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INTRODUCTION

Helicobacter pylori (H. pylori) infection is related to the devel-
opment of gastritis, peptic ulcer, and gastric adenocarcinoma.1 
A hallmark of H. pylori-associated gastric change is hyperprolif-
eration of gastric epithelial cells.2,3 Oncogenes, such as β-catenin 

and c-myc, stimulate cell proliferation and promote malignant 
changes. H. pylori infection leads to an increase of nuclear 
β-catenin in gastric epithelial NCI-N87 cells.4 In the nucleus, 
β-catenin serves as a transcriptional regulator.5,6 c-Myc is one of 
target genes that are regulated by β-catenin.7 As a proto-onco-
gene, c-myc stimulates the expression of genes, which are in-
volved in cell proliferation.8

Reactive oxygen species (ROS) are one of the potential toxic 
factors in H. pylori-induced gastric injury.9 The levels of ROS 
were increased in the gastric mucosa of H. pylori-infected pa-
tients.10 Previously, we and others showed that nicotinamide 
adenine dinucleotide phosphate oxidase produces ROS in H. 
pylori-infected gastric epithelial cells11 and gastric mucosa of 
humans and mice.12,13 H. pylori-induced ROS production 
stimulates the expression of various genes by activating NF-κB 
and AP-1.14 Since these redox-sensitive transcription factors 
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NF-κB and AP-1 Mediate Cell Proliferation

are activated by ROS,15 ROS may trigger the activation of these 
transcription factors in H. pylori-infected gastric epithelial 
cells. NF-κB regulates immune response, inflammatory reac-
tions, cell proliferation, and apoptosis. IκB-α acts as the cyto-
plasmic inhibitory protein of NF-κB.16 Activation of NF-κB and 
AP-1 is shown in H. pylori-infected human gastric epithelial 
AGS cells.17 Nollet, et al.18 reported that NF-κB and AP-1 play a 
role in β-catenin expression in certain situations. However, 
whether NF-κB and AP-1 directly regulate the expression of 
β-catenin or c-myc in H. pylori-infected cells has not been clari-
fied. The purpose of this study is to investigate whether H. py-
lori-induced activation of NF-κB and AP-1 mediates the expres-
sion of oncogenes (β-catenin, c-myc) and hyperproliferation 
of gastric epithelial cells.

MATERIALS AND METHODS

A human gastric epithelial cell line AGS (adenocarcinoma gas-
tric, ATCC CRL 1739) and H. pylori (strain NCTC 11637) were 
obtained from the American Type Culture Collection (Manas-
sas, VA, USA). AGS cells were cultured as previously described.14 
H. pylori was inoculated onto chocolate agar plates at 37°C un-
der microaerophilic conditions using GasPakTM EZ Gas Gen-
erating Pouch Systems (BD Biosciences, San Jose, CA, USA).14 
Prior to infection, H. pylori were harvested and then suspend-
ed in antibiotic-free cell culture medium. H. pylori was added 
to cultured cells at a bacterium/cell ratio 50:1. In the ratio of 
bacterium/cell (50:1), H. pylori did not induce apoptotic cell 
death, which was reported in our previous study.19

A mutated IκBα gene, called MAD3 double-point mutant was 
prepared as described previously14 to inhibit activation of NF-
κB. A dominant negative mutant of c-Jun, called TAM67, was 
a kind gift from Dr. Andreas von Knethen (University of Erlan-
gen, Erlangen, Germany) and transfected to AGS cells to inhibit 
AP-1 activation. The control vector pcDNA (Invitrogen Corp., 
Carlsbad, CA, USA) was transfected to the cells instead of mu-
tant genes for IκBα (MAD3) and c-Jun (TAM67). Subconfluent 
AGS cells were transfected with DOTAP {N-[1-(2,3-dioleoyloxy) 
propyl]-N,N,N trimethyl ammonium methylsulfate} (Boeh-
ringer-Mannheim, Pentzberg, Germany) for 16 h.11 The trans-
fected cells were cultured with or without H. pylori.11 Wild-type 
cells were cultured with or without H. pylori and expressed as 
control and none cells. The cells transfected with pcDNA, 
MAD3, and TAM67 were expressed as pcDNA, MAD3, and 
TAM67 cells. In the other set of experiment, AGS cells were 
treated with a specific NF-κB inhibitors caffeic acid phenethyl 
ester (CAPE) (40 μM) (Sigma-Aldrich, St. Louis, MO, USA) or 
selective AP-1 inhibitor SR-11302 (2 μM) (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) for 2 h before H. pylori infection 
and cultured for 24 h (protein levels of oncogenes) and 48 h (vi-
able cell numbers).

The cells were infected with H. pylori for 1 h (for NF-κB and 

AP-1), 24 h (for thymidine incorporation and oncogene expres-
sion), and for 72 h (viable cell numbers). The time points for 
determining NF-κB and AP-1, thymidine incorporation, onco-
gene expression, and viable cell numbers were adapted from 
a previous study.11

Viable cell numbers was determined by direct counting with 
a hemocytometer using the trypan blue exclusion test. For thy-
midine incorporation, 1 μCi/mL [3H] thymidine (Amersham 
Biosciences, Piscataway, NJ, USA) was added to the cells and 
cultured with or without H. pylori for 24 h.20 The cells were 
washed, incubated in 10% trichloroacetic acid and a solution 
consisting of 0.3 M NaOH and 1% sodium dodecyl sulfate (SDS) 
as described.20 The radioactivity of cell extracts was measured 
by liquid scintillation counting. The relative amount of [3H] thy-
midine incorporation, which reflected the extent of DNA syn-
thesis, was expressed as a percentage of wild-type cells cultured 
without H. pylori (none).

Nuclear extracts were prepared for electrophoretic mobility 
shift assay.14 DNA binding activity of NF-κB or AP-1 was deter-
mined by the previously described method.14

For real-time PCR analysis, total RNA in cells were isolated 
and converted into cDNA by reverse transcription process us-
ing a random hexamer and virus reverse transcriptase (Pro-
mega, Madison, WI, USA). RNA expression levels of β-catenin, 
c-myc and β-actin were determined by the method described 
previously.11

For Western blot analysis, proteins in whole cell extracts 
were subjected to 8–12% SDS-polyacrylamide gel electropho-
resis and transferred to nitrocellulose membranes. Membranes 
were blocked using 3–5% nonfat dry milk in Tris-buffered sa-
line and 0.2% Tween 20 (TBS-T), incubated with antibodies 
for β-catenin, c-myc, or actin (Santa Cruz Biotechnology, Dal-
las, TX, USA) diluted in TBS-T containing 3% dry milk, and 
washed with TBS-T. Primary antibodies were detected using 
horseradish peroxidase-conjugated secondary antibodies and 
visualized by the enhanced chemiluminescence detection sys-
tem (Santa Cruz Biotechnology).11 To measure the density ra-
tios among protein bands, the blots were scanned using a Bio-
Rad laser densitometer (GS-700). The Scion image program 
(Scion Corporation, Frederick, MD, USA) was used to measure 
band intensities. The Western blot results presented in each fig-
ure are representative of four independent experiments. The 
protein level was compared to that of the loading control actin 
and expressed as the percentage ratio of the band densities.

One-way ANOVA and Newman-keul’s test were used for de-
termining the statistical differences. All values are expressed 
as mean±SE of four different experiments. A value of p<0.05 
was considered statistically significant.

RESULTS

To determine the role of NF-κB and AP-1 in cell proliferation 
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and oncogene expression, the cells were transiently transfect-
ed with mutant genes for IκBα (MAD3) and c-Jun (TAM67) and 
then cultured with H. pylori. As shown Fig. 1A, H. pylori-infec-
tion induced activation of NF-κB and AP-1 in wild-type cells 
(control) and the cells transfected with pcDNA (pcDNA) at 1 
h-culture. H. pylori-induced activation of NF-κB and AP-1 
were inhibited by transfection of MAD3 and TAM67. Similarly, 
H. pylori-stimulated cell proliferation time-dependently (Fig. 
1B), and DNA synthesis at 24 h-culture (Fig. 1C) was inhibited 
by transfection with the mutants. However, transfection of 
MAD3 and TAM67 had no effect on the cells cultured without 
H. pylori. It may be explained that NF-κB and AP-1 were not 
activated in the cells cultured without H. pylori. As shown in 
Fig. 2, the mRNA and protein levels of β-catenin and c-myc 
were lower in the cells transfected with MAD3 and TAM67 
than those transfected with pcDNA or wild-type cells cultured 
with H. pylori at 24 h-culture.

CAPE, one of the active compounds of propolis, has been 
shown to inhibit NF-κB activation.21,22 SR-11302 is a retinoid that 
transrepresses AP-1 without transactivating the retinoic acid re-
sponse element.23,24 To investigate the involvement of NF-κB and 
AP-1 activities on H. pylori-induced oncogene expression and 
hyperproliferation, the cells were pretreated with CAPE or SR-
11302 and then cultured with H. pylori. As shown in Fig. 3, CAPE 
and SR-11302 inhibited H. pylori-induced cell proliferation (de-
termined by viable cell numbers at 48 h-culture) in AGS cells 
(Fig. 3A). H. pylori-induced expression of β-catenin and c-myc 
was inhibited by CAPE and SR-11302 in AGS cells at 24 h-culture 
(Fig. 3B). Taken together, H. pylori-induced oncogene expres-
sion and hyperproliferation are mediated by activation of NF-κB 
and AP-1 in gastric epithelial AGS cells.

DISCUSSION

In the present study, we found that activation of NF-κB and 

AP-1 transcriptionally regulate cell proliferation and expres-
sion of β-catenin and c-myc in H. pylori-infected gastric epi-
thelial AGS cells. Hyper-proliferation of gastric epithelial cells 
and up-regulation of several gene expressions are reported to 
be associated with ROS under H. pylori infection. Even though 
ROS are considered to be responsible for the proliferation and 
oncogene expression, how ROS mediate cell proliferation in H. 
pylori-infected cells has not been clarified. We demonstrated 
that redox-sensitive transcription factors NF-κB and AP-1 me-
diate cell proliferation by inducing important oncogenes β-ca-
tenin and c-myc in H. pylori-infected AGS cells. However, this 
study is limited in proving the hypothesis since AGS cells are 
already transformed cancer cells. Further study should be per-
formed to establish the role of NF-κB and AP-1 on oncogene 
expression using primary gastric epithelial cells isolated from 
normal gastric tissues and in vivo animal models.

For the signaling mechanism for cell proliferation, β-catenin 
inactivates glycogen synthase kinase 3β and migrates to the 
nucleus, which induces the expression of cyclin D1. Bandapal-
li, et al.25 reported that overexpression of β-catenin increases 
its nuclear level and carcinogenesis including metastasis. In 
the present study, inhibition of NF-κB and AP-1 upon trans-
fection of MAD3 or TAM67 suppressed the expression of 
β-catenin in H. pylori-infected cells. These results suggest that 
H. pylori may activate β-catenin through modulation of NF-κB 
and AP-1 activities in gastric epithelial cells. Even though c-
myc expression is reported to be regulated by β-catenin,7,8 
there has been no studies to determine the role of NF-κB and 
AP-1 on c-myc expression in gastric epithelial cells. In the 
present study, we found that NF-κB and AP-1 regulate the ex-
pression of both β-catenin and c-myc at the transcription lev-
el, which was determined using transfection of MAD3 (a mu-
tated IκBα gene) or TAM67 (a dominant negative mutant of c-
Jun) or treatment with CAPE (a specific NF-κB inhibitor) or 
SR-11302 (a selective AP-1 inhibitor). Therefore, targeting 
transcription factor NF-κB and AP-1 may be beneficial for 

Fig. 1. Activation of NF-κB and AP-1, viable cell numbers, and thymidine incorporation of H. pylori-infected cells with or without transfection of MAD3 
or TAM67. (A) The cells were cultured with H. pylori for 1 h. The DNA binding activities of NF-κB and AP-1 were determined by EMSA. (B) Viable cell 
numbers were determined by the trypan blue exclusion assay for indicated time period. *p<0.05 vs. 0 h, †p<0.05 vs. H. pylori (the cells without trans-
fection of MAD3 and TAM67 and cultured with H. pylori) or H. pylori+pcDNA (the cells with transfection of pcDNA and cultured with H. pylori). (C) 
DNA synthesis was determined by thymidine incorporation. [3H] Thymidine was added to the cells and cultured with H. pylori for 24 h. *p<0.05 vs. cor-
responding none (the cells cultured without H. pylori), †p<0.05 vs. corresponding H. pylori (the cells without transfection of MAD3 and TAM67 and cul-
tured with H. pylori) or H. pylori pcDNA (the cells with transfection of pcDNA and cultured with H. pylori). AGS, adenocarcinoma gastric; EMSA, lec-
trophoretic mobility shift assay; H. pylori, Helicobacter pylori.
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Fig. 2. Expression of β-catenin and c-myc of H. pylori-infected AGS cells 
with or without transfection of MAD3 or TAM67. The cells were cultured 
in with or without H. pylori for 24 h. (A) mRNA expression of β-catenin and 
c-myc were measured by real-time PCR analysis. *p<0.05 vs. none (the 
cells cultured without H. pylori), †p<0.05 vs. H. pylori control (the cells 
without transfection of MAD3 and TAM67 and cultured in with H. pylori) 
or H. pylori pcDNA (the cells transfected with pcDNA and cultured with H. 
pylori). (B) Protein levels of β-catenin and c-myc were determined by 
Western blot analysis. Actin served as a loading control. The protein level 
was compared to that of the loading control actin and expressed as the 
percentage ratio of the band densities. All data are presented as the 
mean±SE of four independent experiments. *p<0.05 vs. none (the cells 
cultured without H. pylori), †p<0.05 vs. H. pylori control (the cells without 
transfection of MAD3 and TAM67 and cultured in with H. pylori) or H. py-
lori pcDNA (the cells transfected with pcDNA and cultured with H. pylori). 
H. pylori, Helicobacter pylori.
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Fig. 3. Viable cell numbers and expression of β-catenin and c-myc of H. 
pylori-infected AGS cells with treatment of CAPE or SR-11302. (A) The 
cells were pretreated with CAPE or SR-11302 and cultured with H. pylori 
for 48 h. Viable cell numbers were determined by the trypan blue exclu-
sion assay. *p<0.05 vs. none, †p<0.05 vs. H. pylori control (the cells with-
out treatment of CAPE or SR-11302 and cultured with H. pylori). (B) Pro-
tein levels of β-catenin and c-myc were determined by Western blot 
analysis. Actin served as a loading control. The protein level was com-
pared to that of the loading control actin and expressed as the percent-
age ratio of the band densities. All data are presented as the mean±SE 
of four independent experiments. *p<0.05 vs. none (the cells cultured 
without H. pylori), †p<0.05 vs. H. pylori control (the cells with H. pylori). H. 
pylori, Helicobacter pylori.
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preventing progression of H. pylori-associated carcinogenesis 
by suppressing expression of β-catenin and c-myc, as well as 
hyper-proliferation of gastric epithelial cells.
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