
Highlights
•� �Transcranial direct current stimulation (tDCS) is a method of brain stimulation emerging as 

an alternative treatment of various neurological diseases.
•� �Although tDCS affects cognitive function improvement in non-human studies, clinical trial 

results are still inconsistent.
• This review provides an overview of the effects of tDCS on Alzheimer's disease.
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ABSTRACT
Transcranial direct current stimulation (tDCS) is one of the brain stimulation techniques, 
which considered as an alternative treatment for Alzheimer's disease (AD). In AD, cognitive, 
behavior, and functional deteriorations are the result of synaptic dysfunction, neural circuit 
destabilization, and disrupted network activity, which are mainly caused by amyloid and tau 
deposition. tDCS modified neuronal resting membrane potential, synaptic plasticity, cortical 
neurotransmitters, astrocytes, cerebral blood flow, and functional connectivity, which 
could restore cognitive impairment. However, several small clinical studies that have been 
conducted so far have produced inconsistent results in patients with AD. Therefore, more 
systematic clinical studies are needed in the future.

Keywords: Transcranial Direct Current Stimulation; Alzheimer's Disease; Alternative 
Treatment; Synaptic Plasticity; Network Activity

INTRODUCTION

Alzheimer's disease (AD) is one of the most common degenerative diseases. As the elderly 
population increases, the prevalence and concern of AD are growing. Moreover, it is 
dreadful that there has been no disease modifying treatment for this disease. Currently, 
only pharmacological treatment that improves cognitive function is used as a symptomatic 
treatment. This treatment has a limited effect, and its effect decreases over time, and even 
if it has side effects, it could not be used [1]. Therefore, due to the limitations of currently 
available pharmacological treatments, alternative therapies area required.

Transcranial direct current stimulation (tDCS) is one of the brain stimulation techniques, 
noninvasive, safe, painless, and relatively easy to use [2]. To date, tDCS has been shown to 
have beneficial effect in numerous diseases including major depressive disorder [3], pain 
[4,5], stroke [6,7], drug addiction [8], refractory epilepsy [9], focal hand dystonia [10], and 
other degenerative disease [11].

Since tDCS enhances neural function by modulating cortical excitability and synaptic 
plasticity, it was showed the favorable effects of cognitive function in previous healthy human 
studies with tDCS [12-15]. This effects may contribute to the treatment of AD [16], therefore 
brain stimulation is considered as an alternative treatment for AD.
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In this review, we briefly introduced what tDCS was, summarized the pathogenesis of AD in 
terms of neural circuit and discussed possible mechanisms of tDCS that could be applied to 
the treatment of AD.

BASIC PRINCIPLES OF TDCS

tDCS is one of the noninvasive brain stimulation methods and it is a technique to control 
the neuronal transmembrane potential by flowing a weak current of 1–2 mA to the scalp 
[17]. tDCS regulates spontaneous neuronal network activity through polarization of the 
resting membrane potential, rather than causing neuronal firing by suprathreshold neuronal 
membrane depolarization. Two small electrodes with an area of 25 to 35 cm2 are put on the 
scalp and current is passed through it, the anodal or cathodal stimulation is determined 
according to the direction of the electric flow between the 2 electrodes. Although the skull 
has a high resistance, a considerable amount of the electrical current reaches the brain. 
Previously, it was questionable whether the current of tDCS would reach the brain, however 
recent studies have shown that appropriate electrode placement and montage influence 
electrical current reaching the cortex during stimulation [18]. In addition, since the 
conductivity of the skull is low, the current density is homogenously transmitted to the brain 
below the site where the electrode is located [19].

The effect of tDCS depends on the direction of current polarity of the electrodes, anodal 
stimulation increases cortical activity and excitability, while cathodal stimulation decreases. 
The effects of tDCS are observed not only during stimulation but also after the end of 
stimulation (after-effect) [20]. The factors affecting stimulation are duration, intensity, 
polarity of stimulation and baseline cortical excitability state [21]. The tDCS stimulation is 
usually performed for 20–30 minutes, and after-effects are observed to last for more than 
1 hour. While the effect during stimulation is caused by changes in spontaneous neuronal 
firing such as neuronal depolarization or hyperpolarization, the after-effect is provoked by 
altering the synaptic microenvironment, such as altering N-methyl-D-aspartate (NMDA) 
receptor dependent activity [22].

PATHOPHYSIOLOGY OF AD: FROM THE PERSPECTIVE OF 
NEURAL CIRCUIT
Amyloid beta deposition
Amyloid beta in the brain parenchyma influenced loss of synapse, neurodegeneration, 
and alteration in neuronal activity. These changes impaired neural circuits, which led 
to widespread network dysfunction and cognitive decline. Amyloid beta protein had 
unfavorable effects on neurons and other types of brain cells [23]. Oligomeric amyloid beta 
directly stimulated neuronal apoptosis through interaction with cell-surface receptors. 
Additionally, long-term accumulation of toxic amyloid beta in parenchyma led to oxidative 
damage of deoxyribonucleic acid (DNA) and protein, physical injury of cellular organelle, and 
dysregulation of intracellular calcium level, resulting in cell death [24].

Impairment of synapses and destabilization of circuits
Amyloid beta induced deficits in synaptic plasticity, circuit function, and cognition 
initiated before cell loss occurred [25]. Meanwhile, synaptic activity could also promote the 
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accumulation of amyloid beta in the brain parenchyma by affecting amyloid beta metabolism 
[26]. Excitatory activity promoted amyloid precursor protein proteolysis and released it into 
the extracellular space [27].

The effect of amyloid beta on synapse activity varied with the extracellular concentration. 
Low levels of amyloid beta enhanced excitatory activity and higher levels inhibited it [28,29]. 
A slight increase in amyloid beta contributed to activity through presynaptic acetylcholine 
receptors, which increased internal calcium concentration to induce the release of glutamate 
[30]. Postsynaptic excitation further increased amyloid beta and synaptic excitability through 
positive feedback, however increasingly high levels of amyloid beta reduced synapse activity 
by modifying the synapse strength through several mechanisms such as internalization of 
glutamate receptors [31]. Acute increases in synaptic amyloid beta impaired the long-term 
potentiation (LTP) of synaptic strength and increased the depression of synaptic activity 
[28,29,32]. Moreover, chronic elevations of amyloid beta weakened connectivity, altered 
dynamics of dendritic spines and increased synapse loss [32,33]. Loss of dendritic spines due 
to amyloid beta induced neuron hyperexcitibility and made it more easily stimulated [34]. 
Amyloid beta also affected the inhibitory interneurons, altering the balance of excitatory 
activity and inhibitory activity. Loss of synaptic inhibition through the inhibitory interneuron 
deficit, including the downregulation of cell-surface voltage-gated sodium channels, led to 
modification of network activity and cognitive dysfunction [35].

Network susceptibility
Amyloid deposition altered neural circuit connectivity and network activity. In AD, the default 
mode network, which was a functionally connected region that was activated during passive 
thinking, remembering and planning, coincided with the deposition of amyloid beta [36]. 
Additionally, in previous studies, the areas where the cerebral blood flow (CBF) increased 
when performing memory-related activities were consistent with the default mode network 
[37,38]. In functional magnetic resonance imaging (MRI) study, the medial temporal lobe 
activity was also correlated with spontaneous thought process with less attention, which 
mainly activates the default mode network [39]. These studies suggested that memory 
processes might be linked to the default mode and that involvement of memory networks in 
default state could explain why memory was predominantly vulnerable in AD. In AD patients, 
amyloid deposition had little change with disease progression [40], whereas progression of 
default mode network dysfunction was associated with clinical deterioration. In early stage 
of disease, the areas of the posterior default mode network, such as posterior cingulate/
precuneus cluster, started to be disrupted. As the disease progresses, connectivity within the 
ventral and anterior systems of default mode network were weakened [41].

Intracellular pathophysiology

Tau protein
Dynamic binding of tau attributed to the stability and functionality of the microtubule, which 
influenced neuronal activity and circuit connectivity by engaging in connections between 
long-distance cells [42,43]. Phosphorylation weakened the microtubule-binding capacity 
of tau, releasing tau into the cytosol, decreasing solubility to cause aggregation inside the 
cell forming paired helical filaments and neurofibrillary tangles [44,45]. Tau was found in 
the trans-entorhinal cortex in the earliest stages of the disease. Then it spread to limbic 
area and neocortex, sequentially [46]. And their spreading correlated with the degree of 
cognitive decline and neurodegeneration [42]. When tau aggregates were released into the 
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extracellular space, it induced abnormal changes in neurons adjacent to it, leading to cell-to-
cell propagation that could explain the widespread distribution of tau in AD [47]. Presynaptic 
excitatory neuronal activity increased tau release and accelerated propagation of tauopathy 
through circuits [47]. Neuronal circuit hyperactivity and calcium influx also triggered 
aberrant tau phosphorylation [48]. Hyperphosphorylated tau might be toxic by itself [49], 
moreover accumulation of hyperphosphorylated tau in the dendritic spines resulted in a 
disruption of synaptic function by damaging the glutamate receptors [50].

Lysosomal degradation
Lysosomal degradation through autophagy was an intracellular degradation process that 
cleared proteins and organelles from the cytoplasm [51]. The defect of autophagy in neuron 
was one of the pathogenesis of AD. Lysosomal degradation occurred by using clathrin-
mediated endocytosis in the pre- and post-synaptic terminal. It played an important role in 
controlling intracellular and extracellular environments to influence synaptic activity and 
plasticity. Amyloid beta itself and genetic susceptibility could disrupt clathrin-mediated 
endocytosis that contributed to neurodegeneration in AD [52].

Neuroinflammation
Microglia, the phagocytic cells of the central nervous system (CNS), played an important 
role in maintaining the extracellular environment by taking up the amyloid beta oligomers. 
The loss of phagocytic function of microglia to oligomers led to long-term depression (LTD) 
and adverse effects on synapses. It might cause the inefficient synaptic communication 
and circuit dysfunction before amyloid plaque formation [53]. In addition to microglia, 
astrocytes, oligodendrocytes, and endothelial cells played an important role in maintaining 
circuit function and worked on neuronal activity [23].

Brain-derived neurotrophic factor (BDNF)
BDNF is an important mediator for neuronal survival, synaptic plasticity, and cellular 
differentiation. It acted on cell survival function as well as cognitive activity such as learning, 
behavior, and memory [54]. In mice, the lack of neuronal BDNF induced the impairment 
of LTP in the hippocampus, and when BDNF was injected, the LTP was brought back [55]. 
BDNF induced the secretion of acetylcholine by enhancing the differentiation and survival 
of cholinergic neurons in the basal forebrain [56]. BDNF might play an important role in the 
pathogenesis of AD through neurotrophic effects on basal cholinergic neurons. Lack of BDNF 
synthesis might also be associated with neuronal dysfunction in AD.

MECHANISMS OF TDCS FOR AD PATIENTS

Depolarization of neuronal resting membrane potentials
tDCS induced the changes in plasticity, anodal stimulation increased cortical excitability, 
and cathodal stimulation decreased. In addition, the after-effect that excitability changes 
persisted for several minutes after cessation of current stimulation, might be due to polarity-
driven alterations of resting membrane potential by tDCS [22]. The intensity and duration 
of the after-effects are also adjusted according to the current intensity and duration [21]. 
The tDCS stimulation induced migration of the transmembrane protein, which affected the 
propagation of neuronal activity and non-synaptic plasticity by changing the properties and 
number of ion channels. tDCS also caused water electrolysis, which affected the membrane, 
receptor, and cell function by changing the acid-base balance [57].
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Alteration of synaptic plasticity
According to pharmacological studies, during short-lasting tDCS, membrane polarization 
occurred, leading to cortical excitability alteration, which regulated the conductance of 
sodium and calcium channels [58]. On the other hand, the long-lasting after-effects of 
tDCS were mostly caused by NMDA receptor-dependent neuroplastic changes [22,58]. tDCS 
led to LTP and LTD-like effects, the duration of which depended on duration and intensity 
of stimulation, the origin of the cerebral cortex, and the prolonged effect depended on 
NMDA-receptor activity [59]. In addition, the modulation mediated by glutamatergic and 
gamma-aminobutyric acid-ergic (GABAergic) neurons in the neocortex resulted in LTP 
and LTD-like changes. In particular, anodal stimulation caused excitatory effects due to 
reduction of GABAergic inhibition as well as NMDA receptor dependency, and cathodal 
stimulation induced inhibitory effects mediated by reduction of excitatory glutamatergic 
neurotransmission [60].

When anodal stimulation activated the NMDA receptor, the intracellular Ca2+ of the 
postsynaptic neuron was increased. Depending on the degree of NMDA receptor activation, 
the extent of Ca2+ uptake was different and had distinct effects on synaptic modulation. A 
small increase in postsynaptic Ca2+ induced LTD-like changes, moderate increase induced no 
synaptic modulation, and greater increase led to LTP-like changes [2,61].

Modulation of cortical neurotransmitters
Changes in plasticity due to tDCS were affected by cholinergic, dopaminergic, and 
serotonergic neuromodulation [62-64]. Anodal stimulation also modulated synaptic 
plasticity by increasing BDNF levels, which promoted dendrite branch formation and 
neuronal sprouts [65].

Modulation of astrocytes
Anodal stimulation increased the resistibility of neurons to amyloid beta toxicity and 
modulated astrocytes. Activated astrocytes are neurotoxic, and tDCS reduced expression of 
inflammatory factors by less activating astrocytes [66].

Alterations in CBF
Although both anodal and cathodal stimulation increased CBF, anodal stimulation was 3 
times greater than cathodal one. Also, CBF increased linearly with an increase in anodal 
current strength [67]. Compared to sham stimulation, anodal and cathodal stimulations 
increased and decreased CBF respectively, in the cortical and subcortical areas [68]. CBF 
reflected regional neuronal activity indirectly, which means that tDCS caused sustained and 
widespread changes in regional neuronal activity.

Modulation of functional connectivity
In an animal study, anodal stimulation on frontal cortex induced neuronal activation in 
the frontal cortex and its associated brain regions [69]. In human studies, when anodal 
stimulation was applied to dorsolateral prefrontal cortex, the synchrony in the anticorrelated 
network components increased and the synchrony in the default mode network components 
decreased, which means that the intrinsic brain activity network reconfiguration occurred 
after tDCS [70]. tDCS also caused changes in brain synchronization and topological 
functional organization [71]. Because cognitive impairment in AD was related to abnormal 
neural synchronization, changes in brain synchronization due to tDCS might be helpful in 
improving cognitive function.
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CLINICAL TRIALS OF TDCS IN PATIENTS WITH AD

There were a total of 8 tDCS studies for AD, 1 for case report and 7 for clinical trials. Ferrucci 
et al. [72] reported 10 patients with anodal or cathodal stimulation in the bilateral temporo-
parietal area for one 15-minute period. After 30 minutes, word recognition memory was 
measured. Anodal stimulation showed improvement and cathodal stimulation showed 
worsening of word recognition memory in this study. Boggio et al. [73] studied 10 patients 
with AD. Anodal stimulation was given to the left temporal area or left dorsolateral prefrontal 
cortex for 30 minutes, and visual recognition memory was measured during stimulation. 
Visual recognition memory was improved during stimulation for each of the 2 sites. Boggio et 
al. [74] had shown in a subsequent study that this improvement in visual recognition memory 
lasted up to 4 weeks after the end of the stimulation.

Thereafter, a parallel-group clinical trial of the effects of tDCS was conducted. Khedr et al. [75] 
performed a double-blind, sham-controlled, parallel-group clinical trial in 34 patients with 
AD. The left dorsolateral prefrontal cortex was subjected to anodal or cathodal stimulation 
10 times for 25 minutes and P300, event-related potential, was measured as well as cognitive 
function. In this study, both anodal and cathodal stimulation showed a change in cognitive 
function improvement and shortening of P300 latency. However, in other randomized parallel-
group clinical trials, tDCS stimulation did not show significant effects on enhancement of 
cognitive function [76-78] (Table 1). Most of these previous clinical studies were small, and the 
characteristics of subjects, conditions of stimuli and outcome measures were different from study 
to study. Therefore, it is difficult to pinpoint the effect of tDCS on AD through these studies.

CONCLUSION

As tDCS is non-invasive and easy to use, it could be alternative therapeutic method for AD. 
The mechanisms of tDCS are based on modulation of neuronal resting membrane potentials, 
synaptic plasticity, cortical neurotransmitters, astrocytes, CBF, and functional connectivity, 
which may restore cognitive impairment in AD. However, there are inconsistent results in 
clinical studies in patients with AD. Since most clinical studies so far are pilot studies with 
small sample sizes, future clinical studies should be more systematic with extensive scale.
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