditions, are central to the modulation of 
the inflammatory response. When they are activated following infection or injury, they can 
be transformed into activated form, and can secrete neurotoxic substances and molecules 
that magnify the immune/inflammatory responses, and retain phagocytic activity [11-13]. 
Their function in CNS injury has some beneficial effects with respect to neuronal repair 
and inflammatory resolution. However, in many studies that blocked the innate immune 
response or anti-inflammatory treatment following CNS injury have found to restore the 
functional impairments [14-16]. Oligodendrocytes and their progenitors provide myelin 
sheaths for wrapping the axons, which ensures proper axonal transmission and may also 
remyelinate in certain pathological conditions [17-19]. Following CNS injury, the loss of 
the oligodendrocytes results in the loss of axonal myelination followed by impaired motor 
function and eventually paralysis.

Agmatine, a derivative of L-arginine produced via decarboxylation by arginine decarboxylase 
(ADC), has been mainly implicated in the study of modulation of neuronal functions 
[20-22]. Agmatine interacts with different neurotransmitter receptors including the 
N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid 
receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, 
and acid-sensing ion channels [23-29]. It has also been suggested that both exogenous 
and endogenous agmatine is involved in neuroprotection against various CNS injuries, 
including stroke and SCI. In this review, we will discuss the role of agmatine in the functional 
modulation of glial cells following CNS injury.

AGMATINE, NEUROGLIA, AND CNS INJURY

In any CNS injury glial cells play a vital role in the progression of the injury process and repair 
(Fig. 1). As a result, it is very important to modulate glial function following the onset of the 
injury until repair to ensure neuro-protection and accelerate the rehabilitation process. Both 
endogenous (mostly synthesised and stored in astrocytes [30]) and exogenous agmatine were 
found to be neuroprotective and modulate the function of glial cells.

Regulation of astrocyte function by agmatine in CNS injury
The most abundant cells in the mammalian CNS can be divided into two subclasses, 
astrocytes of the grey matter are known as protoplasmic and those in white matter known 
as fibrous astrocytes [31]. Originating from the neuroepithelial progenitor cells, astrocytes 
help in neuronal migration, growth, and development of neurons and synapses during 
mammalian development [32]. The only two diseases which have been found to be directly 
or partially related to astrocytes are astrocyte gene glial fibrillary associated protein defect 
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and astrocyte associated hepatic encephalopathy [33,34]. However, astrocytes play a very 
important role in the development and repair process of both chronic and acute diseases 
such as Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, 
Huntington's disease, epilepsy, stroke, SCI and others [35-40]. In the CNS injury, astrocytes 
respond according to the location and severity of the injury. The post-injury expression of 
the pro-proliferative cytokines such as interleukin-6, transforming growth factor-α, ciliary 
neurotrophic factor, fibroblastic growth factor-2, and epidermal growth factor are known 
to increase astrocyte proliferation, leading to reactive astrogliosis and eventually formation 
of glial scar [41]. The reactive astrocytes present in the glial scar are well known to inhibit 
the regeneration of severed neurons and shunting neurite outgrowth by the inhibitory 
extracellular matrix, chondroitin sulphate proteoglycans (CSPGs) [41,42]. The glial scar 
contributed CSPGs are also reported to be associated with the impairment of neural stem 
cell migration [43]. Intraperitoneal treatment of agmatine (100 mg/kg) (exogenous) has 
been found to reduce the severity of middle cerebral artery occlusion (MCAO) induced 
cerebral astrogliosis, which is also associated with increased neuroprotection via attenuating 
oxidative stress in rat [44]. To better understand the neuroprotective function of agmatine, 
Lee et al. treated agmatine in the in vitro primary astrocytes subjected to oxygen-glucose 
deprivation (OGD). Following OGD astrocyte viability was decreased, which was increased 
by the agmatine treatment through the nuclear translocation of NF-κB [45]. Agmatine 
also reduced the MCAO-induced brain oedema and overexpression of AQP4, a selective 
water-transporting protein highly expressed in the astrocytic foot process, which play an 
important role in brain water intoxication [46]. On the other hand, in the chlorpromazine 
(CPZ) induced rat forebrain injury, agmatine (75 mg/kg intraperitoneally [i.p.]) was found to 
accelerate astrogliosis which overlaps the increased expression of superoxide dismutase and 
reduction of the reactive oxygen [47]. In this case, the agmatine induced reactive astrocytes 
might exert their beneficial effect via suppression of the oxidative stress through lipid 
peroxidation. Agmatine was also found to stabilize the BBB, a principal function of astrocyte 

3/10https://doi.org/10.12786/bn.2019.12.e2

Role of Agmatine on Glia Brain & NeuroRehabilitation

02

https://e-bnr.org

MicrogliaAstrocyte

Microgliosis
Reactive

Astrocyte

Astrogliosis (−)

Glial scar (−)

Oxidative stress (−)

BMP 2/7 (+)

BMP 2 (+)

Inflammatory
Cytokein
TNF-α (−)
IL-1β (−)

iNOS (−)

iNOS (−)

M1
pheno

M2
pheno

Edema (−)

(+)

Agmatine

Fig. 1. Agmatine attenuates astrogliosis and microgliosis following CNS injury. Agmatine treatment reduces the 
detrimental effects of both reactive astrocytes and activated microglia after CNS injury. Agmatine treatment 
suppresses the M1 microglia and increases the M2 microglia via regulation of the BMPs expression. (−): suppression, 
(+): increase of expression. 
CNS, central nervous system; BMP, bone morphogenic protein; TNF, tumor necrosis factor; IL, interleukin.
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in rat transient cerebral ischemia [48]. However, the effect of agmatine on astrocytes on 
the contribution of BBB stabilization was not been reported in this study. Overexpression 
of endogenous agmatine via transduction of the human ADC gene was found to reduce 
oxidative stress injury in in vitro mouse cortical astrocytes [49]. In this study the authors 
suggested that that the neuroprotective function of endogenous agmatine were exerted via 
inhibiting inducible nitric oxide synthase (iNOS) signaling and metalloproteinases activity 
in astrocytes. In the mice SCI, it was also reported that agmatine treatment attenuated 
reactive astrogliosis and glial scar formation which was correlated with an increase in the 
level of bone morphogenic proteins 2/4/7 (BMP-2/4/7) [50]. BMP-7 has been suggested to 
be neuroprotective and a regulator of glial cell differentiation [51,52]. Studies have also 
suggested that agmatine treatment can also suppress astrogenesis by suppressing BMP-2/7 
expression in neuronal stem cells [53]. Thus, agmatine plays a vital role in the formation of 
reactive astrocytes and glial scar, which eventually modulate the repair and rehabilitation 
process after CNS injury. Further studies of the mechanism of action of agmatine on 
astrocytes are needed to ensure its proper therapeutic use in CNS injury.

Regulation of microgliosis by agmatine in CNS injury
The functional properties of the microglia in the healthy brain are still poorly understood. 
However, they are well known for their primary surveillance activity in the immune privileged 
brain, and are also considered to be the key player during the development, homeostasis, and 
modulation of CNS diseases. Microglia have the ability to scan the whole brain parenchyma 
within a few hours [54]. In the diseased or injured brain, microglia can be both beneficiary 
or detrimental to the brain by modulating disease progression and repair process. In AD, 
frontotemporal dementia, normal aging, axonal pruning has been reported to be associated 
with an increase in microglial expression of C1q, accompanied by compliment component 
C3 [55-57]. In damaged tissue, microglia promote the induction of astrocytes associated 
proinflammatory cytokine expression, such as IL-1α, tumor necrosis factor, and C1q which 
lead to expression of C3. C3 is considered to be cytotoxic to neurons and oligodendrocytes 
[58]. CNS injury also induces an astrocyte associated ATP gradient, which is sensed by the 
microglia through purinergic receptor P2RY12, leading to rapid changes in the microglia and 
increased microglial migration to the injury site [59,60]. Recent studies have suggested that 
microglial cells can be present as one of the two phenotypes according to their activation 
and functional modalities such as either classically activated (M1) or alternatively activated 
(M2) [61,62]. Among them, M2 microglia are suggested to be beneficial following the CNS 
injury due to the suppression of inflammation, promoting tissue repair, and wound healing. 
Following CNS injury, M2 microglia are believed to be express at earlier stages of injury 
which become pick at 5th day of injury and are later converted to M1 phenotype [63,64]. M1 
microglia are suggested to increase the iNOS expression, which promotes neurotoxic NO 
production in in vitro ischemic condition [63]. In the BV2 microglial cell-mediated in vitro 
model of the ischemic condition, agmatine (100 μM) treatment was found to attenuate the 
cytotoxic condition and NO production was correlated with the reduction of iNOS production 
[65]. The authors also suggested that agmatine (100 mg/kg i.p.) treatment reduced the 
expression of ionized calcium binding adaptor molecule 1 (Iba1), which is a well-known 
marker for microglia and iNOS in the in vivo MCAO rat model. The same research group 
also found the same effect of agmatine treatment in both in vitro and in vivo (mice) model 
of lipopolysaccharide (LPS) induced inflammatory injury [66], which supports the results of 
the LPS-induced iNOS expression and NO production in rat primary cortical microglia [67]. 
Moreover, they suggested that agmatine can attenuate the expression of pro-inflammatory 
cytokines, such as tumor necrosis factor-α and interleukin-1β, induced by the LPS-injured 
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brain [66]. In the CPZ treated oxidative stress model of wistar rats' brain, agmatine reduced 
the expression of Iba1 [46]. In rat SCI model, agmatine was found to be a modulator of BMP-
2 expression along with the reduced expression of M1 macrophages which was increased 
following injury, and increased M2 expression [20]. Recently, BMP-2 has been reported to 
be a suppressor of M1 macrophages [68]; based on the above results, the authors suggested 
that agmatine is responsible for the transition of M1 macrophage to M2 via increased BMP-2 
expression. Although, agmatine has been found to modulate CNS injury and positively 
accelerate the repair process, more studies are needed to confirm the therapeutic role of 
agmatine on microglia and macrophage.

Agmatine promotes myelination by oligodendrocytes in CNS injury
Oligodendrocytes are the end product of the cell linage with a complex timed program 
including proliferation, differentiation, migration and later myelination. They are also known 
as the major myelinating cells, which produces cholesterol myelin sheaths to insulate axons 
to ensure and accelerate the proper axonal transduction process [69,70]. The role of the 
myelin is not only to ensure axonal signal transduction, but in CNS diseases it may underlie 
severe functional and rehabilitation disabilities [71,72]. Loss of myelination may happen in 
different types of diseases or injuries such as genetic, infectious and autoimmune disease, 
and also following CNS trauma [73-75]. There are not many studies has been found that 
examine the role agmatine on oligodendrocytes. However, Park YM. et al. suggested that 
exogenous agmatine treatment promoted remyelination following compression induced 
SCI in a mouse model that was correlated with the functional neurobehavioral outcome 
(Fig. 2) [49]. They also suggested that agmatine treatment increased the expression of the 
Olig-2+ oligodendrocyte cells and also prevented the loss of neuronal cells. The expansion 
of oligodendrocytes from NG+ oligodendrocyte progenitor cells has been reported to be 
regulated by the higher expression of BMP-2/7 and decreased BMP-4 expression influenced 
by agmatine [49]. The transplantation of human mesenchymal stem cells overexpressed with 
the endogenous agmatine-producing gene, ADC, in SCI reduced glial scar formation and 
promoted neuronal regeneration and oligodendrogenesis [76]. Braissant et al. [77] suggested 
that the blood to cell exchanger of L-arginine, a substrate of agmatine, cationic amino acid 
transporters (CAT2) is expressed in neuron and oligodendrocyte, which suggests that the 
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Fig. 2. AGM increases remyelination following CNS injury. (A) AGM treatment increases the remyelination (luxol blue 
staining) 28 days after SCI in the rat, which is also correlated with the significantly increased functional outcome 
compared to experimental control (B). Results represent mean ± standard error of the mean. 
CNS, central nervous system; BMS, basso mouse scale; EC, experimental control; NC, normal control; AGM, agmatine. 
*p < 0.05, EC vs. AGM treated group.
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agmatine might be closely related to oligodendrocytes. These results warrant future studies 
examining the role of agmatine on oligodendrocytes.

CONCLUSION

Agmatine has been found to have neuroprotective effect in both acute and chronic CNS 
disorders. Agmatine modulates different receptors and ion channels that are responsible for 
the progression and resolution of CNS injury. There are a number of studies that reported 
that, both endogenous and exogenous agmatine possess beneficiary role on most CNS 
cells such as neuron, astrocytes, microglia and oligodendrocytes and also modulate the 
differentiation, proliferation and migration of those cells. Therefore, it is important to 
understand the mechanism of agmatine action on CNS cells which will help to understand 
the therapeutic potential of agmatine in CNS injury.
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