
Introduction

Periodontal disease (PD) is the most common osteolytic

infection of alveolar bone seen in humans worldwide. PD

is a common, chronic immunoinflammatory disease initiat-

ed by subgingival bacteria and results in the inflammatory

destruction of periodontal tissues, including the alveolar

bone periodontal ligament, and gingivae. It is characteriz-

ed by gradual destruction of periodontal tissue, in the end

leading to tooth loss. One major mechanism by which PD

exerts systemic effects is through the generation of oxida-

tive stress [1-4]. In recent years, evidence has emerged to
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Abstract : Periodontal disease (PD) is the most common osteolytic disease of alveolar bone, oral infection seen

in humans worldwide. PD is a common, chronic immunoinflammatory disease initiated by a complex subgingival

bacterial and results in the inflammatory destruction of periodontal tissues, including the alveolar bone
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oxidative injury have not been fully studied. Despite many studies in regard to the antioxidant effect of eugenol,

the protective effect of eugenol against oxidative damage to PDLF cell, as well as the relationship between

eugenol and apoptosis, has not been investigated so far. The aim of this study was to assess the protective effect

of eugenol against H2O2-induced oxidative stress in PDLF cell.

Cell lines were separately grown as monolayers at 5% CO2 and 37�C humidified atmosphere using appropriate

media supplemented with 10% fetal bovine serum, 2 mM glutamine and 100 μg/mL penicillin-streptomycin.

DMEM/F12 was used as the culture medium for periodontal ligament fibroblast cells. 

The viability of the PDLF cells which induced by the different concentrations of H2O2 (control, 50, 100, 200,

400 μM) for 24 h was detected by MTT assay. Cell viability was significantly reduced in a H2O2-concentration

dose-dependent manner. The mitochondria-dependent pathway of apoptosis is regulated by Bcl-xl family, such as

the anti-apoptotic protein Bcl-xl, pro-apoptotic protein Bak. With H2O2 injury, the protein level of Bak was up-

regulated while the protein level of Bcl-xl was down-regulated. In group treated H2O2 and eugenol, the ratio was

reduced and the expression of Bak decreased at the same time, indicating that eugenol can attenuate apoptosis

through mitochondrial related pathway in PDLF cells.

Therefore, although the findings of this study are limited to an in vitro interpretation, we suggest that eugenol

preconditioning may have a beneficial effect in the recovery of periodontal ligament from oxidative stress.
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implicate reactive oxygen species (ROS) oxidative stress

and the pathogenesis of periodontal disease in humans. The

presence of excess reactive oxidants is thought to provide

a basis for the progression of various diseases [5]. Euge-

nol, 2-methyoxypheol, which is contained in cloves as well

as in cinnamon and other aromatic spices is used as a sup-

plement or a therapeutic ingredient in various medications

and foods. Eugenol is used to treat digestive disorders and

skin infections and is found in insect attractants and in UV

absorbers [6]. It is a beneficial antioxidant when ingested

in moderate amounts reducing the level of free radicals.

However, there are some reports that excessive doses of

undiluted eugenol oil can cause symptoms. According to

some studies, eugenol in excessive doses can be consider-

ed poison [7,8]. Previous studies reported that oxidative

stress can directly induce cell death or apoptosis in various

cell types, including osteoblasts, intestinal endothelial cells,

and hepatocytes [9-11]. Studies demonstrated that eugenol

has an antiapoptotic effect on in vivo and in vitro [12-14].

In ancient times, natural products were the main source of

health care products. In modern medicine, they are still

major sources of new drug development [15,16]. The eff-

ects of eugenol on periodontal ligament fibroblasts (PDLFs)

exposed to oxidative injury has been widely investigated

its protective effect against oxidative damage of PDLFs, as

well as its relationship with apoptosis, has not been studied.

The aim of this study was to assess the protective effect of

eugenol against H2O2-induced oxidative stress in PDLFs

cell.

Materials and Methods

1. Reagents 

The Human periodontal Ligament Fibroblasts (PDLF)

was purchased from Lonza (Basel, Switzerland). The fol-

lowing chemicals and reagents were obtained from the in-

dicated companies: eugenol, Hoechst 33342 was purchas-

ed from Sigma. The following reagents were obtained com-

mercially: 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetra-

zolium bromide (MTT), apoptosis detection kit was obtain-

ed from Biovision (Milpitas, CA, USA). Antibodies used

in the study were as follows: cleaved Caspase 3 (1 : 1,000),

: Bcl-xl (1 : 1,000), : Bax (1 : 1,000), Santa Cruz. Secondary

antibodies against rabbit (1 : 3,000), and mouse (1 : 3,000),

immunoglobulins were purchased from Bio-Rad.

2. Cell culture

Cell lines were separately grown as monolayers at 5%

CO2 and 37�C humidified atmosphere using appropriate

media supplemented with 10% fetal bovine serum, 2 mM

glutamine and 100μg/mL penicillin-streptomycin. DMEM

/F12 was used as the culture medium for periodontal liga-

ment fibroblast cells. Cells were passaged 3 times a week

by treating with trypsin-EDTA and used for experiments

after 5 passages.

3. Treatment of eugenol

Eugenol which were made by dissolving them in DMSO

were kept frozen at -20�C until use. The stock was dilut-

ed to their concentration with DMEM when needed. Prior

to eugenol treatment cells were grown to about 80% confl-

uence and then exposed to eugenol at different concentra-

tions (0, 50, 100, 200, 400 μM) for 24 h. Cells grown in

medium containing an equivalent amount of DMSO with-

out eugenol served as control. The groups were randomly

divided into the following groups: Control, eugenol, H2O2,

H2O2++eugenol.   

4. MTT assay

Cell viability assay was measured using a quantitative

colorimetric assay MTT solution, showing the mitochon-

drial activity of living cells. PDLF cells (3×104) were seed

in 96-well plates. After drug treatment as indicated, cells

were incubated with 300 μL MTT (final concentration 0.5

mg/mL) for 1.5 h at 37�C. The reaction was terminated by

addition of 200 μL DMSO. Cell viability was measured

by an ELISA reader (Tecan, Männedorf, Switzerland) at

570 nm excitatory emission wavelength.

5. Flow cytometer analysis

Cells were seeded into a 6-well plate at 1×106 cells/mL

and incubated overnight. Cells treated with eugenol were

incubated for various time points. In each time point, the

harvested cells were washed with PBS containing 1% bo-

vine serum albumin and centrifuged at 2,000 rpm for 10

min. The cells were resuspended ice-cold 95% ethanol with

0.5% Tween 20 to a final concentration of 70% ethanol.
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Fixed cells were pelleted, and washed in 1% BSA-PBS

solution. Cells were resuspended in 1 mL PBS containing

20 μg/mL RNase A, incubated at 4�C for 30 min, washed

once with BSA-PBS, and resuspended in PI solution (10

μg/mL). After cells were incubated at 4�C for 5 min in the

dark, DNA content were measured on a CYTOMICS FC500

flow cytometry system (Beckman Coulter, FL,CA,USA)

and data was analyzed using the Multicycle software which

allowed a simultaneous estimation of cell-cycle parameters

and apoptosis.

6. Immunofluorescent staining to detect cytochrome c,

AIF translocation

The cells were plated on coverslips and treated with eu-

genol. After 24 h, the cells were stained with 50 nM Mito-

Tracker Red at 37�C for 30 min. After washing two times

with PBS, the cells were fixed with 4% paraformaldehyde

(PFA) in PBS for 15 min and washed three times with PBS.

After permeabilization with Triton X-100 and blocking

1% BSA in PBS, the cells were incubated with primary an-

tibodies in 1% BSA overnight at 4�C. After washing with

PBS, cells were incubated with FITC-conjugated secon-

dary antibodies in 1% BSA-PBS for 60 min and rinsed in

PBS. Fluorescent images were observed and analyzed using

a Zeiss LSM 750 laser-scanning confocal microscope

(Göettingen, Germany). 

7. Western blot analysis 

Cells (2×106) were washed twice in ice-cold PBS, resu-

spended in 200 μL ice-cold solubilizing buffer [300 mM

NaCl, 50 mM Tris-Cl (pH 7.6), 0.5% Triton X-100, 2 mM

PMSF, 2μL/mL aprotinin and 2μL/mL leupeptin] and in-

cubated at 4�C for 30 min. The lysates were centrifuged at

14,000 rpm for 15 min at 4�C. Protein concentrations of

cell lysates were determined with Bradford protein assay

(Bio-Rad, Richmond, CA, USA) and 20 μg of proteins

were resolved by 10% SDS/PAGE. The gels were trans-

ferred to Polyvinylidene fluoride (PVDF) membranes

(Millipore, Billerica, MA, USA) and reacted with appro-

priate primary antibodies. Immunostaining with secondary

antibodies was detected using SuperSignal West Femto

(Pierce, Rockford, IL, USA) enhanced chemilumines-

cence substrate and detected with Alpha Imager HP (Alpha

Innotech, Santa Clara, USA).

Result

1. Eugenol improved the cell viability of H2O2-induced

apoptosis in PDLFs

The effect of eugenol on PDLFs was investigated over

a wide concentration range. Eugenol suppressed H2O2-de-
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Fig. 1. Chemical structure of eugenol.
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Fig. 2. Effect of eugenol preconditioning on cell viability. (A) The
normal PDLF cells were treated with different concentrations (0, 25,
50, 75, 100 μM) of eugenol for 24 h. (B) PDLF cells were treated
H2O2 with various doses (0, 50, 100, 200, 400 μM). Cell viability
was determined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltera-
zolium bromide (MTT) assay. The values are denoted as mean SE
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pendent programed cell death, pointing to its potential as

a potent antioxidant. The chemical structure of eugenol is

shown Fig. 1. The PDLF cells with various doses of euge-

nol (below 100 μM) and exposed the cells to H2O2 injury

and then we measured cell viability by the MTT assay (Fig.

2A). Alteration of cell viability was not observed in euge-

nol treatment group (p⁄0.05). The viability of the PDLF

cells which induced by the different concentrations of eu-

genol (0, 25, 50, 75, 100μM) for 24 h was detected by MTT

assay. However, the cell viability was significantly reduc-

ed in a H2O2-treated in PDLFs dose-dependent manner

(Fig. 2B).

2. Eugenol protected against H2O2-induced apoptosis

in PDLFs

To investigate the protective effect of eugenol, the PDLFs

cells were treated 50 μM of eugenol for 24 h and exposed

to H2O2 (100 μM). After 24 h, the cells were assayed for

cell viability. Treatment of the cells with 50μM of eugenol

significantly increased the cell viability compared to that

observed in the cells exposed exclusively to H2O2 (Fig. 3).

3. Eugenol treatment led to a decrease in H2O2-

induced apoptosis in the PDLFs

The changes in nuclear morphology were assessed by

Hoechst 33342 staining after the H2O2 treatment. The con-
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Fig. 3. Protective Effect of eugenol on PDLF cell viability. Cells
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Fig. 4. Nucleus condensation signally was observed on PDLF cells stimulated with H2O2. Apoptotic bodies in the H2O2++eugenol group
were markedly reduced. 

Fig. 5. H2O2-induced apoptosis in PDLF cells. Cells were treated with eugenol (50μM) for 24 h, and ratio of apoptotic cells was determin-
ed by flow cytometry analysis.  
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trol PDLF nuclei had a normal round shape. However,

when the cells were exposed to H2O2 for 24 h, nuclear con-

densation and fragmentation appeared. The eugenol treat-

ment rescued the H2O2-induced nuclear morphological

change (Fig. 4). Treatment of the cells with eugenol allevi-

ated the cell damage. Based on these results eugenol signi-

ficantly reduced apoptosis in the H2O2 exposed PDLFs.

4. H2O2 induced mitochondrial dysfunction and

caspase-mediated apoptosis 

Mitochondria play a key role in the intrinsic pathway of

apoptosis and dissipation of the mitochondrial membrane

potential (Δψm) is associated with mitochondrial dysfunc-

tion [17-19]. Thus, we verified the change of Δψm in H2O2-
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Fig. 6. H2O2 induced translocation of cytochrome c from mitochondria into cytosolic fraction in PDLF cells. Cells were incubated with 50
μM eugenol for 24 h and then stained with MitoTracker (red), cytochrome c (green), and DAPI (blue) to visualize mitochondria, cyto-
chrome c, nuclei respectively. 
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induced apoptosis using DiOC6. H2O2 triggered the loss

of Δψm in the PDLFs, as compared to the controls. The

loss of Δψm resulted in the release of cytochrome c into

the cytosolic fraction. We next investigated the transloca-

tion of cytochrome c using immunofluorescent staining.

Eugenol treated group reduced compared H2O2-induced

cause release cytochrome c and AIF (Figs. 6, 7).

5. Effect of eugenol treatment on apoptosis activation

The activation of cleaved caspase 3 is a key upstream

event in the initiation and execution of apoptosis.

Cleaved caspase 3 was up-regulated in the H2O2 group,

and decreased in the eugenol and H2O2++eugenol groups.

The mitochondria-dependent pathway of apoptosis is regu-

lated by the Bcl-xl family, such as the anti-apoptotic pro-
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Fig. 7. Cells were incubated with 50 μM eugenol for 24 h and then stained with MitoTracker (red), AIF (green), and DAPI (blue) to
visualize mitochondria, cytochrome c, nuclei respectively. Images were observed by Confocal microscopy. 
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tein Bcl-xl and the pro-apoptotic protein Bak. With H2O2

injury, the protein level of Bak was up-regulated and the

protein level of Bcl-xl was down-regulated. In the H2O2++

eugenol group, the level was reduced and the expression

of Bak decreased at the same time, indicating that eugenol

attenuated apoptosis through a mitochondrial related path-

way in PDLFs (Fig. 8).

Discussion

The objective of the current study was to test the hypo-

thesis that eugenol, a natural plant constituent widely used

in food products and dental materials, protects against oxi-

dative stress and apoptosis caused by H2O2 [20]. This study

has three principal findings. First, the eugenol treatment

conferred increased protection of PDLFs in oxidative in-

jury (Fig. 2A). Second, the eugenol treatment protected

human PDLFs against oxidative stress induced apoptosis.

Using western blot analysis, we showed that the eugenol

treatment decreased cleaved caspase 3 levels via a caspase-

dependent pathway, and that it reduced the ratio of Bak

and Bcl-xl which are associated with a mitochondrial re-

lated pathway. The activation of upstream regulators of

cleaved caspase 3 is key to the initiation and induction of

apoptosis [21,22]. It is known that the mitochondria-depen-

dent apoptotic pathway is regulated by Bcl-xl protein fam-

ily, such as the anti-apoptotic protein Bcl-xl and pro-apo-

ptotic protein Bak, which are critical downstream regula-

tors in caspase activation [14,23]. Third, we found that eu-

genol reduced apoptotic cell death in PDLF cells that ROS

played a crucial role in this process [24]. Western blot an-

alysis showed a cleaved caspase 3 and Bak, known pro-

apoptotic proteins, and Bcl-xl a known anti-apoptotic pro-

tein [25-27]. The results showed that the anti-apoptotic

effect of eugenol was mediated by a mitochondria related

pathway. In summary, the present study, eugenol treatment

less than 100 μM have not shown the cytotoxic effect in

PDLFs and among of eugenol concentrations, 50 μM treat-

ment groups showed that to stimulate the expression of

anti-apoptotic proteins under oxidative stress. This study

was performed to investigate the effects of eugenol on the

periodontal healing process. Although the findings of this

study are limited to an in vitro interpretation, we suggest

that eugenol preconditioning may have a beneficial effect

on the recovery of periodontal ligament from oxidative

stress. 
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Fig. 8. Eugenol changed expressions of apoptosis-related proteins in PDLF cells. Cells were treated with eugenol for the indicated levels
of Bcl-xl, cleaved caspase 3, Bak were analyzed by western blotting. 
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치주인 섬유모세포에서 유지놀의 산화스트레스 억제 효과

김용호, 박봉수

부산 학교 치의학전문 학원 구강해부학교실

간추림 : 치아주위조직 질환은 전세계적으로 구강감염 원인이 되는 질환 중 가장 흔히 관찰되며 골용해를 동반

한다. 치주염의 발생은 치은, 치주인 , 치조골을 서서히 파괴하는 것을 특징으로 하며 결국에는 치아를 잃게 된

다. 기존의 연구결과에서 치주질환의 기전은 염증성 세균에 의해 형성된 산화스트레스가 주된 원인으로 알려져

있다. 유지놀은 항상화 작용으로 산화스트레스를 억제하는 물질로 여러 차례 보고된바 있으며 본 연구의 목적

은 치주인 섬유모세포에서 H2O2에 의해 유도된 산화스트레스에 한 유지놀의 보호 효과를 평가하고자 수행

되었다.

유지놀의 항산화 효과를 평가하기 위해 세포생존율 분석, 세포주기분석, 면역형광염색법, western blot분석을

이용하여 실험하 다.

세포생존율은 H2O2 단독으로 처리한 그룹보다 유지놀 전처리한 그룹에서 세포생존율이 더욱 높게 나타났으

며 세포자멸사와 관련된 단백질 cleaved caspase 3, Bak, Bcl-xl은 H2O2 단독 처리한 그룹과 H2O2처리 후 유지놀

을 처리한 그룹을 비교하 을 때 H2O2 단독처리 한 그룹에서는 cleaved caspase 3와 Bak의 단백질 발현이 높게

나타났으며 Bcl-xl의 발현은 낮게 나타났다.

본 연구결과는 산화스트레스를 받은 치주인 세포의 세포자멸사를 유지놀이 억제하며 또한 산화스트레스에

의한 치주조직 손상에 한 치료제 후보군에 유지놀이 높은 가능성이 있음을 제시한다.  

찾아보기 낱말 : 산화스트레스, 유지놀, 치주인 세포, 항산화
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