
236 © Copyright The Korean Academy of Asthma, Allergy and Clinical Immunology • The Korean Academy of Pediatric Allergy and Respiratory Diseasehttp://e-aair.org

INTRODUCTION

Asthma is a genetically complex disease that is associated with 
the familiar segregation of atopy and increased levels of total 
serum IgE.1 Asthma and atopy are also closely associated with 
increased bronchial hyper-reactivity and elevated blood eosin-
ophil count.2,3 These intermediate phenotypes are highly heri-
table and the subject of much asthma genetics research. The 
occurrence of patients with an asthma cluster in their family in-
dicates that a genetic component is likely operating. Twin stud-
ies represent a useful first step to determine whether a given 
trait or disease has a measurable genetic component. In a large 
twin study with 7,000 same-sex twins born between 1886 and 
1925, the concordance rate for self-reported asthma in mono-
zygotic twin pairs was 19%, which is four times higher than the 
4.8% rate in dizygotic twins.4 This heritability must be deter-
mined by genetic factors. However, the prevalence of childhood 
and adult-onset asthma has increased dramatically during the 
last two or three decades in both developed and developing 
countries.5 These result indicate that epigenetic factors may 
play an important role in increased asthma prevalence. Ge-
nome-wide linkage studies, biologically plausible candidate 
gene approaches, and genome-wide association scans (GWAS) 
have been performed over the past 20 years to search for the 
genetic background of asthma.
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WHOLE-GENOME LINKAGE, POSITIONAL CLONING, AND 
FINE MAPPING STUDIES

Linkage-based methods have been used for individual fami-
lies in which members are highly affected by the disease. These 
studies have attempted to demonstrate a linkage between dis-
ease occurrence and genetic markers in a chromosomal region. 
Linkage analysis is performed to determine the chromosome 
location of a susceptibility gene or genes by demonstrating co-
segregation of the trait or disease with known genetic markers, 
which are usually polymorphic DNA markers. Two general 
linkage analysis approaches have been used: 1) genome-wide 
and 2) candidate region searches of the genome in which can-
didate genes have already been mapped. These approaches 
have been successfully used to map and clone genes causing 
monogenic disorders with simple Mendelian inheritance such 
as cystic fibrosis.6 They have also been used over the past 20 
years by several groups to isolate susceptibility loci for asthma.7,8 
Whole-genome or candidate chromosome scans using micro-
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satellite markers and a positional cloning approach has led to 
the discovery of several genes for asthma and related pheno-
types (Table 1). These results have increased our understanding 
of the genetic background of asthma and its subphenotypes. 
Using whole-genome linkage analysis, positional cloning, and 
case control studies, at least five asthma genes including disin-
tegrin and metalloprotease 33 (ADAM33) 20p13,9 dipeptidyl-
peptidase 10 2q14.1 (DPP10),10 plant homeodomain zinc finger 
protein 11 13q14.2,11 G protein–coupled receptor for asthma 
susceptibility 7p15-p14,12 and prostaglandin D2 receptor 14q2413 
have been identified as strong genetic variants for asthma (Ta-
ble 1). However, replication studies including the British 1958 
Birth Cohort study of 7,703 adults revealed that small increases 
in asthma risk were identified only with DPP10 and ADAM33.9,10 
Based on recent replication results, it has been concluded that 
applying linkage analyses to multi-factorial complex diseases is 
less successful than had been previously thought. Thus, the 
growing recognition of the limitations of linkage analysis for in-
vestigating a complex human disease has shifted emphasis 
away from linkage analysis and microsatellite markers toward 
single-nucleotide polymorphism (SNP) genotyping and differ-
ent analytical strategies based on association and haplotype 
analyses.14

CANDIDATE GENE ASSOCIATION STUDIES USING SNPS

During the past decade, genetic and genomic molecular tech-
nologies have been rapidly developed. Generating SNP maps 
from high-throughput sequencing projects has promoted the 
discovery of genes related to asthma. There are several poten-
tial advantages of using SNPs to investigate the genetic deter-
minants of a complex human disease such as asthma. SNPs are 
plentiful throughout the human genome, as they are found in 
exons, introns, promoters, enhancers, and intergenic regions, 
allowing them to be used as markers in dense positional clon-
ing investigations. Additionally, groups of adjacent SNPs exhib-
it linkage disequilibrium and haplotypic diversity patterns that 
could be used to enhance gene mapping. More than 300 genes 
have SNPs associated with asthma and allergy subtypes based 
on the NCBI website (http://www.ncbi.nlm.nih.gov). We have 
also genotyped 2,800 SNPs on 180 genes whose functions are 
related to asthma and found that SNPs on 19 genes are associ-
ated with the risk of asthma and its traits (Fig. 1).15-30 Interesting-
ly, almost all SNPs have an odds ratio (OR) <2.0, indicating that 
the candidate gene approach provides genetic variant informa-
tion regarding the production of significant increases in asthma 
risk; however, their contribution to the development of asthma 

Table 1. Candidate genes in loci linked to asthma and the intermediate phenotypes

Chr Loci Gene Asthma Ig E ST BHR Eos

1 1p31-34 IL-10, IL12Rβ2 O O
2 2p14.1 DPP10* O O O O
2 2q33 CD28, TGF-α O O
5 5p15, 5q23-31 IL-3,4,5,9,13, GM-CSF, ADRβ2, CD14, GCR O
6 6p21 TNFα, HLA O O O
7 7p15-p14 GPR* O O
7 7q36.2 TCRα, IL-6 O
9 9q31.3 TMOD O O
11 11q13, 11p15 FCER1β, CC10/CC16 O O O O
12 12q13-24 INFγ, SCF, IGF1, STAT6, NOS1,LTA4H O O O
13 13q14 TPT1 O O O
13 13q14.2 PHF11* O O O
14 14q24 PTGDR* O O O
14 14q11, q32 TCRα/δ, MCC O
16 16p12, p22-24 IL-4Rα O
17 17p11, q12-21 CC chemokine cluster O O
19 19q13 TGFβ, IL-11, CD22 O O
20 20p13 ADAM33* O O O

Ig E, immunoglobulin E; ST, skin prick test; BHR, Bronchial hyper-reactivity; Eos, eosinophil; IL. interleukin; DPP10, dipeptidyl peptidase 10; CD, cell differentiation an-
tigen; TGF-α, transforming growth factor-α; GM-CSF, granulocyte macrophage colony stimulating factor; ADRβ2, adrenergic receptor; GCR, glucocorticoid receptor; 
TNF-α, tumor necrosis factor-α; GPR, G-protein coupled receptor; TCR, T-cell receptor; TMOD, tropomyosin-binding protein; FCER1β, IgE binding receptor β; INFγ, in-
terferon γ; SCF, stem cell factor; IGF1, insulin-like growth factor; STAT6, signal transducer and activator of transcript 6; NOS1, nitric oxide synthase 1; LTA4H,  leukot-
riene A4 hydrolase; TPT1, tumor protein; transitional controlled 1; PHF11, PHD finger protein 11; PTGDR, prostaglandin D2 receptor; TCRα/δ, T-cell receptor α/δ; 
MCC, mutated in colorectal cancers; ADAM33, adhesion disintegrin and metalloprotease 33.
*Indicates asthma-related genes identified by genome linkage analysis, positional cloning, and case-control studies.
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may be smaller than expected.

GWAS

With the development of SNP sequencing technologies, the 
international Hap-Map Consortium has revealed nearly 4 mil-
lion SNPs on the whole chromosome and demonstrated that 
individual SNPs predict adjacent SNPs, suggesting that geno-
typing 500,000 SNPs may allow for a nearly complete survey of 
all common genetic variability.31 Based on this concept, whole-
genome SNP genotyping arrays have been developed and ap-
plied over the past 5 years to research the genetic background 
behind multifactorial complex diseases. This approach is a hy-
pothesis-free test of the association between phenotypes and 
SNPs across the genome and diseases, usually involving 500,000 
markers that are reasonably polymorphic and are spread fairly 
evenly across the genome. As of June 2010, 904 statistically sig-
nificant GWAS have been published for 165 traits of common 
allele complex diseases (NHGRI catalog at (http://www.ge-
nome.gov/gwastudies/). A GWAS on asthma has been pub-
lished from 2007 until now (Table 2).21,32-38 Among the nine 

studies, seven consider Caucasians, one study considers Mexi-
cans, and two studies consider Asians, including Koreans. Eight 
studies focused on asthma risk, and the remaining one focused 
on occupational asthma. The first GWAS was created in Eng-
land in 2007.32 They applied a 30 kb SNP chip to the DNA from 
994 patients with childhood-onset asthma and 1,243 non-asth-
matics, using family and case-referent panels. As a result, a 
strong signal was found at chromosomes 17q and 2. The SNPs 
associated with childhood asthma were consistently and strong-
ly associated (P=10-22) with transcript levels of ORMDL3, a 
member of a gene family that encodes transmembrane pro-
teins anchored in the endoplasmic reticulum.32 The second 
GWAS analyzed sequence variants affecting eosinophil counts 
in the blood of 9,392 Icelanders. The most significant 10 SNPs 
were further studied in 12,118 Europeans and 5,212 east Asians, 
including Koreans. SNPS (rs1420101) at IL1RL1 and at 2q12 
were strongly associated with asthma (P=5.5×10-12) in a collec-
tion of ten different populations including 7,996 cases and 
44,890 controls. However, the ORs were <1.5. Very recently, a 
large-scale, consortium-based GWAS of asthma with 10,365 
asthmatic patients and 16,110 controls confirmed the associa-

Fig. 1. Odd ratios of single nucleotide polymorphisms (SNPs) associated with asthma and asthma phenotypes including IgE and eosinophils counts (2003–2010, SCH 
Genome Research Center). IgE, immunoglobulin E; RSV, respiratory syncytial virus; NO2, nitrogen dioxide; FcRI and FcRII, high-affinity IgE receptor isoforms; TLR, toll-
like receptor; M-CSF, macrophage colony-stimulating factor; NFAT, nuclear factor of activated T-cells; API, activator protein 1; GATA, GATA-binding factor; NFκB, nu-
clear factor kappa B; IκB, inhibitor of NFκB; OR, odd ratios; ADAM33,15 disintegrin and metalloproteinase domain-containing protein 33; CXCR3,16 chemokine recep-
tor 3; IL17Rβ,17 interleukin 17 receptor β; CD40,18 cluster of differentiation 40; RUNX119; runt-related transcription factor 1; ITK,20 IL2-inducible T-cell kinase; 
CTNNα3,21 catenin α 3; CSF1R,22 colony-stimulation factor 1 receptor; MCP3,23 monocyte chemotactic protein 3; PPAR,24 peroxisome proliferator-activated receptors; 
DCNP1,25 dendritic cell nuclear protein 1; IL5Rα,26 interleukin 5 receptor α; STAT4,27 signal transducer and activator of transcription 4; CCR3,28 C-C chemokine recep-
tor type 3; MYLK,29 myosin light chain kinase; eotaxin.30
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tion of the previously defined SNPs, including ORMDL3 and 
IL1RL1.38 However, the ORs were within the range of 0.5 to 1.5. 
We calculated population attributable risk fractions of these 
SNPs in asthma and its traits,39 and they were between 3.9–24% 
(Table 2).

IDENTIFYING THE MISSING HERITABILITY OF ASTHMA

GWASs have identified hundreds of genetic variants associat-
ed with complex human diseases and traits and have provided 
deep insights into their genetic makeup. In the case of age-re-
lated macular degeneration, proportions of heritability explained 
by five SNPs are responsible for 50% of the risk. Thirty-two loci 
for Crohn’s disease explain 20% of the heritability (Table 3). 
However, most variants identified to date confer a relatively 
small increase in risk and explain only a small proportion of 
heritability. Thus, this leads to the question of how the missing 
heritability can be explained.40 In the GWAS results, the popula-
tion attributable risk fractions of these SNPs in asthma and its 
traits ranged between 3.9–24% (Table 2). The population attrib-
utable risk fraction (AF) of 20% indicates the relatively strong 
impact of genetic variants on the development of asthma. In 
studies including patients with asthma, rs7216389 on ORMDL3 

Table 2. Genome-wide association scan studies on asthma (2007–2010)

rs number Gene Races OR P value MAF AF Reference

rs7216389 ORMDL3 Caucasian 1.45 0.031 0.62 0.218 Moffatt et al.32

rs10762058
CTNNA3 Korean 1.85 0.0005 0.372 0.24 Kim et al.21

rs7088181
rs142010 IL1RL1 Caucasian/Korean/Taiwan 1.16 5.5×10-12 0.405 0.061 Gudbjartsson et al.33

rs11778371 PDE4D Caucasian 2.32 8.1×10-7 0.09 0.106 Himes et al.34

rs3734083 TLE4 Mexican 1.68 1.21×10-5 0.18 0.109 Hancock et al.35

rs1775444 DENND1B Caucasian 1.83 9.43×10-7 0.049 0.039 Bardy et al.36

rs2244012 RAD50-IL13 Caucasian 1.64 3.04×10-7 0.212 0.119 Li et al.37

rs3771166 IL1RL1/IL18R1
Caucasian <1.5

3×10-9 NA NA
Moffatt et al.38

rs2305480 ORMDL3/GSDMB 6×10-23 NA NA

OR, odds ratio; MAF, minor allele frequency; AF, attributable risk fractions.

Table 3. Estimates of heritability and number of loci for several complex traits

Disease Number of loci Proportion of heritability Heritability measure

Age-related macular degeneration 5 50% Sibling recurrence risk
Crohn's disease 32 20% Genetic risk (liability)
Systemic lupus erythematosus 6 15% Sibling recurrence risk
Type 2 diabetes 18 6% Sibling recurrence risk
HDL cholesterol 7 5.20% Residual* phenotype variance
Height 40 5% phenotypic variance
Early onset myocardial infarction 9 2.80% phenotypic variance
Fasting glucose 4 1.50% phenotypic variance

*Residual is after adjusting for age, gender, and diabetes.
Adapted from Moffatt et al.38

has a 21.8% of AF, whereas the SNPs on the other gene have an 
AF of <12%. These results suggest that SNPs discovered even by 
several GWASs only have a limited ability to explain genetic ef-
fects for the development of asthma.

Manolio et al.40 regarded the factors related to the limitations 
of GWAS as an imprecise disease phenotype, use of control 
groups of questionable comparability, and inconsideration of 
environmental contributors. To overcome the missing herita-
bility, the overall asthma strategy should be classified into spe-
cific phenotypes, and environmental factors should be intro-
duced into the analysis of these subgroups. From a schematic 
view, the pathogenic mechanism of asthma can be divided into 
two major pathways. One is an acquired immune response 
pathway, and the other is an innate pathway (Fig. 1). In the for-
mer, Th2 cells, mast cells, and eosinophils participate in a anti-
gen specific IgE- and Th2 cytokine-dependent manner. This 
process usually starts at a young age. In the latter, macrophages, 
dendritic cells, epithelial cells, and neutrophils are involved in 
IgE-independent adult-onset asthma. Thus, patients with asth-
ma can be stratified into several subphenotypes (Table 4).

Based on the triggering environmental factors, asthma can be 
subgrouped into IgE-dependent allergic, aspirin-exacerbated 
respiratory disease, occupational asthma, exercise-induced 
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of environment factors in genetic studies of asthma. One im-
portant and easily accessible environmental factor is occupa-
tional exposure to inducers or triggers. 

A GWAS study was performed on a well-defined subpheno-
type of asthma in 84 Korean patients with toluene diisocyanate 
(TDI)-induced asthma and 263 unexposed healthy normal 
controls.21 Genetic catenin alpha 3, alpha-T catenin polymor-
phisms are significantly associated with the TDI-induced asth-
ma phenotype (OR=5.84106 for rs10762058) and the AR in-
creases to 24% (Table 2), indicating that the missing heritability 
of asthma can be compensated for by stratification into asthma 
sub-phenotypes and by introducing environmental factors into 

asthma, and menstruation- or obesity-associated asthma. The 
inflammatory patterns observed from a sputum analysis reveal 
eosinophilic, neutrophilic, and pauci-graniulocytic types of 
asthma. Patients with asthma can be clinically and physiologi-
cally stratified into several subgroups. Thus, a genetic associa-
tion study should be conducted on patients with asthma in 
well-defined subphenotypes.

IMPROVEMENT OF AF OF GENETIC VARIANTS 
ACCORDING TO THE SUBPHENOTYPES OF ASTHMA AND 
THE ENVIRONMENTS

The SNP on ORM1-like 3 was reanalyzed in Caucasians and 
Koreans according to the age of asthma onset (Table 5).41 When 
the subjects were stratified based on an age of 16 years, the sta-
tistical difference of rs 7216389 on 17q21 became more appar-
ent in the age group <16 years in Caucasians and Koreans, 
whereas the statistical significance disappeared in the group 
>16 years. The ORs of the younger group ranged from 1.26 to 
1.49, whereas that of the older group ranged from 0.87 to 1.11. 
AFs were 0.269 for early-onset asthma and 0.057 for late-onset 
asthma, indicating the necessity for stratifying asthma accord-
ing to age, because the two types of asthma may have a differ-
ent pathogenesis.

The impact of genetic variants on asthma may be enhanced 
when environmental factors are introduced. An interesting 
finding related to 17q21 variants was revealed after 1,511 sub-
jects from 372 families were grouped by passive exposure to en-
vironmental tobacco smoke during early life.42 The ORMDL3 
gene variant on rs8076131 showed a significant association with 
the risk of asthma in a family sample with offspring exposed to 
tobacco smoke (OR=2.5), but not in those who were not ex-
posed to tobacco smoke (OR=1.38), indicating the importance 

Table 4. Classification of asthma phenotypes

1. Phenotypes related to triggers
Aspirin or non-steroidal anti-inflammatory drugs
Environmental allergens
Occupational allergens or irritants
Menses
Exercise
Viral infection
Obesity

2. Inflammatory phenotypes
Eosinophilic
Neutrophilic
Pauci-granulocytic

3. Clinical or physiological phenotypes
Severity-defined: from mild to severe
Exacerbation-prone: Brittle vs. non-Brittle
Defined by chronic airflow restriction
Treatment-resistant: resistance to steroids
Defined by age at onset

Table 5. Association of the T allele of rs7216389 in ORM1-like 3 with asthma

Study group
All asthma Adults, early onset Adults, late onset

na/nc P value OR (95% CI) na/nc P value OR (95% CI) na/nc P value OR (95% CI)

Iceland 1,648/30,898 1.6∙10-7 1.23 (1.14, 1.33) 617/30,898 1.4∙10-9 1.44 (1.28, 1.63) 744/30,898 0.064 1.11 (0.99, 1.23)
Australia 647/564 0.44 1.07 (0.90, 1.27) 370/564 0.016 1.26 (1.04, 1.52) 226/564 0.22 0.87 (0.70, 1.08)
The Netherlands 221/1,564 0.0073 1.32 (1.08, 1.61) 156/1,564 0.0081 1.37 (1.09, 1.73) 57/1,564 0.55 1.12 (0.77, 1.63)
Korea* 1,387/558 0.14 1.13 (0.96, 1.33) 211/558 0.0049 1.49 (1.13, 1.96) 76/558 0.35 1.08 (0.92, 1.28)
United Kingdom 292/241 0.064 1.26 (0.99, 1.61) 81/241 0.07 1.39 (0.97, 1.99) 60/241 0.63 1.10 (0.74, 1.65)
Germany I 307/560 0.014 1.28 (1.05, 1.56) - - - - - -
Germany II 415/204d 0.0034 1.43 (1.12, 1.81) - - - - - -
Combined  

non-lcelandic
3,269/3,691 2.7∙10-6 1.21 (1.18, 1.31) 818/2,927 1.6∙10-6 1.35 (1.19, 1.52) 1,519/2,927 0.74 1.02 (0.91, 1.15)

Combined all 4,917/34,589 2.0∙10-12 1.22 (1.15, 1.29) 1,435/33,825 1.5∙10-14 1.40 (1.28, 1.52) 2,263/33,825 0.11 1.07 (0.99, 1.16)

Shown above are the number of cases (na) and controls (nc), the OR with a 95% confidence interval, and two-sided dual and combined study populations using the 
Mantel-Haenzel mode.
*Attributable risk fraction values are 0.089 for all asthma, 0.269 for early-onset asthma, and 0.057 in late-onset asthma.
Adapted from Halapi et al.41
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the genetic analysis.

IMPROVEMENT IN THE ORS OF GENETIC VARIANTS BY 
DISCOVERY OF SNPS WITH RARE ALLELE FREQUENCY

Much of the speculation about missing heritability from 
GWASs has focused on the possible contribution of rare vari-
ants (low minor allele frequency [MAF] <0.5%). To date, GWAS 
chips have been created to analyze common variants of >5% 
MAF. Sequencing of individual genomes has started to gener-
ate more information on these rare human chromosome vari-
ants.43 The full genome sequences of 1,000 anonymous subjects 
have been identified. The 1,000 Genomes Project (http://www. 
1000genomes.org/page.php) has already identified more than 
11 million new SNPs in low-depth coverage of 172 individuals. 
The newly discovered SNPs will be applied to genetic associa-
tion studies in the near future.

STRUCTURAL VARIATION AND EPIGENESIS IN ASTHMA 
GENETICS

Previous epidemiological studies demonstrated that SNPs are 
not responsible for all phenotypical differences. The twin co-
hort study showed that the concordance rate for self-reported 
asthma in monozygotic twin pairs is 19%.44 Asthma develops 
almost concurrently considering that monozygotic twins have 
similar genetic variants. However, the concordance rate is <20%. 
One of the explanations for this disconcordance is epigenesis. It 
was recently discovered that the mother’s diet affects the risk of 
allergic asthma in her offspring.45 Recently, Ho et al.5 extensive-
ly reviewed the environmental epigenetics of asthma. Thus, we 
focused on the epigenesis of aspirin hypersensitivity in asthma. 
The methylation pattern on the DNA CpG sites was analyzed 
using a whole genome methylation analysis of 27,168 CpG sites 
using nasal polyps from patients with aspirin exacerbated re-
spiratory disease (AERD) and aspirin tolerant asthma (ATA).46 
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As a result, the methylation patterns were significantly different 
in nasal polyps, but not so different in the buffy coat. A volcano 
plot showed different methylation levels in AERD and ATA: 332 
CpG sites on 296 genes were hypomethylated and 158 sites on 
141 genes were hypermethylated (Fig. 2). Hierarchical cluster-
ing of 490 differentially methylated CpGs clearly distinguished 
the nasal polyps between patients with AERD and ATA. The 
CpG-site methylation of nasal polyps was not correlated with 
that of the buffy coats, indicating that the difference in methyla-
tion pattern was a nasal tissue-specific finding. Among the ara-
chidonate pathway genes, prostaglandin E synthase was hyper-
methylated and prostaglandin D synthase, arachidonate 5-li-
poxygenase activating protein, leukotriene B4 receptor, and li-
poxygenase homology domain 1 were hypomethylated (Table 
6), indicating that different methylation patterns of these candi-
date genes in the arachidonate pathway may be responsible for 
the penetration of specific phenotypes such as AERD in asthma.

Genomic variability is present in many forms, including SNPs, 
variable number tandem repeats (e.g., mini- and microsatel-
lites), presence/absence of transposable elements (e.g., Alu ele-
ments), and structural alterations (e.g., deletions, duplications, 
and inversions). Until recently, SNPs were thought to be the 
predominant form of genomic variation and to account for 
much of the normal phenotypic variation. However, the wide-
spread presence of copy number variation was recently report-
ed in normal individuals.47 Contrary to our previous beliefs, 
identical twins are not genetically identical. Researchers stud-
ied 19 pairs of monozygotic, identical twins and found differ-
ences in copy number variations and found that contingent neg-
ative variation (CNV) is associated with Parkinson’s disease.48 A 
GWAS of CNV in 16,000 cases of eight common diseases in-
cluding T1, 2D, rheumatoid arthritis, and Crohn’s disease have 
revealed that some CNV is strongly associated with the risk for 
complex diseases.

FUTURE OF ASTHMA GENOME RESEARCH

Genome-wide SNP association and fine mapping studies will 
widen the scope of candidate genes for asthma, but only when 
applied to sub-phenotypes rather than all asthma types and 

when analyzed with increased sample sizes considering envi-
ronmental contributors. An active subject of research in the 
postgenomic era is to identify functional regulatory elements 
for human gene expression. Epigenetics is a study of heritable 
changes in DNA structure that do not alter the underlying se-
quence. Well-known examples are DNA methylation and his-
tone modification. These changes may remain after cell divi-
sions for the life of the cell and may last for multiple genera-
tions. The most exciting idea in epigenetics is that it could be 
possible to intervene at the junction between the genome and 
the environment. Epigenetic variants and copy number varia-
tions are the starting point to obtain data from clinical samples, 
and it will be another powerful tool for research into the genetic 
heritability of asthma.
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