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The objective of this study was to investigate the effects of 

oxytocin infusion on corpus luteum (CL) function during early to 

mid-diestrus by measuring luteal size (LS) and luteal blood flow 

(LBF) along with plasma levels of progesterone (P4) and 

prostaglandin metabolites (13,14-dihydro-15-keto-prostaglandin 

F2α, PGFM). On day (D) 7 of the estrus cycle (D1 = ovulation), 

seven cows received 100 IU of oxytocin (OXY) or placebo (PL) 

following a Latin square design. LS and LBF increased in both 

groups over time and no differences were observed between the 

groups. PGFM did not differ either within the groups over time or 

between the groups at any time point. P4 of the OXY group was 

higher compared to that of the the PL group 360 min after the 

infusion (p = 0.01) and tended to be higher at the time points 450 

min, 48 h, and 72 h (all p = 0.08). Results from this study support 

the hypothesis that OXY is not directly involved in the 

mechanism(s) governing blood flow of the CL and has no 

remarkable effects either on luteal size or P4 and PGFM plasma 

levels. Further investigation is needed to elucidate the role of 

OXY in CL blood flow during early and late luteal phases.
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Introduction

Recently, transrectal color Doppler sonography has been 
reported to be a very useful tool for measuring local blood 
flow in the female bovine reproductive tract [16]. This 
technique allows estimation of the corpus luteum (CL) 
physiological status since blood flow on the CL parenchyma 

reflects its structural and functional development. Moreover, 
Acosta and Miyamoto [2] hypothesized that in the 
preovulatory follicle, in the developing and in mature CL in 
cattle, structural and functional changes of the vasoactive 
system occur. This highlights the importance of blood flow 
in the lifespan of ovarian structures [2]. Luteal blood flow 
(LBF) gradually increases after ovulation along with 
increases in CL volume and plasma P4 concentrations from 
days (D) 2 to D5 of the estrus cycle [1]. LBF doubles during 
the static phase (D8∼16) and decreases rapidly during luteal 
regression (D17∼21) [8]. Thus, LBF values may be reliable 
predictors of luteal status.

The CL is one of the few adult tissues that exhibit regular 
periods of growth (CL formation), hormonal excretion, and 
luteolysis (CL regression) [3]. CL growth is predominantly 
regulated by angiogenic and luteotropic factors such as 
growth factors (i.e., insulin-like growth factors-1 and -2), 
oxytocin (OXY), and LH [17,22]. Regression is initiated by 
luteolytic PGF2α secreted by the endometrium [13] and is 
promoted by a complex and not well-elucidated cascade of 
mediators that include OXY. Nevertheless, the role of OXY 
in luteolysis has been previously studied. It appears that 
OXY is not a main factor in the initiation of luteolysis in 
cattle [26] although it can play a supporting and modulating 
role in early stages of luteolysis, as postulated in sheep [24] 
and cattle [25]. On the other hand, OXY has a stimulatory 
effect on progesterone (P4) secretion which is highest on 
D5∼7 of the estrus cycle and declines from D8 to D12 [26]. 
However, OXY no longer has any stimulatory effect on P4 
secretion on D15∼18 [26]. Therefore, it was suggested that 
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luteal oxytocin affects the luteal function as a luteotropic or 
luteolytic autocrine/paracrine factor within the CL 
depending on the day of the luteal phase. Nevertheless, 
whether this effect involves changes in LBF has never been 
determined. The purpose of this study was to investigate the 
effect of OXY administration on CL function during early 
to mid-diestrus by measuring luteal size (LS) and blood 
flow as well as peripheral plasma levels of P4.

Materials and Methods

Animals, reproductive management, and OXY 
administration

This experiment was conducted at the Clinic for Cattle of 
the University of Veterinary Medicine, Hanover (Germany) 
in seven non-lactating multiparous Holstein-Friesian cows. 
The study was approved and conducted in accordance with 
the German legislation on animal welfare (Lower Saxony 
Federal State Office for Consumer Protection and Food 
Safety, Hannover, Germany). The animals were housed in 
tied stall barns and had ad libitum access to hay and 
water. They were healthy and examined for any 
reproductive tract abnormalities before enrollment in the 
experiment. Afterwards, all cycling cows underwent an 
ovulation-synchronization (Ovsynch) protocol [19] in 
which they received a gonadotropin-releasing hormone 
(GnRH) (2.5 mL; 10 μg, intramuscularly (im); Receptal; 
Intervet, USA), prostaglandin F2α (PGF2α, 2 mL; 0.526 mg, 
im; Estrumate; Intervet, USA) 7 days later, and then GnRH 
(10 μg, im) 48 h after PGF2α administration. At the time of 
the second GnRH administration, the size of the ovulatory 
follicle was measured with B-Mode sonography (8 MHz; 
General Electric, USA). The time of ovulation (D1) was 
determined by the disappearance of the ovulatory follicle 
between two consequent examinations performed at 24, 28, 
and 36 h after the last GnRH injection.

 On D7, the cows randomly received OXY (100 IU, 10 
mL, Oxykel; Agroscience, Germany) or placebo (PL; 10 
mL of 0.9% sodium chloride) diluted in 1,000 mL of 0.9% 
sodium chloride solution. Infusion via catheter in the 
jugular vein lasted 60 ± 3 min. Before infusion, the ovaries 
were evaluated by transrectal sonography to determine that 
the CL had no cystic cavity. On D10, a second Ovsynch 
protocol was initiated in all cows with the animals assigned 
into the different OXY and PL groups receiving the exact 
reversed treatment protocol, according to a Latin square 
model.

Luteal size and LBF
 Size and blood flow of the CL were examined with 

B-mode and Power Doppler sonography (10 MHz; GE 
Healthcare, USA), respectively, just prior to and 0.5, 1, 
1.5, 2, 3, 5, 12, 24, 36, 48, 60, and 72 h after infusion 
commencement. LBF was determined by the relative blood 

flow area (= maximum blood flow area near the maximum 
cross sectional area of the CL/maximum cross sectional 
area of the CL). The number of pixels with color was 
determined as a semiquantitative assessment of LBF using 
computer assisted image analysis software (PixelFlux; 
Chameleon Software, Germany). Three images each 
showing the maximum blood flow area and maximum cross 
sectional area of the CL were captured. The average from 
these three images were used for further analyses. Criteria 
for image selection included ones showing structures of 
interest that lacked artifacts, had constant color intensity 
and had intact borders with blood flow.

Blood samples and hormonal assays
Blood samples were collected via indwelling jugular 

catheters just before OXY infusion and every 15 min for two 
hours after commencing infusion. After this period, blood 
was collected every 30 min for another 6 h and just after the 
sonographic examinations. All blood samples were collected 
in evacuated tubes containing ethylenediaminetetraacetic 
acid as an anticoagulant (S-Monovette; Sarstedt, Germany). 
The samples were stored on ice until they were centrifuged 
(3,500 × g for 15 min at 4oC) within 30 min after collection, 
and the plasma was stored at −20oC until hormone analyses. 
Progesterone and prostaglandin metabolites (13,14-dihydro- 
15-keto-prostaglandin F2α, PGFM) were measured by an 
enzyme immunoassay according to Prakash et al. [18] and 
Mishra et al. [14] (monoclonal anti-P4 antibody, P-1922; 
Sigma, USA; polyclonal anti-PGFM antibody, provided by 
Professor Dr. H.H.D. Meyer, Institute for Physiology, 
Technical University of Munich, Germany; enzymes: 4- 
pregnen-3, 20-dione-3-O-carboxymethyloxime-horseradish 
peroxidase and PGFM-horseraddish peroxidase). The intra- 
and interassay coefficients of variation for P4 were both less 
than 10%; for PGFM, these coefficients were less than 7% and 
less than 10%, respectively.

Statistical analyses
Statistical analyses were conducted using the statistical 

analysis system (ver. 9.1; SAS, USA). A Shapiro-Wilk test 
was performed for all outcome variables to determine the 
underlying distribution of the data. All variables showed a 
normal distribution. A repeated measures ANOVA using a 
general linear model within subject effects across time was 
conducted using proc glm (SAS, USA). Student’s t-test was 
used to evaluate differences within animals at a specific 
time point using proc univariate (SAS, USA). p-values ＜ 
0.05 were considered statistically significant. Data are 
presented as the mean ± SE.

Results

The luteal size did not differ between the two groups at 
any time point (Fig. 1). However, the size of the CL 
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Fig. 1. Luteal size (cm2) 72 h after oxytocin (OXY, p = 0.02) or 
placebo (PL, p = 0.001) infusion in Holstein-Friesian cows. Data
represent mean ± SE.

Fig. 3. Levels of plasma prostaglandin metabolites (PGFM, 
pg/mL) 72 h after OXY or PL infusion in Holstein-Friesian cows.
Data represent mean ± SE.

Fig. 4. Levels of plasma progesterone (P4 in ng/mL) 72 h after 
OXY (p = 0.07) or PL (p = 0.14) infusion in Holstein-Friesian 
cows. Data represent mean ± SE. *p = 0.01, †p = 0.08. 

Fig. 2. Luteal blood flow (cm2) 72 h after OXY or PL infusion in
Holstein-Friesian cows. Data represent mean ± SE.

increased significantly over time in both groups (p = 0.02 
and p = 0.001 for the PL and OXY groups, respectively). 
Additionally, LBF did not differ between the two groups 
over time (Fig. 2). Although the LBF increased from 0.3∼
0.4 cm2 to 0.7 cm2 in both groups, this difference was not 
significant (Fig. 2). Plasma PGFM was not significantly 
different within the groups over time or between the groups 
at any time point (Fig. 3). However, it should be mentioned 
that the animals in the OXY group showed greater 
variability compared to the PL group as demonstrated by 
the substantially larger SE for the OXY group (Fig. 3). 
OXY infusion had a weak effect on the levels of P4 (Fig. 4). 
Specifically, the P4 values tended to increase over time in 
the OXY group (p = 0.07) whereas there was no significant 
change in the PL group (p = 0.14). Moreover, the P4 levels 
of the OXY group differed significantly from those of the 
PL group 360 min after the infusion (4.2 vs. 3.1 ng/mL, p = 

0.01) and tended to be higher at 450 min, 48 h, and 72 h (p 
= 0.08 for all).

Discussion

Increased blood flow during normal CL development 
underlines the importance of angiogenesis during this 
process [8] because nearly every parenchymal cell in the 
mature CL is in contact with one or more capillaries [20]. 
The limited number of animals and large variation of the 
data in the present study were probably the reasons why 
increases in blood flow we observed did not reach statistical 
significant. CL growth following ovulation is rapid and 
comparable to that of tumors [4]. Although LH and PGF2α 
are two of the primary endocrine factors controlling bovine 
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CL function [29], modulatory or supporting roles of OXY 
in luteal development and regression have also been 
reported [10,11]. In the present study OXY administration 
had no effect on the development of CLs, which continued 
to increase in size.

D7 of the estrus cycle coincides with the onset of the first 
follicular wave and a relatively increased concentration of 
estrogen [21]. It was previously reported that estrogens 
enhance the formation of endometrial OXY receptors, but 
P4 reduces the concentration of endometrial OXY 
receptors during the luteal phase by blocking the estrogen 
action [7]. On the other hand, a fully functional CL is 
present at the ovary on D7 and thus P4 production is high 
[21]. It is also known that the expression of OXY mRNA 
level is high during the early luteal phase in bovine CLs 
[9,28]. Additionally, OXY directly stimulates P4 secretion 
in luteal cells [15]. Based on these findings, continuous 
infusion of high doses of OXY during the early luteal phase 
would be expected to alter P4 concentrations. However, 
only a weak effect was observed in the present study 
similar to previous findings [27]. The supporting role of 
OXY to P4 concentration diminishes from D7 onwards of 
the estrus cycle [26]. This could explain why there was a 
tendency for P4 concentrations to increase in the present 
study, since the CLs of some cows were still sensitive to 
OXY while others were not. Shirasuna et al. [23] recently 
confirmed this dual role of luteal OXY as luteotropic 
(during the early luteal and mid-luteal phases) and 
luteolytic (during the late luteal phase after initiation of the 
luteolytic cascade), highlighting the modulatory effect of 
OXY on local secretion of vasoactive substances within 
the CL.

Infusion of OXY in sheep has been previously reported to 
evoke a modest increase in PGF2α secretion during the 
early and late but not the mid-luteal phases [5]. It seems 
likely that cyclical variation in the ability of OXY to evoke 
uterine PGF2α secretion is due to cyclical changes in the 
concentration of endometrial OXY receptors [12]. Gilbert 
et al. [6] have also reported that there is no increase in 
PGFM (a stable metabolite of PGF2α) concentration after 
OXY administration. Results of the present study, showing 
that OXY administration had no effect on endometrial 
production of PGF2α (measured as PGFM), support these 
findings. It is worth mention that large variations in PGFM 
concentrations were detected within both groups in our 
study. This could reflect variation of PGF2α secretion as 
early as D7 in each animal since high or low concentrations 
were detected in the same animals regardless the group 
they were assigned to in the Latin square design (data not 
shown). However such fluctuations are difficult to explain 
and worth further investigation.

It was previously reported that luteolytic doses of PGF2α 
affect blood flow in the mature CL [2]. The same effect was 
noticed in spontaneus luteolysis [16]. In contrast, no change 

in blood flow was observed in developing CLs (D4) after 
PGF2α administration since plasma P4 levels and CL 
volume continues to increase after PGF2α administration 
[16]. In the present study, OXY administration did not cause 
any increase in PGFM concentration. Although the CL is 
sensitive to luteolytic doses of PGF2α during mid-cycle 
(D7), it seems unaffected by OXY administration, even at 
relative high doses (100 IU). The possible explanations for 
this observation are either that there were not enough OXY 
receptors in the uterus, or there was not enough available 
PGF2α that could be released from the uterus. Nevertheless, 
the fact that there were no changes in CL blood flow, which 
continued to increase during and after infusion, supports the 
hypothesis, that OXY is not directly involved in the 
mechanism(s) governing blood flow in the developing CL. 
Further investigation is needed to elucidate the role of OXY 
in CL blood flow during different periods of the luteal phase.
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