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BACKGROUND/OBJECTIVES: This study aimed to test the association between APOA5 3'-UTR variants (rs662799) and cardiometabolic 
traits in Koreans. 
SUBJECTS/METHODS: For this study, epidemiological data, Apolipoprotein A5 (APOA5) genotype information, and lymphoblastoid 
cell line (LCL) biospecimens from a subset of the Ansung-Ansan cohort within the Korean Genome and Epidemiology study 
(KoGES-ASAS; n = 7,704) as well as epidemiological data along with genomic DNA biospecimens of participants from a subset 
of the Korea National Health and Nutrition Examination Survey (KNHANES 2011-12; n = 2,235) were obtained. APOA5 mRNA 
expression was also measured. 
RESULTS: APOA5 rs662799 genotype distributions in both the KoGES-ASAS and KNHANES groups were 50.6% for TT, 41.3% 
for TC, and 8.1% for CC, which are similar to those in previous reports. In both groups, minor C allele carriers, particularly 
subjects with CC homozygosity, had lower high-density lipoprotein (HDL) cholesterol and higher triglyceride levels than TT 
homozygotes. Linear regression analysis showed that the minor C allele significantly contributed to reduction of circulating 
HDL cholesterol levels [β = -2.048, P < 0.001; β = -2.199, P < 0.001] as well as elevation of circulating triglyceride levels [β =
0.053, P < 0.001; β = 0.066, P < 0.001] in both the KoGES-ASAS and KNHANES groups. In addition, higher expression levels 

of APOA5 in LCLs of 64 healthy individuals were negatively associated with body mass index (r = -0.277, P = 0.027) and circulating 
triglyceride level (r = -0.340, P = 0.006) but not significantly correlated with circulating HDL cholesterol level. On the other hand, 
we observed no significant difference in the mRNA level of APOA5 according to APOA5 rs662799 polymorphisms.
CONCLUSIONS: The C allele of APOA5 rs662799 was found to be significantly associated with cardiometabolic traits in a large 
Korean population from the KoGES-ASAS and KNHANES. The effect of this genotype may be associated with post-transcriptional 
regulation, which deserves further experimental confirmation.
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INTRODUCTION8)

Hypertriglyceridemia is a lipid abnormality commonly observed 
in obese individuals and patients with cardiovascular disease 
(CVD) or diabetes [1,2]. It is considered to be an independent 
risk factor for atherosclerosis in patients with type 2 diabetes 
[3,4]. Apolipoprotein A5 (ApoA5), a protein composed of 366 
amino acids and high-density lipoprotein (HDL) primarily 
secreted from the liver [5,6], is a well-known modulator of 
circulating triglyceride (TG) levels in both fasting and postp-

randial states [7]. ApoA5 also inhibits production of very 
low-density lipoprotein (VLDL) TG [5-7] and stimulates hydrolysis 
of VLDL TG mediated by lipoprotein lipase (LPL) [6,7], thereby 
reducing circulating TG levels [5,8]. Consequently, single- 
nucleotide polymorphisms (SNPs) in APOA5 have been shown 
to be involved in TG metabolism in both fasting and postprandial 
states and are considered as important contributors to the 
development of obesity, dyslipidemia, CVD, diabetes, and 
vascular complications in type 2 diabetes [9-13]. Among 
commonly studied APOA5 SNPs, -1131T > C (rs662799) and 56C
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> G (rs3135506) are considered to be functional-tag SNPs at 
APOA5 [12,13]. It has been previously reported that the 
frequency of the APOA5 -1131C allele is higher in East Asians 
(> 25%) than in Westerners (9-16%) [9-13]. The minor C allele 
of APOA5 rs662799 is associated with a higher circulating TG 
level and independently contributes to increased risk of CVD 
[11,13]. On the other hand, the minor G allele of APOA5 
rs3135506, which is associated with risk of myocardial infarction 
and metabolic syndrome (MetS), was reported to be more 
common in Westerners (6-15%) than in Asians (0.1-3%) [12,13].

Conflicting findings on the above-described associations have 
been reported [14,15], and most studies in Korea have been 
conducted using small samples, of which the results are not 
generalizable to the Korean population. Therefore, this study 
aimed to test the association between APOA5 3'-UTR variants 
of rs662799 as functional-tag SNPs at APOA5 and cardiometabolic 
traits using data from subpopulations of the Korean Genome 
and Epidemiology Study: Ansung-Ansan cohort study (KoGES- 
ASAS) and the Korea National Health and Nutrition Examination 
Survey (KNHANES, 2011-2012).

SUBJECTS AND METHODS

Study participants
This study was conducted using two separate datasets 

composed of the KoGES-ASAS and KNHANES (2011-2012). The 
procedure and design of the KoGES-ASAS are described elsewhere 
[16,17]. With regard to the KoGES-ASAS, 10,030 individuals aged 
40-69 years living in the Ansan (urban) and Ansung (rural) 
districts were recruited for baseline in 2001-2002. The aim was 
to construct a genomic and epidemiologic database to examine 
the effects of genetics and the environment on disease 
prevalence in Koreans. Questionnaire-based interviews were 
conducted with participants in a community clinic, where they 
were questioned regarding their socio-demographic status, 
lifestyle, health, and medical history. They also underwent 
anthropometric measurements, clinical examinations, as well as 
biannual follow-up examinations. The current study was based 
on data collected from a total of 8,841 participants, for whom 
DNA samples for genotyping were available. Among them, 
participants with preexisting cancer (n = 97), diabetes (n = 783), 
or CVD (n = 202) at the time of enrollment in the study were 
excluded. Participants with TG levels > 600 mg/dL (n = 55) were 
also excluded, leaving 7,704 participants for analysis. This study 
protocol was approved by the Institutional Review Board of the 
Korea Centers for Disease Control and Prevention (KCDC; KBP- 
2016-062) and the Institutional Review Board at Korea University 
(KU-IRB-16-EX-272-A-1). The KNHANES is a nationwide cross- 
sectional survey conducted by the KCDC. This survey is composed 
of three different sections: health examination, health interview, 
and nutrition survey. Detailed information on the KNHANES is 
available elsewhere [17]. Among the 16,576 participants (8,518 
in 2011 and 8,058 in 2012), those aged < 20 years were 
excluded. We further excluded those who had been diagnosed 
with cancer as well as women who were pregnant or breast-
feeding. After considering all exclusion criteria, 2,600 participants 
(492 in 2011 and 2,108 in 2012) whose DNA samples were 
available for genotyping were included from the study. After 

further excluding participants with diabetes (n = 278), CVD (n 
= 74), or TG levels > 600 mg/dL (n = 13), data on a total of 2,235 
participants were finally used for the analysis. The KNHANES 
was approved by the Institutional Review Board of KCDC 
(2011-02CON-06-C, 2012-01EXP-01-2C). This study protocol was 
approved by the Institutional Review Board of KCDC (KBP- 
2016-062) and the Institutional Review Board at Korea University 
(KU-IRB-16-EX-137-A-1).

General information and anthropometric and biochemical 
measurements

Demographic and behavioral data on participants in the 
KoGES-ASAS and KNHANES (i.e., age, sex, education level, 
physical activity, cigarette smoking, and alcohol consumption) 
were obtained from survey questionnaires administered by 
trained interviewers. Education level was divided into four 
groups: elementary school, middle school, high school, and 
university. Current smokers and current drinkers were defined 
as those who smoked cigarettes or drank alcoholic beverages 
regularly at the time of the survey. The level of total metabolic 
equivalents (METs), as a representative of physical activity, was 
calculated by summing METs during each activity type (2.4 for 
light, 5.0 for moderate, and 7.5 for intense activities) [18]. For 
anthropometric and biochemical measurements, procedures and 
assay methods for the KoGES- ASAS and KNHANES are described 
elsewhere in detail [17,19]. Height and body weight were 
measured, from which the body mass index (BMI; kg/m2) was 
calculated as the weight divided by the height squared. Blood 
pressure (BP) was repeatedly measured by a trained technician 
using a mercury sphygmomanometer. Two readings were taken 
on the left and right arms of each subject in the supine position 
with a 5-min rest between readings. Measurements were 
recorded to the nearest 2 mmHg, and averages were calculated 
for systolic and diastolic BPs (SBP and DBP). Hypertension was 
defined as an SBP of ≥ 140 mmHg or DBP of ≥ 90 mmHg, 
previous diagnosis of hypertension as self-reported by the 
participants, or taking anti-hypertensive medication. In the 
KoGES-ASAS, blood samples were collected for biochemical 
analysis after at least 8 h of fasting. Fasting levels of glucose 
(mg/dL), TG (mg/dL), total cholesterol (mg/dL), and high-density 
lipoprotein cholesterol (HDL cholesterol, mg/dL) were measured 
using an automatic analyzer (ADVIA 1650 and 1680; Siemens, 
Tarrytown, NY, USA). In the KNHANES, blood samples were 
collected after overnight fasting for the analysis of biochemical 
markers. Fasting levels of glucose (mg/dL), TG (mg/dL), total 
cholesterol (mg/dL), and HDL cholesterol (mg/dL) were measured 
using an automatic analyzer (Hitachi 7600; Hitachi, Tokyo, 
Japan). In both studies, LDL cholesterol was calculated using 
the Friedewald equation [LDL cholesterol (mg/dL) = total 
cholesterol (mg/dL) - HDL cholesterol (mg/dL) - (TG (mg/dL))/5] 
in subjects with a TG level of < 400 mg/dL [20].

Genotyping information
Detailed information on DNA preparation and genotyping of 

the KoGES-ASAS is provided elsewhere [19]. Briefly, DNA 
samples were isolated from the peripheral blood of participants 
and genotyped using the Affymetrix Genome-Wide Human SNP 
Array 5.0 (Affymetrix, Inc., Santa Clara, CA, USA). The accuracy 
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of genotyping was calculated with Bayesian robust linear 
modeling using the Mahalanobis distance genotyping algorithm. 
A total of 352,228 SNPs in 7,704 participants became available 
after preimputation quality control, namely, 1) exclusion of SNPs 
with high missing genotype call rates > 5% with a minor allele 
frequency < 0.01 and not in Hardy-Weinberg equilibrium (HWE, 
P < 1 × 10-6) and 2) removal of samples with sex mismatch. 
Genetic principal components were computed in a subset of 
304,225 SNPs after excluding additional 48,003 SNPs (not in 
HWE under a more conservative criterion, P < 1 × 10-5) through 
the EIGENSTRAT software package. In the present study, a gene 
variant at APOA5 (rs662799) was included in the analyses to 
test its association with cardiometabolic traits. For DNA samples 
from the KNHANES (Institutional Review Board no. KBP-2016- 
062, KU-IRB-16-EX-137-A-1), APOA5 (rs662799) genotyping was 
screened using the TaqMan fluorogenic 5' nuclease assay (ABI, 
Foster City, CA, USA). The final volume for the polymerase chain 
reaction (PCR) was 5 μL comprising 10 ng of genomic DNA and 
2.5 μL of TaqMan Universal PCR Master Mix with 0.13 μL of 
20 × assay mix. Thermal cycling conditions were as follows: 50°C 
for 2 min to activate uracil N-glycosylase and prevent carry-over 
contamination, 95°C for 10 min to activate DNA polymerase, 
and 45 cycles of 95°C for 15 s and 60°C for 1 min. PCR was 
always performed using 384-well plates with a Dual 384-Well 
GeneAmp PCR System 9700 (ABI), and the endpoint fluorescent 
readings were obtained on an ABI PRISM 7900 HT Sequence 
Detection System (ABI). Duplicate samples and negative 
controls were included to ensure the accuracy of genotyping.

RNA extraction and semi-quantitative reverse transcription-PCR
To compare mRNA expression levels according to APOA5 

genetic variant (rs662799), lymphoblastoid cell lines (LCLs) of 
64 healthy individuals (males, n = 27; females, n = 37) were 
obtained from the subgroup of the KoGES-ASAS (Institutional 
Review Board no. KBP-2016-062, KU-IRB-16-EX-272-A-1). Total 
RNA was extracted from LCLs using the RibospinTM Kit (GeneAll, 
Korea), in accordance with the manufacturer’s protocol. cDNA 
was synthesized from 1 μg of RNA using oligo-dT and 
SuperscriptTM II reverse transcriptase (Invitrogen, USA). One 
microgram of cDNA was amplified with quantitative real-time 
PCR using the SYBR Green PCR Kit (Qiagen, USA). PCR was 
conducted using the QuantStudio™ 6 Flex Real-Time PCR 
System (Applied Biosystems, Foster City, CA), and the conditions 
were as follows: 15 min at 95°C, followed by 40 thermal cycles 
of 94°C for 30 s, 60°C for 20 s, and 72°C for 30 s. Target-specific 
primers for real-time PCR were designed using Primer Express® 
software. Sequences of the designed primers were as follows: 
APOA5 (sense, 5'-ACG CAC GCA TCC AGC AGA AC-3'; antisense, 
5'-TCG GAG AGC ATC TGG GGG TC-3') and glyceraldehyde 
3-phosphate dehydrogenase (GAPDH; sense, 5'-TCC ACC ACC 
CTG TTG CTG TA-3'; antisense, 5'-ACC ACA GTC CAT GCC ATC 
AC-3'). Obtained data were analyzed using the comparative 
cycle threshold (Ct) method and were normalized by the GAPDH 
expression value. Melting curves were generated for each PCR 
reaction to ensure purity of the amplification product. The 
delta-delta-cycle threshold (2-∆∆Ct) method was used to calculate 
changes in gene expression as a relative fold difference 
between experimental and endogenous control samples. Values 

are expressed as fold changes relative to the control and as 
mean ± standard deviation (SD).

Statistical analysis
Statistical analyses were performed using Stata SE 12.0 (Stata 

Corp., Carolina, USA). First, the distribution of variable values 
was investigated. Fasting blood glucose and TG levels were 
log-transformed to mimic a Gaussian distribution. Descriptive 
statistics of all variable values are presented as mean ± standard 
error (SE) for continuous variables and as a number and 
percentage for categorical variables. Effect allele frequency was 
calculated using the following formula: (counts of heterozygotes 
+ 2 × count of homozygotes of effect allele)/(2 × total count). 
HWE equilibrium was tested using Stata. Mean differences in 
variables among the three different rs662799 genotype groups 
were compared using one-way analysis of variance after 
considering potential covariates for continuous variables and 
using chi-squared test for categorical variables. Pearson’s 
correlation analysis was conducted to evaluate relationships 
between the mRNA abundance of APOA5 in LCLs of participants 
and selected variables. To estimate the effect of genotype on 
cardiometabolic risk factors, a linear regression model was used 
in an additive scale model, with adjustments for potential 
covariates. Results are presented as estimated regression 
coefficients β with 95% confidence interval (CI) for continuous 
variables. Corresponding P-values are also provided.

RESULTS

Genotype distribution and comparisons of characteristics of study 
participants according to the APOA5 rs662799 polymorphism

Table 1 presents the general information and cardiovascular 
risk parameters of the two study populations. Mean values of 
age as well as proportions of sex, smoking status, and 
hypertension (the KoGES-ASAS: 31.3% vs. the KNHNAES: 29.2%) 
were similar between the two study population groups. 
Genotype distribution of the APOA5-1131T > C (rs662799) in the 
population was in Hardy-Weinberg equilibrium. The minor C 
allele frequency was 0.288 in each population group as well 
as in total population, which is consistent with previous 
observations in the Korean population [10-12]. Genotype 
distributions of APOA5 rs662799 in the total population were 
50.6% for TT, 41.3% for TC, and 8.1% for CC (50.7% for TT, 41.4% 
for TC, and 7.9% for CC in the KoGES-ASAS and 50.4% for TT, 
40.9% for TC, and 8.7% for CC in the KNHNAES, respectively). 
Table 2 presents the lifestyle and socio-economic information 
of the study participants according to the APOA5 rs662799 
polymorphism. There were no significant differences in age, 
proportions of sex, education level, MET, smoking status and 
drinking status in either the KoGES-ASAS or KNHANES group. 

Associations between the APOA5 rs662799 polymorphism and 
cardiovascular risk factors

Table 3 presents cardiovascular risk parameters of the study 
participants according to the APOA5 rs662799 polymorphism. 
In both the KoGES-ASAS and KNHANES groups, minor C allele 
carriers, particularly CC homozygotes, had lower HDL cholesterol 
levels and higher TG levels than TT homozygotes. On the other 
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KoGES-ASAS (n = 7,704) KNHANES (n = 2,235)

Lifestyle and socio-economic factor

Age (yrs)  51.7 ± 0.1  48.6 ± 0.3

Male (%, n) 46.8 (3,598) 46.0 (1,027)

Education level (%)1) 32.3 / 23.1 / 31.1 / 13.3 20.0 / 11.3 / 37.0 / 31.7

Metabolic equivalent (hr) 19.3 ± 0.2 13.3 ± 0.3

Smoking (never/ex-/current) (%) 59.6 / 14.7 / 25.7 57.1 / 19.9 / 23.0

Drinking (never/ex-/current) (%) 46.3 / 4.8 / 48.9 10.4 / 13.2 / 76.5

Cardiovascular risk factor

Systolic blood pressure (mmHg) 120.8 ± 0.2 118.7 ± 0.3

Diastolic blood pressure (mmHg)  80.0 ± 0.1  76.6 ± 0.2

Body mass index (kg/m2) 24.49 ± 0.04 23.86 ± 0.07

Fasting blood glucose (mg/dL)  83.8 ± 0.1  93.8 ± 0.2

Total cholesterol (mg/dL) 190.6 ± 0.4 190.4 ± 0.7

HDL cholesterol (mg/dL)  45.0 ± 0.1  49.9 ± 0.2

LDL cholesterol (mg/dL) 115.4 ± 0.4 115.3 ± 0.7

Triglyceride (mg/dL) 153.3 ± 0.9 127.6 ± 1.7

APOA5 rs662799 polymorphism

Minor C allele frequency 0.286 0.286

TT/TC/CC (%) 50.7 / 41.4 / 7.9 50.4 / 40.9 / 8.7

KoGES-ASAS, Korean Ansung-Ansan cohort within the Korean Genome and Epidemiology study; KNHANES, Korea National Health and Nutrition Examination Survey; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein.
The values were described as mean ± SE for a continuous variable or frequency (%, n) for a categorical variable.
1) Educational level: (elementary school / middle school / high school / university) (%). 

Table 1. General information and cardiovascular risk parameters of study participants

KoGES-ASAS KNHANES

T/T
(n = 3,903)

T/C
(n = 3,190)

C/C
(n = 611)

P-value1) T/T
(n = 1,127)

T/C
(n = 913)

C/C
(n = 195)

P-value1)

Age (yrs) 51.7 ± 0.1 51.9 ± 0.2 51.4 ± 0.4 0.386 48.6 ± 0.5 48.1 ± 0.5 50.5 ± 1.1 0.132

Male (%, n) 46.3 (1,807) 47.3 (1,508) 46.3 (283) 0.701 47.0 (530) 45.4 (414) 42.6 (83) 0.458

Education level (%)2) 32.2 / 23.8
/ 31.0 / 13.0

32.6 / 22.6
/ 31.0 / 13.8

31.6 / 21.2
/ 34.7 / 12.5

0.444 19.1 / 11.5
/ 35.9 / 33.6

21.1 / 10.5
/ 38.3 / 30.1

19.8 / 14.4
/ 37.4 / 28.3

0.373

Metabolic equivalent (hr) 19.4 ± 0.3 19.3 ± 0.3 18.9 ± 0.7 0.753 13.1 ± 0.4 13.7 ± 0.5 12.3 ± 0.9 0.329

Smoking status (%)2) 60.0 / 14.7 / 25.3 58.9 / 14.9 / 26.2 60.9 / 14.0 / 25.1 0.854 55.5 / 20.2 / 24.3 58.7 / 18.6 / 22.7 59.4 / 24.1 / 16.6 0.102

Drinking status (%)2) 47.6 / 4.7 / 47.8 45.1 / 5.0 / 49.8 44.8 / 4.4 / 50.7 0.269 10.2 / 13.8 / 76.0 11.0 / 12.3 / 76.8 8.6 / 13.4 / 78.1 0.750

KoGES-ASAS, Korean Ansung-Ansan cohort within the Korean Genome and Epidemiology study; KNHANES, Korea National Health and Nutrition Examination Survey.
The values were described as mean ± SE for a continuous variable and as frequency (%, n) for a categorical variable.
1) Statistical differences were determined using chi square test for categorical variables and one-way analysis of variance (ANOVA) for continuous variables with Bonferroni’s 

multiple correction (P < 0.05).
2) Educational level (%): elementary school / middle school / high school / university; smoking status (%): never/ex/current smokers; drinking status (%): never/ex/current drinkers.

Table 2. Lifestyle and socio-economic information of study participants according to the APOA5 rs662799 polymorphism

KoGES-ASAS KNHANES

T/T
(N = 3,903)

T/C
(N = 3,190)

C/C
(N = 611)

P-value1) T/T
(N = 1,127)

T/C
(N = 913)

C/C
(N = 195)

P-value1)

Systolic BP (mmHg) 120.7 ± 0.3 121.0 ± 0.3 120.4 ± 0.7 0.778 118.8 ± 0.5 118.2 ± 0.5 119.9 ± 1.1 0.391

Diastolic BP (mmHg)  79.9 ± 0.2  80.0 ± 0.2  79.7 ± 0.5 0.770  76.5 ± 0.3  76.5 ± 0.3  77.2 ± 0.7 0.673

Body mass index (kg/m2)  24.5 ± 0.1  24.5 ± 0.1  24.6 ± 0.1 0.808  24.0 ± 0.1  23.8 ± 0.1  23.4 ± 0.2 0.050

Fasting glucose (mg/dL)  83.6 ± 0.2  84.0 ± 0.2  84.4 ± 0.4 0.055  94.1 ± 0.3  93.4 ± 0.3  94.3 ± 0.7 0.233

Total cholesterol (mg/dL) 190.4 ± 0.6 190.5 ± 0.6 192.4 ± 1.5 0.399 189.4 ± 1.0 191.3 ± 1.2 192.2 ± 2.4 0.344

HDL cholesterol (mg/dL)  46.1 ± 0.2a  44.3 ± 0.2b  41.7 ± 0.4c < 0.001  51.1 ± 0.4a  49.1 ± 0.4b  47.0 ± 0.8b < 0.001

LDL cholesterol (mg/dL) 116.0 ± 0.5 114.8 ± 0.6 114.5 ± 1.4 0.234 115.2 ± 0.9 115.7 ± 1.1 114.4 ± 2.2 0.870

Triglyceride (mg/dL)2) 142.0 ± 1.1a 160.0 ± 1.5b 190.9 ± 4.0c < 0.001 117.3 ± 2.2a 134.4 ± 2.6b 155.1 ± 6.2c < 0.001

KoGES-ASAS, Korean Ansung-Ansan cohort within the Korean Genome and Epidemiology study; KNHANES, Korea National Health and Nutrition Examination Survey; BP, 
blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
The values were described as mean ± SE.
1) Statistical differences were determined using one-way analysis of variance (ANOVA) for continuous variables with Bonferroni’s multiple correction (P < 0.05).
2) Tested after log-transformation.

Table 3. Cardiovascular risk parameters of study participants according to the APOA5 rs662799 polymorphism
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KoGES-ASAS KNHANES

Estimates P-value1) Estimates P-value2)

HDL cholesterol (mg/dL) -2.048 (-2.398, -1.699) < 0.001 -2.199 (-2.929, -1.469) < 0.001

Triglycerides (mg/dL)3) 0.053 (0.046, 0.060) < 0.001 0.066 (0.051, 0.081) < 0.001

KoGES-ASAS, Korean Ansung-Ansan cohort within the Korean Genome and Epidemiology study; KNHANES, Korea National Health and Nutrition Examination Survey; BP, 
blood pressure; HDL, high-density lipoprotein.
Tested by a linear regression model for cardiovascular risk factors
1) Sex, age, area, education level, metabolic equivalent, smoking status, and drinking status were adjusted for analysis using Ansan-Ansung data
2) Sex, age, year, education level, metabolic equivalent, smoking status, and drinking status were adjusted for analysis using KNHANES data
3) Tested after log-transformation

Table 4. Contribution of minor C allele in the APOA5 rs662799 polymorphism to cardiovascular risk (circulating HDL-cholesterol and triglyceride)

    

    

Fig. 1. Relationships between APOA5 mRNA expression and body mass index, circulating triglyceride, and high-density lipoprotein cholesterol levels and/or mRNA 
abundance of APOA5 according to the APOA5 rs662799 genotype. Results are expressed as r (correlation coefficient) or mean ± SE tested by Pearson’s correlation analysis or 
independent t-test (non-parametric test); n.s. indicates no statistically significant differences in the values among the groups.

hand, there were no significant differences in BP, BMI, fasting 
glucose, and total and LDL cholesterol according to the APOA5 
rs662799 polymorphism. To estimate the effect of genotype on 
circulating levels of TG and HDL cholesterol, a linear regression 
model was constructed with adjustments for potential covariates. 
Results show that the minor C allele significantly contributed 
to reduction of circulating HDL cholesterol levels [β = -2.048 
(CIs: -2.398, -1.699), P < 0.001; β = -2.199 (CIs:-2.929, -1.469), P < 
0.001) as well as elevation of circulating TG levels [β = 0.053 
(CIs: 0.046, 0.060), P < 0.001; β = 0.066 (CIs: 0.051, 0.081), P < 
0.001] in both the KoGES-ASAS and KNHANES groups, 
respectively (Table 4).

Relationship between APOA5 mRNA expression and BMI, 
circulating TG, or the APOA5 rs662799 genotype

To investigate the relationship between APOA5 gene 
expression level and blood parameters, we measured the mRNA 
abundance of APOA5 in LCLs of participants (n = 64, 27 males 

and 37 females; 54.1 ± 1.1 years) using quantitative real-time 
reverse transcription polymerase chain reaction (RT-PCR). As 
shown in Fig. 1, a higher APOA5 expression level (-∆Ct) in LCLs 
was negatively associated with BMI (r = -0.277, P = 0.027) and 
circulating TG level (r = -0.340, P = 0.006). However, APOA5 
mRNA expression level (-∆Ct) was not significantly correlated 
with circulating HDL cholesterol level (r = 0.179, P = 0.156). On 
the other hand, no significant difference was observed in ApoA5 
mRNA level (-∆Ct) between APOA5 rs662799 TT homozygotes 
(n = 32) and C allele carriers (APOA5 rs662799 TC + CC, n = 32).

DISCUSSION

While the association between the APOA5 rs662799 (T/C) 
polymorphism and blood lipid profile remains controversial, we 
confirmed previous studies on Koreans [9,10] that reported that 
the minor C allele in APOA5 rs662799 is significantly associated 
with elevation of TG and reduction of HDL cholesterol levels 



66 ApoA5 rs662799 and circulating triglyceride

in a large Korean population, from subsets of the KoGES-ASAS 
and KNHANES. Our results are in line with a recent meta-analysis 
that showed that the APOA5 rs662799 C allele is associated with 
elevated circulating TG levels, regardless of ethnicity [21]. Other 
recent meta-analyses reported that the APOA5 rs662799 C allele 
and CC genotype confer increased risks for the development 
of coronary artery disease (CAD) [22] and ischemic stroke [23], 
indicating a possible mediating role for circulating TG in the 
association between the risk variant at APOA5 and the 
atherosclerotic process.

ApoA5 consists of four exons and encodes a 366-amino-acid 
protein, and APOA5 rs662799 is located in the promoter region 
of APOA5 proximal to the APOA1/C3/A4 gene cluster on 
chromosome 11 [5,6,12,13]. Regarding the function of ApoA5 
in TG metabolism, it was previously demonstrated that APOA5 
overexpression in mice resulted in elevation of plasma ApoA5 
levels and marked reduction of circulating TG levels [6]. There 
is also evidence that serum TG levels were remarkably increased 
4-fold in mice with APOA5 knockout [5]. In addition, several 
plausible proposals have been made regarding the biological 
mechanisms by which genetic variants at APOA5 affect TG 
metabolism in humans. For example, the minor C allele is 
thought to impair ribosomal translation efficiency, thereby 
reducing the level of ApoA5 translated from this mRNA [24,25]. 
In line with this, previous studies have reported that the APOA5 
rs662799 C allele is associated with decreased circulating ApoA5 
levels or activity, which may result in an impaired interaction 
with LPL activity and increased circulating TG levels in certain 
metabolic contexts [26,27]. Alternatively, a peroxisome proliferator 
response element in the promoter region of APOA5 was 
identified as a target gene for peroxisome proliferator-activated 
receptor-α (PPARα) [28]. This indicates a possible role for the 
PPARα pathway in the association between ApoA5 and 
circulating TG. In addition, the association of the APOA5 
rs662799 polymorphism with CAD was suggested to be 
attributable to linkage disequilibrium with APOC3 variants or 
to other closely linked genetic variations [29].

In this study, we observed that the minor C allele significantly 
contributed to reduction of circulating HDL cholesterol as well 
as elevation of circulating TG levels in a large Korean population. 
While mRNA levels of APOA5 expressed from LCLs of healthy 
individuals were negatively associated with BMI as well as 
circulating TG, mRNA abundance was not significantly different 
according to the APOA5 rs662799 polymorphism. This result 
suggests that the genotype effect was more or less weak and 
this SNP might modulate APOA5 expression at the post- 
transcriptional level. Indeed, it was very recently proposed that 
the miR-binding site created by the rare c.∗158C allele in 
APOA5 3' UTR causes liver post-transcriptional down-regulation 
of APOA5 by miR-485-5p, at least partially accounting for the 
subsequent elevation of plasma TG levels in humans [30], which 
warrants further experimental confirmation. While evidence of 
the role of ApoA5 in LPL-mediated TG metabolism has been 
generally accepted, it has been additionally speculated that the 
composition of gut microbiota is related to circulating ApoA5 
levels or APOA5 polymorphisms as well as related metabolic 
properties in Koreans [31,32]. Lim et al. suggested that APOA5 
rs651821 polymorphisms may contribute to compositional 

changes in MetS-related gut microbiota [31]. It was observed 
that the minor C allele in APOA5 rs651821, which increases 
circulating TG levels and MetS incidence, was significantly 
associated with reduced abundance of Bifidobacterium and its 
parent taxon Actinobacteria, independent of the individual’s 
MetS status [31]. ApoA5 is known to be produced mainly in 
the liver but is also expressed at a low level in the intestine, 
and its function is to modulate chylomicron production [33,34]. 
Therefore, carriers of the minor C allele of APOA5 rs651821 have 
different lipid properties in the gut compared with non-carriers, 
which may lead to alteration of gut microbiota composition as 
mentioned above [31], suggesting a role for microbiome 
pattern in the regulation of ApoA5. More interestingly, Oliva 
et al. recently suggested that APOA5 genetic and epigenetic 
variabilities may jointly regulate circulating TG levels [35]; minor 
allele carriers of APOA5 SNPs (rs662799, rs3135506, and 724C
> G) had significantly higher circulating TG levels (by an 

average of 57.5%) than non-carriers [35]. At the same time, 
APOA5 promoter and exon 3 were hypermethylated, whereas 
exon 2 was hypomethylated. In particular, exon 3 methylation 
was positively correlated with circulating TG levels and a 
lipoprotein profile linked to atherogenic dyslipidemia [35]. 
Taking these findings together, circulating TG levels were the 
highest in minor allele carriers of at least one APOA5 SNP, 
possibly together with a high methylation percentage in exon 
3 (≥ 82%) among the population, which was not experimentally 
proven in the present study. Since blood TG levels are strongly 
affected by not only genetic susceptibility but also environ-
mental factors such as diet and lifestyle, this result may enhance 
our understanding of the effect of APOA5 on TG levels.

Despite a lack of experimental data supporting the observed 
association between APOA5 gene polymorphism and cardiome-
tabolic traits, this study was able to confirm that the minor C 
allele of APOA5 rs662799 is significantly associated with cardio-
metabolic traits and, more specifically, negatively associated 
with circulating HDL cholesterol and positively associated with 
TG level in a large Korean population from the KoGES-ASAS 
and KNHANES. In addition, this genotype may exert its effect 
via post-transcriptional regulation, which further requires 
experimental confirmation. Our results should add to our 
current understanding that APOA5 might be a useful target for 
clinical therapeutic intervention.
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