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tistical analysis revealed that BCCAo significantly induced white 
matter lesions in Wistar rats compared with SD rats (Fig. 4B).

DISCUSSION
Defining key changes after experimental BCCAo is critical for 

a better understanding of the basic mechanisms of VaD and thus 

Fig. 3. Structural plasticity of the brain vasculature at the circle of Willis in SD and Wistar rats after bilateral common carotid artery occlu-
sion (BCCAo). (A) Representative images of major blood vessels at 7 days (SD: n=7, Wistar: n=9), 14 days (SD: n=7, Wistar: n=6), and 21 days (SD: n=7, 
Wistar: n=8) after BCCAo or sham operation (SD: n=12, Wistar: n=7). (B) Table showing the ratio of the posterior communicating artery (PcomA) and 
posterior cerebral artery (PCA) diameter to that of the basilar artery in SD and Wistar rats. The relative PcomA and PCA were significantly thinner in Wi-
star rats than in SD rats. One-way analysis of variance also demonstrated that PCA plasticity was significantly increased at all time points after BCCAo 
compared with sham values for both SD and Wistar strains. Values are mean±SEM. †p<0.05: SD sham vs. Wistar sham; *p<0.05: sham vs. the rest of the 
time points assessed by one-way analysis of variance and Duncan’s post hoc test. (C) Graph showing the fold change of relative PCA plasticity based 
on the sham-controls. Wistar rats showed significantly greater PCA plasticity than SD rats at all time points examined. *p<0.05 by two-tailed Student’s 
t test. Values are mean±SEM. SD, Sprague–Dawley; MCA, middle cerebral artery; ACA, anterior cerebral artery; ICA, internal carotid artery; BA, basilar 
artery.

Fig. 4. White matter rarefaction in SD and Wistar rats. (A) Representative microscopic images of the optic tract stained by Klüver-Barrera Luxol fast 
blue. Only Wistar rats subjected to bilateral common carotid artery occlusion (BCCAo) showed prominent vacuolation and serpentine white matter 
fibers, indicative of white matter damage. Scale bar in SD sham=50 mm (valid for all the other images). (B) Graph showing the severity of white matter 
lesion. Semi-quantitative analysis of white matter rarefaction showed a significantly higher grade of white matter damage after BCCAo in Wistar rats 
(n=7) compared with SD rats (n=8). Data are given as mean±SEM. *p<0.05 by Pearson Chi-square test. SD, Sprague–Dawley.
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for the development of effective therapeutic strategies. Our data 
showed a clear contrast in memory function between Wistar and 
SD rats after BCCAo. To gain mechanistic insight, we performed 
repetitive cortical blood flow monitoring using a LDPI system. 
BCCAo induced profound reduction in CBF in the forebrain 
region over the course of chronic hypoperfusion in both Wistar 
and SD rats. Interestingly, CBF in PCA territory was significantly 
reduced after BCCAo in Wistar rats, but not in SD rats. These 
findings led us to investigate structural plasticity of the brain 
vasculature, which showed greater PCA plasticity in Wistar rats 
after BCCAo. We also confirmed histologic white matter damage 
in Wistar rats that was not observed in SD rats, in line with our 
previous report [11].

As learning and memory impairment is a central feature of 
VaD, extensive efforts have been made to show different aspects 
of cognitive decline using a variety of behavioral tests in experi-
mental models [8]. When focusing on reference memory func-
tion, the Wistar rat is the major strain showing reduced refer-
ence memory after BCCAo [13-19], although a few studies have 
reported memory deficits in SD rats [20,21]. In our study, Wistar 
rats demonstrated a larger number of errors in the five-radial arm 
maze test when they were required to recall previous memory 
from 1 week after BCCAo, consistent with other reports [14,19]. 
Moreover, we carefully adopted tactile cues for the radial arm 
maze test to exclude the possible confounding factor of BCCAo-
induced blindness in Wistar rats, as visual guidance is essential 
in both the Morris water maze and the classic radial arm maze 
test. We believe this approach allows us to evaluate BCCAo-
induced memory dysfunction in Wistar rats in the most accurate 
way, making our findings highly credible. Interestingly, SD rats 
showed no memory deficits at the second week following BCCAo. 
Previous studies reported poor reference memory in SD rats at 
about 2 months after injury [20,21]. Moreover, reference memory 
was not reduced until 3 weeks post-BCCAo [20], supporting our 
findings. As the onset of reference memory dysfunction appeared 
to be delayed in the SD strain compared to Wistar rats, future 
studies are warranted to investigate which factors play crucial 
roles in VaD pathophysiology in the chronic stages after global 
hypoperfusion.

Since we found apparent differences in reference memory 
function between Wistar and SD rats after BCCAo, we assessed 
temporal CBF alteration as a next step. Although many studies 
reported CBF reduction after BCCAo using various tools includ-
ing radioisotope techniques, microsphere injection, laser Doppler 
flowmetry, and magnetic resonance imaging [6,10,14,15,22-25], 
each of these methods has intrinsic limitations such as poor ac-
curacy of measurement or lack of consideration of multiple brain 
regions. Thus, differential hemodynamic evaluation remains an 
open question to be addressed with better spatial and temporal 
resolution. Here, we showed BCCAo-induced CBF fluctuation us-
ing the LDPI system. This system enabled us to monitor real-time 
CBF perturbation after BCCAo non-invasively and repetitively in 

the same animals. Moreover, scanning speckles derived from the 
motion of moving blood cells under the entire skull surface could 
provide a general overview of alterations in cortical microcircu-
lation induced by chronic hypoperfusion. Indeed, side-by-side 
comparison of temporal CBF fluctuation between Wistar and 
SD rats uncovered a marked reduction in posterior circulation in 
only the Wistar rats after BCCAo, in addition to a more profound 
CBF decrease in MCA territory compared with SD rats. These 
findings can help to reconstruct the comprehensive CBF status 
after BCCAo in a temporal axis, further permitting a better un-
derstanding of the pathologic progression of VaD.

Dolichoectasia refers to dilated and elongated blood vessels. 
Vertebrobasilar dolichoectasia is commonly reported in the aged 
population that is vulnerable to VaD [26,27]. Supporting this 
phenotype, experimental VaD studies showed increased length 
and tortuosity of the basilar artery [6,22], which we also noticed 
in our study. As BCCAo increased the diameter of many other 
blood vessels, including PCA and PcomA [22], we focused on the 
plasticity of these vessels relative to the basilar artery. Not surpris-
ingly, PCA plasticity was increased after BCCAo in both SD and 
Wistar rats. However, the degree of PCA plasticity after BCCAo 
was significantly greater in Wistar rats at all time points exam-
ined. Reactive vascular ectasia can be one of the compensatory 
mechanisms induced by BCCAo, but it fails to be translated into 
CBF restoration demonstrated by LDPI monitoring in PCA terri-
tory. Considering these findings, together with cognitive dysfunc-
tion and white matter damage in Wistar rats, severe PCA doli-
choectasia could be a novel screening marker for the diagnosis of 
VaD. Clinical data nicely support this hypothesis as intracranial 
arterial dolichoectasia in stroke patients was highly correlated 
with the incidence of lacunar infarction and small-vessel diseases 
[28-30], possibly leading to VaD [31]. Thus, it will be interesting to 
further examine the causative link between the severity of PCA 
dolichoectasia and the functional and cognitive status of VaD.

Diagnosis and treatment of VaD have been challenging because 
of the heterogeneous nature of the disease, which can result in 
pleiotropic manifestations of VaD pathology. The first step in 
overcoming this obstacle will be the identification of major fac-
tors contributing to VaD pathogenesis. In this paper, by analyzing 
two representative rat strains subjected to BCCAo, we showed 
severe PCA dolichoectasia and marked hypoperfusion in the 
PCA-supplying region in Wistar rats. Moreover, these findings 
were associated with white matter lesions and reference memory 
impairment. Since our studies provide a comprehensive examina-
tion of BCCAo-induced CBF perturbation and unique vascular 
plasticity, our results could lead to the development of surrogate 
markers of VaD progression.
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