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The Soluble Tumor Necrosis Factor-Alpha Receptor
Suppresses Airway Inflammation in a Murine Model
of Acute Asthma
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Purpose: Tumor necrosis factor-alpha (TNF-a) is a proinflammatory cytokine that has been implicated in many
aspects of the airway pathology in asthma. TNF-a blocking strategies are now being tried in asthma patients. This
study investigated whether TNF-a blocking therapy inhibits airway inflammation and airway hyperresponsiveness
(AHR) in a mouse model of asthma. We also evaluated the effect of TNF-a blocking therapy on cytokine
production and adhesion molecule expression. Meterials and Methods: Ovalbumin (OVA) sensitized BALB/c
female mice were exposed to intranasal OVA administration on days 31, 33, 35, and 37. Mice were treated
intraperitoneally with soluble TNF-a receptor (sSTNFR) during the OVA challenge. Results: There were
statistically significant decreases in the numbers of total cell and eosinophil in bronchoalveolar lavage fluid (BALF)
in the sSTNFR treated group compared with the OVA group. However, sSTNFR-treatment did not significantly
decrease AHR. Anti-inflammatory effect of sSTNFR was accompanied with reduction of T helper 2 cytokine levels
including interleukin (IL)-4, IL-5 and IL-13 in BALF and vascular cell adhesion molecule 1 expression in lung
tissue. Conclusion: These results suggest that STNFR treatment can suppress the airway inflammation via
regulation of Th2 cytokine production and adhesion molecule expression in bronchial asthma.
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INTRODUCTION

Asthma is a T helper 2 (Th2)-mediated inflammatory airway disease, characterized
by airway hyperresponsiveness (AHR), chronic eosinophilic inflammation, episode
of reversible bronchoconstriction, and mucus hypersecretion. In these responsies,
several cytokines are considered to take part in a pivotal role. Although Th2
cytokines, including interleukin (IL)-4, IL-5 and IL-13, are important in asthma,’
tumor necrosis factor (TNF)-a has been implicated in the inflammatory response,
seen in asthma.? TNF-a is a multifunctional proinflammatory cytokine, and a
chemoattractant for neutrophils and eosinophils.’ It increases the cytotoxic effect of
eosinophils on endothelial cells,* epithelial expression of adhesion molecules, such
as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule
1 (VCAM-1),° and the contractile function of smooth muscles,” and is involved in
the activation of T cells.’ Howarth et al.® reported that TNF-a concentration in
bronchoalveolar lavage fluid (BALF) and TNF-« protein and messenger RNA
(mRNA) expression in bronchial biopsy specimens were increased in patients with
severe asthma compared those with mild disease.
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In general, the mainstay treatment of asthma is an
inhalation of corticosteroids alone or in combination with
long-acting B2-agonist. Current therapies for asthma are
focused on optimal control of symptoms, however, there is
a significant population of severe asthmatics that do not
respond well to standard therapies.” Therefore, there is a
need for innovative therapies which are aimed to prevent
structural changes in the airways. Based on the current
understanding of the pathophysiology of asthma, the
development of anti-cytokine therapeutics could be useful.
Recently, TNF-a blocking strategies are now being tried in
asthma, and show improvement in symptom score, lung
function and quality of life.*!*!"" However, despite an
apparent clinical efficacy observed, the mechanism of
action of TNF-a blocking therapies remains unclear.

The aim of this study was to determine whether TNF-o
blocking therapy inhibits the airway inflammation and
AHR in murine asthma model. We also investigated the
effect of TNF-a blocking therapy on cytokine production
and adhesion molecule expression.

MATERIALS AND METHODS

Experimental animals

BALB/c female mice (n = 16 mice/group; The Dae-Han
Experimental Animal Center, Daejeon, Korea), 7 week of
age, were immunized by subcutaneous injection on days 0,
7, 14, and 21 with 25 pg of ovalbumin (OVA, grade V;
Sigma-Aldrich, St. Louis, MO, USA), which was adsorbed
to 1 mg of alum (Sigma-Aldrich) in 200 pL of normal
saline. Intranasal OVA challenges [20 ng/50 pL in phos-
phate-buffered saline, PBS] were carried out days 31, 33,
35, and 37 under isoflurane (Vedco, St. Joseph, MO, USA)
anesthesia. Age- and gender-matched control mice were
treated in the same way with PBS without OVA. All animal
experimental protocols were approved by The Catholic
University of Korea, Animal Subjects Committees.

Anti-TNF-o treatment

Mice were treated with soluble TNF receptor (sTNFR)
(Etanercept®, Wyeth, Muenster, Germany), as diluted in
sterile normal saline. STNFR was given by intraperitoneal
administration (4.0 mg/kg in 100 pL normal saline, daily)
starting at the same time with intranasal OVA challenge.

Measurement of airway hyperresponsiveness

Twenty four hours after the last challenge, mice were
placed in a barometric plethysmographic chamber (OCP
2000; Allmedicus, Anyang, Korea). Methacholine was
used at concentrations of 3.125 mg/mL, 6.25 mg/mL, 12.5
mg/mL, 25 mg/mL, and 50 mg/mL. A total of 3 mL of each

concentration was inhaled for 3 minutes as an aerosol,
prepared by an Ultra-Neb (3650p, DeVilbiss, Pennsyl-
vania, PA, USA), after which time Penh (enhanced pause)
value was measured for 3 minutes. Bronchopulmonary
resistance was expressed as Penh, which was calculated,
according to the manufacturer’s protocols. Results are
expressed as percentage increases in Penh after challenge
with each concentration of methacholine, where the baseline
Penh (after saline challenge) was set as 100%.

Bronchoalveolar lavage fluid

Mice were killed by CO: asphyxiation after measuring
airway responsiveness. The trachea was exposed and
cannulated with silicone tubing attached to a 23-guage
needle on an 800 pL tuberculin syringe. After instillation
of 1 mL of sterile PBS through the trachea into the lung,
BALF was withdrawn. The total cells in BALF were
counted using a hemacytometer. The BALF was cytos-
pinned (3 minutes at 1,000 rpm) onto microscope slides
and stained with Diff-Quick. The percentages of BALF
macrophages, eosinophils, lymphocytes and neutrophils
were obtained by counting 400 leukocytes on randomly
selected portions of the slide by light microscopy. Super-
natants were stored at -70°C.

ELISA

The concentrations of IL-4, IL-5, IL-10, and IL-13 (R & D
system, Minneapolis, MN, USA) in the BALF were meas-
ured using enzyme-linked immunosorbent assay (ELISA)
kits, according to the manufacturer’s instructions.

Immunohistochemistry

Six-micron-thick sections of the lung from each paraffin
block were deparaffinized with xylene and hydrated in
ethanol. For immunohistochemical detection of VCAM-1
(R & D systems, Minneapolis, MN, USA), the lung sec-
tions were incubated overnight at 4°C with either a primary
monoclonal antibody directed against VCAM-1, or a
negative control mouse serum instead of the primary
antibody. Immunoreactivity was detected by sequential
incubation of lung sections with a biotinylated secondary
antibody, followed by peroxidase reagent and 3-amino-9-
ethylcarbazole (AEC) chromogen.

Western blot

Total protein was isolated from the lung by homogeni-
zation in a buffer containing 50 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) (pH 7.4), 1%
Noniodet P-40, 0.5% deoxycholate, 5 mM ethylene-
diaminetetraacetic acid (EDTA), 1 mM sodium ortho-
vanadate, 5 mM NaF, and phosphatase and protease
inhibitor cocktails (Sigma-Aldrich). The lysates were cent-
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rifuged at 14,000 g for 15 minutes at 4°C, the supernatants
were collected, their total protein content was determined
using a conventional method (Pierce Chemical Co.,
Rockford, IL, USA), and aliquots were stored at -70°C until
assay. Equal amounts of sample proteins were resolved
using 10% SDS-PAGE and transferred to a polyvinylidene
difluoride membrane by electroblotting in a buffer
containing Tris-HCI1 (25 mM), glycine (192 mM), and
methanol (20%, v/v). After transfer, the blots were
incubated in 5% powdered milk in Tween/Tris-buffered
saline, containing 10 mM Tris-HCI (pH 7.5), 0.15 M
NaCl, and 0.1% Tween 20, at room temperature for 1
hour, incubated overnight with anti-VCAM-1 antibodies
(R & D systems, Minneapolis, MN, USA) at 4°C, washed
with Tween/Tris-buffered saline, and exposed to corres-
ponding horseradish peroxidase-conjugated IgG for 1
hour. The labeled band was detected using enhanced
chemiluminescence detection kit and developed with
Hyperfilm-enhanced chemiluminescence (Amersham
Pharmacia Biotech, Piscataway, NJ, USA).

Data analysis

Results from each groups were compared by ANOVA with
the nonparametric Kruskal-Wallis test, followed by post-
testing with Dunn’s multiple comparison of means. A
statistical software package (Graph Pad Prism, San Diego,
CA, USA) was used for the analysis. A p value less than
0.05 was considered statistically significant. All results are
given as means + SEM.

RESULTS

Effect of STNFR on airway inflammation

The numbers of total cells, macrophages, neutrophils,
lymphocytes and eosinophils in BALF were significantly
increased in the OVA group compared with those in the
control group. Intraperitoneal administration of STNFR
significantly attenuated the increase of total cells and eosi-
nophils in the asthmatic airway lumens, although the
sTNFR-treated group still retained airway inflammation
compared with the control group (OVA group vs. the

STNEFR treated group; 446.25 + 64.97 vs. 251.50 = 27.07,
389.46 + 56.84 vs. 206.21 £ 21.50, respectively) (p < 0.01)
(Table 1).

Effect of STNFR on airway hyperresponsiveness

To assess AHR, we performed a bronchial challenge test
using methacholine. Fig. 1 shows dose response curve of
AHR to methacholine. In the OVA group, AHR to metha-
choline was increased more than the control group. How-
ever, there was no significant difference, although the
STNFR treated group tended to decrease AHR compared
with the OVA group (206.68 £ 27.75 vs. 257.55 + 62.67,
311.83 = 45.06 vs. 370.52 £ 66.29, 509.29 + 85.65 vs.
469.36 = 75.02, 793.74 * 164.64 vs. 672.50 £ 115.16,
1162.70 £ 205.22 vs. 884.60 + 226.76, at the respective
concentration of methacholine) (p > 0.05).

Effect of STNFR on cytokines in BALF

In BALF, the levels of a Th2 cytokines, including IL-4, IL-
5, and IL-13 were significantly decreased in the STNFR
treated group compared with the OVA group (96.01 +
16.08 vs. 50.67 £ 7.79%, 223.6 + 40.3 vs. 136.6 + 21.7%,
203.3 £ 20.1 vs. 116.6 £ 15.5%* respectively ; * p < 0.05,
** p<0.01) ( Figs. 2A, B and C).
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Fig. 1. Effect of STNFR treatment on airway hyperresponsiveness (AHR) to
inhaled methacholine (Mch). AHR was measured 24 hours after the final
ovalbumin (OVA) challenge using a Allmedicus system by which mice were
exposed to increasing concentrations of methacholine (3.125 - 50 mg/mL).
Values are expressed as mean, n = 16 mice/group in three separated
experiments. STNFR, solubel tumor necrosis factor-alpha receptor.

Table 1. Total and Differential Cell Counts in Bronchoalveolar Lavage Fluid

Bronchoalveolar lavage cells (x 10* /mL) ; (means £ SEM)

Groups Total cells Eosinophils ~ Lymphocytes  Neutrophils =~ Macrophages
Control 2.88 £0.48 0 0 0.01 £0.02 2.82£047
OVA 44625+ 6497 389.46%56.84 6.03%1.53 1.58 £ 048 5096 7.52
OVA +sTNFR 251.50 £27.07* 20621 £21.50* 3.63+1.12 3.14+098 38.53+6.49

OVA, ovalbumin; sTNFR, solubel tumor necrosis factor-alpha receptor.
*p<0.01 in compared with the OVA group.
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Fig. 2. Effect of sSTNFR on IL-4 (A), IL-5 (B), IL-13 (C) and IL-10 (D) levels in bronchoalveolar lavage fluid (BALF). Mice were sacrified 24 hours after the
final ovalbumin (OVA) challenge, and BALF were separated and cytokines levels were measured with ELISA, as described in Material and
Methods. Values are expressed as mean + SEM, n = 16 mice/group in three separated experiments, and *p < 0.05, **p < 0.01 in comparison with

the OVA group. IL, interleukin; sSTNFR, solubel tumor necrosis factor-alpha receptor.

In addition, IL-10 in BALF was also significantly decre-
ased in the sSTNFR treated group compared with the OVA
group (29.90 = 5.41 vs. 14.74 + 3.54) (p <0.05) (Fig. 2D).

Control OVA OVA + sTNFR

I I [ I
—— N ————
VCAM-1 (120 kDa)

Effects of TNF-czon VCAM-1 expression A e ('42 al

We demonstrated that sSTNFR treatment reduced the

eosinophils recruitment in BALF. VCAM-1, which is 250 -

shown to play important roles in the recruitment of

eosinophils, is upregulated by TNF-o.° Therefore, we 2007 T *

investigated the expression patterns of VCAM-1 in the lung 150 T

following STNFR administration in order to investigate the 100 4

mechanism of anti-inflammatory effect of STNFR. As

shown in Figs. 3 and 4, an increase in the expression of 501

VCAM-1 was observed during prolonged allergen chal- 0 - - -
B Control OVA OVA + sTNFR

lenge, while administration of sSTNFR considerably de-
creased the VCAM-1 expression.

DISCUSSION

This study demonstrated in a mouse model of acute asthma
that sSTNFR reduced airway inflammation, which was
accompanied with reduction of several cytokines levels
and adhesion molecule expression.

TNF-q, described first in macrophages and monocytes,"
is an important cytokine in the innate immune response,
which plays a key role in the immediate host defense against

Fig. 3. Effect of STNFR on VCAM-1. Mice were sacrificed 24 hours after the final
ovalbumin challenge. (A) Expression of VCAM-1 in lung tissue was determined
by Westem blotting. (B) Densimometric analyses are presented as the ratio of
VCAM-1 relative to actin, and *p < 0.05 in comparison with the OVA group. OVA,
ovalbumin; sTNFR, solubel tumor necrosis factor-alpha receptor; VCAM-1,
vascular cell adhesion molecule 1.

invading microorganisms before activation of the adaptive
immune system.” TNF-a has also been implicated in the
pathophysiologic mechanism of several chronic inflam-
matory disease, including Crohn’s disease, rheumatoid
arthritis, and psoriatic arthritis."*"* Blockade of TNF-a has
been used to treat human diseases of chronic inflammation.
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Fig. 4. Photomicrographs showing staining of lung tissue with antibodies to VCAM-1. Mice were sacrificed 24 hours after the final ovalbumin
challenge. Paraffin-embeded lung tissue sections were stained with specific antibody to VCAM-1. Inmunohistochemical detection of VCAM-1
was measured with monoclonal antibody, as described in Material and Methods. Positive staining is depicted in pink. (A) Control group. (B) OVA
group. (C) sTNFR treated group ( x 200). VCAM-1, vascular cell adhesion molecule 1; OVA, ovalbumin; sTNFR, solubel tumor necrosis factor-alpha

receptor.

The synthesis and activity of TNF-a can be blocked by
various ways including monoclonal antibodies to TNF-c,
soluble TNF receptors, and TNF-a converting enzyme
inhibitor.'*"” In addition, involvement of TNF-c in asthma
has been suggested by various animal studies, showing
alteration of the contractile properties of the airway smooth
muscle' and regulation of AHR and neutrophilia.” Fur-
thermore, TNF-c has been known to have several proper-
ties that might be relevant to severe asthma, including
induction of glucocorticoid resistance, myocyte prolifera-
tion,” and stimulation of fibroblast growth and maturation
into myofibroblasts by promoting transforming growth
factor (TGF)-f expression.? Although TNF-a has been
postulated to play an important role in the pathogenesis of
asthma, the role of TNF-« in asthma remains contro-
versial.»* There is an increasing evidence to indicate that
TNF-a is responsible for inflammatory responses in asthma.
Broide et al.” showed decreased pulmonary inflammation
in TNF-a receptor knockout mice using an OVA model,
and our study also demonstrated that TNF-a blocking
therapy in asthma suppressed the airway inflammation,
although the sTNFR-treated group still retained airway
inflammation, compared with the control group, rather
than AHR.

The inhaled of administration recombinant TNF-a to
normal subjects led to the development of AHR.” A
postmortem study of fatal and nonfatal asthma showed a
marked increase of mast cell degranulation in the airway
smooth muscle (ASM) bundle in both the large and small
airways,” and increased numbers of mast cells are associat-
ed with increased ASM shortening in fatal asthma.?
Therefore, it is likely that the close proximity of these cells
will facilitate mast cell-derived TNF-« activation of ASM
and contribute to the development of AHR. Contrary to
expectation, our result didn’t show a significant decrease
of AHR after sSTNFR treatment. In our experiment, mice
were treated with 4 times sSTNFR during OVA challenge.

It was presumed that the dose was inadequate to ASM
contractibility, using the value of Penh as the parameter of
AHR in murine asthma model. Recently, however, there is
a concensus that the value of Penh dose not always correlate
with airway resistance.” Glaab et al.”® reported that the
invasive or other noninvasive methods have superior
sensitivity compared to the widely used Phen method. This
is a potential limitation of our study.

TNF-a is produced by various cell types in response to
allergic pulmonary inflammation, including mast cells,
macrophages, neutrophils, eosinophils, and epithelial
cells.” Especially, mast cells are a major potential source
of TNF-a.” It is well known that mast cell-derived TNF-a
can affect T lymphocyte activity. TNF-a can enhance
proliferation, survival, and recruitment of T lymphocyte.***!
Also, T lymphocyte activated with TNF-a can induce
mast cells to secrete metalloproteinase 9. Nakae et al.”
reported that mast cell-derived TNF-« is not required for
the induction of specific memory T cells in the sensiti-
zation phase, but enhances lung Th2 cytokine production
in response to antigen challenge in sensitized mice. We
have observed significant reduction of BALF IL-4, IL-5,
and IL-13 levels in the sSTNFR-treated group compared
with the OVA group, which is consistent with the results
of previous studies. These findings suggest that anti-
inflammatory effect of STNFR is associated with inhibition
of Th2 cytokine production in asthma.

IL-10, an important immunoregulatory cytokine, is well
known to inhibit allergic inflammation. The type 1 regula-
tory T lymphocyte (Trl) is the major source of IL-10.**
Naturally occurring forkhead box P3 (Foxp3)'CD4'CD25°
regulatory T (Treg) cells develop in the thymus, and Trl
cells can also be induced from effector T cells during
inflammatory processes in peripheral tissues. Skewing of
allergic-specific effector T cells to a Trl phenotype appears
to be a critical event in successful allergen-specific immu-
notherapy and glucocorticoids and [32-agonists treatment.
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Tr1 suppresses Th2 cells and effector cells of allergic infla-
mmation, such as eosinophils, mast cells, and basophils.”
In our studies, however, we found that STNFR treatment
led to paradoxical reduction of IL-10. Further studies are
required to confirm the interaction of TNF-o with IL-10 in
allergic asthma.

TNF-a stimulates the production of IL-8, regulated upon
activation of normal T cells expressed and secreted
(RANTES) and granulocyte-macrophage colony-stimula-
ting factor (GM-CSF) by airway epithelial cells, which
increase the expression of adhesion molecules such as
ICAM-1 and VCAM-1, which are involved in the recruit-
ment of inflammatory cells to tissue. The up-regulation of
adhesion molecules on the airway vascular endothelium is
important for eosinophil recruitment.® ASM cells also
express ICAM-1 and VCAM-1, and through this mechan-
ism, TNF-a aids in the binding of activated T lymphocytes
to ASM.* TNF-q levels are increased during asthma exac-
erbations, and this change is associated with increased
expression of ICAM-1, VCAM-1, and E-selectin.”’” In our
present study, we found that the expression of VCAM-1 in
the lung tissues was significantly decreased in the sSTNFR-
treatment group compared with the OVA group, suggest-
ing that anti-inflammatory effect of sSTNFR may in part be
dependent on down-regulation of vascular adhesion mole-
cules and consequent reduction of cell traffic into airway.

In conclusion, we have found that STNFR treatment of
murine model of acute asthma resulted in reduction of
airway inflammation, which was accompanied with the
reduction of Th2 cytokine and adhesion molecule. These
results suggest that STNFR treatment can suppress the
airway inflammation via regulation of Th2 cytokine pro-
duction and adhesion molecule expression in bronchial
asthma. An understanding of the mechanisms of TNF-a
blockade will facilitate optimal therapeutic regimens for
bronchial asthma in the clinic.
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