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EGF-Stimulated Aldosterone Secretion is Mediated by Tyrosine
Phosphorylation but not by Phospholipase C in Cultured Porcine

Adrenal Glomerulosa Cells

We examined the effect of EGF and angiotensin Il (All) on the formation of
inositol phosphates and aldosterone secretion, and observed the role of tyrosine
phosphorylation in EGF or All-mediated aldosterone secretion. As cultured glom-
erulosa cells were incubated with increasing concentrations of EGF (0.01-100
ng/mL), aldosterone secretion increased and reached a plateau at EGF concen-
tration of 10-50 ng/mL. Although EGF alone did increase aldosterone secretion
in glomerulosa cells, it did not enhance All-induced aldosterone secretion when
both EGF and All were added. EGF-induced tyrosine phosphorylation peaked
at around 1 min after stimulation and at a concentration of 10-50 ng/mL. All
stimulated tyrosine phosphorylation, but the stimulatory effect was less than that
observed in the presence of EGF. Although the latter induced tyrosine phos-
phorylation of various proteins, it failed to stimulate the formation of inositol
phosphates. On the other hand, All stimulated the production of inositol phos-
phates in a dose-dependent manner, with maximal stimulation at 10°M. The
addition of 10 ng/mL EGF did not affect the All-induced formation of inositol
phosphates. In conclusion, EGF-stimulated aldosterone secretion might be
mediated by tyrosine kinase. However, since EGF did not stimulate inositol
phosphalipid hydrolysis in cultured porcine adrenal glomerulosa cells, its effect
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does not seem to be mediated by phospholipase C.

Phosphorylation; Phosphofipase C

INTRODUCTION

By adopting different signal transduction pathways,
signaling molecules such as angiotensin II (AIl), K' or
adrenocorticotropin (ACTH) stimulate adrenal glomerul-
osa cells and thus induce aldosterone secretion (1). When
AlI binds to a cognate receptot, G proteins are activated.
Then they activate phospholipase C (PLO)-8, and this in
turn hydrolyzes phosphatidylinositol-4,5-bisphosphate to
genetate two second messenger molecules, inositol tris-
phosphate (IP;) and diacyglycerol (DAG) (2). IP; then
prompts the release of Ca”" from intracellular stores and
DAG activates protein kinase C (PKC); this in turn acti-
vates various transcriptional factors and enzymes, result-
ing in aldosterone secretion. The stimulatory effect of K
on aldosterone sectetion is mediated by the membrane
depolatization-induced opening of a voltage-dependent
calcium changnel. ACTH stimulates aldosterone sectetion
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through adenylate cyclase, and this generates cAMP (3,
4). On the other hand, several molecules have been
known to inhibit aldostetone secretion; this inhibitory
effect is mediated by activating guanylate cyclase or in-
hibiting adenylate cyclase (5).

Although many signaling molecules and signal trans-
duction mechanisms ate involved in the regulation of
aldosterone secretion in adrenal glomerulosa cells, the
role of tyrosine phosphorylation, one of the most impor-
tant pathways in signal transduction, has not yet been
determined. To activate IGF-I receptot, a well-known
receptot tytosine kinase, Hotiba et al. (6) stimulated
adrenal glomerulosa cells with IGF-I. This induced DNA
synthesis, but failed to stimulate aldosterone secretion.
Natarajan et al. (7), however, showed that epidermal
growth factor (EGF) stimulated aldosterone secretion in
rat and human adrenal glomerulosa cells. Many hot-
mones, growth factors ot cytokines stimulate tytosine
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phosphotylation, and among these, EGF, which stimu-
lates in vitto proliferation of many different cells, has
been extensively studied. EGF induces tyrosine phos-
photylation of many proteins including PLC-7, and thus
stimulates the phosphoinositide signaling pathway. Fut-
thermore, it is known to exert both metabolic and
growth promoting effects and affects steroidogenesis not
only in germinal cells (8-10) but also in adrenal cells; it
activates the hypothalamic-pituitary-adrenal axis (11) in
humans, and stimulates in vitro and in vivo cottisol sectre-
tion in sheep (12). However, the role of EGF and tyrosine
phosphotylation in aldosterone sectetion is not fully un-
detstood.

The most potent physiological stimulus of aldosterone
secretion is AlIl; its signal, as previously mentioned, is
mediated by G protein and PLC-{. Furthermore, many
investigators have accumulated evidence to showing that
Al also stimulates tyrosine kinases in vascular smooth
muscle and mesangial cells (13, 14). Although its recep-
tor does not show tyrosine kinase activity, it tecruits
intracellular tyrosine kinases and thus induces tyrosine
phosphotylation of intracellular proteins. On the other
hand, whether AIl can stimulate tyrosine phosphotyla-
tion in adrenal glomerulosa cells has not been extensively
investigated. Although several researchers have insisted
that AIl activates tyrosine kinases and thus stimulates
aldosterone sectetion, they were unable to directly dem-
onstrate the phosphorylation of tyrosine; instead they
used tyrosine kinase inhibitors to block All-induced aldo-
sterone secretion (15, 16).

In this study, we therefore investigated whether EGF-
induced tyrosine phosphorylation stimulated aldosterone
sectetion, and studied the role of PLC in EGF- or All-
induced aldosterone secretion. We also petformed a seties
of experiments to obsetve whether cross-talk, ot interac-
tion, existed in EGF- and All-induced signaling path-
ways.

MATERIALS AND METHODS

Materials

DMEM, Ham’s F12 medium, transfertin, fibronectin,
antibiotics-antimycotics solution, and human recombi-
nant EGF were obtained from Gibco BRL (Gaithersburg,
U.S.A). Fetal calf serum and horse serum wete purchased
from Hyclone Lab Inc. (Logan, U.S.A.), antiphosphotyto-
sine antibodies (4G10) from Upstate Biochemical Inc.
(Lake Placid, U.S.A)) and human AIl from BACHEM
(Switzerland). A BCA protein quantification kit was put-
chased from Pierce Chemical Co. (Rockford, U.S.A.), and
a Mighty Small™ electrophoresis kit from Hoeffer Co.
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(San Francisco U.S.A.). For Western blot, an electro-
chemiluminescent system was purchased from Amersham
Co. (Buckinghamshire, U.K.). [°’H] myo-inositol was ob-
tained from New England Nuclear (Boston, U.S.A.), and
Dowex AG-1X8 anion exchange tesin (200-400 meshes,
formate form), to measure the formation of inositol phos-
phates, from Bio-Rad (Richmond, U.S.A.). A radicimmu-
noassay kit for aldosterone was putrchased from Diag-
nostic Product Co. (L.A., U.S.A.). Petcoll, bovine serum
albumin, collagenase and deoxyribonuclease were ob-
tained from Sigma Chemical Co. (St. Louis, US.A.).

Methods

Isolation of porcine adrenal glomerulosa cells

Potcine adrenal glomerulosa cells were prepared as
desctibed previously (17) with a slight modification. In
btief, potcine adrenal glands were obtained from a local
slaughtethouse and transported in ice-cold 0.9% NaCl
solution. The adrenals were bisected and the capsular
portion was separated from the remainder of the gland
by slicing the outer 0.3 mm with a mictotome. These
tissue slices were cut into small pieces and incubated in
RPMI 1640 solution containing 1 mg/mL BSA and 20
mM HEPES (pH 7.4). Crude collagenase (2.0 mg/mL)
and deoxytibonuclease (0.05 mg/mL) were added to this
solution, which contained the capsular portions, and the
mixture was allowed to incubate at 37C for 2 hours in
a shaking water bath in room air. Duting incubation, the
tissue was mechanically dispersed several times by pipet-
ting up and down through a wide-mouthed Pasteur pi-
pette. Dispersed cells were separated from tissue frag-
ments by filtering through four layers of gauze. After
washing with HEPES-buffered Krebs-Ringer solution
(HKR) containing 135 mM NaCl, 5 mM NaHCO;, 1
mM CaCly, 2.5 mM KCl, 1 mM MgSO;, 1 mM KH,PO,
5.5 mM glucose, 0.1 mg/mL BSA and 20 mM HEPES
(pH 7.4), the cell suspension was loaded onto a discon-
tinuous Percoll gradient consisting of layets containing
20, 30, and 50% Percoll isomotically diluted with concen-
trated RPMI 1640 solution. After centrifugation at 1,500
rpm for 25 min at 4C, the cells separated into bands
with glomerulosa cells appearing at the 30 and 50%
intetface. This band was collected and washed twice with
HKR; the cells were then prepared for culture. Cells
prepared by this method routinely exclude trypan blue
dye greater than 95% and contain approximately 5%
contamination with fasciculata-reticularis cells (as detet-
mined by visual inspection of the size difference between
the two cell types).

Culture of adrenal glomerulosa cells
Isolated potcine adrenal glomerulosa cells were centri-
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fuged and resuspended with DMEM/Ham’s F-12 (1:1,
volume:volume) containing 10% horse serum, 2% fetal
calf serum, 2 nM insulin, 1 mM ascorbic acid, 1.2 yM
transferrin, 1 yM tocopherol, 50 nM sodium selenite, 50
UM metyrapone, 100 IU/mL of penicillin, 100 pg/mL of
streptomycin, 0.25 pg/mL of amphotericin and 25 pg/mL
of amikin. Cells were then transferred to a fibronectin-
treated 24-well culture cluster at a concentration of 0.5-1
X 10° cells/well and maintained in a humidified atmo-
sphere of 95% air/5% CO, at 37 C. After 24 hours, cells
were washed twice with DMEM/Ham’s F-12 medium
containing 20 mM HEPES (pH 7.3) and 0.1% BSA, then
cultured in serum-free medium for another 18-20 hours
before stimulation.

Measurement of aldosterone secretion

Cells maintained in a setum-free medium for 18-20
hours were washed twice with DMEM/Ham’s F-12 me-
dium containing 20 mM HEPES (pH 7.3) and 0.1%
BSA, then stimulated for 3 hts with either EGF, All,
ot EGF and AIl together. After stimulation, the supet-
natant was collected and the concentration of aldosterone
was determined with a radicimmunoassay kit.

Western blot analysis of cellular proteins using

antiphosphotyrosine antibodies

Cells maintained in serum-free medium for 18-20
hours were washed twice with DMEM/Ham’s F-12 me-
dium containing 20 mM HEPES (pH 7.3) and 0.1%
BSA, then incubated with 0.25 mL of DMEM/Ham’s F-
12 medium containing 20 mM HEPES (pH 7.3) and 0.1
% BSA at 37 C for 30 min. For time-dependent tyrosine
phosphotylation, 10 ng/mL of EGF was added at timed
intervals. For the stimulation of tyrosine phosphorylation,
cells were treated with various concentrations of EGF and
All for 2 min. Stimulation was tetminated by aspirating
the medium. Each well was then washed twice with 400
UL of ice-cold phosphate-buffered saline and treated with
100 L of ice-cold lysis buffer (20 mM HEPES, pH 7.2,
1% Triton X-100, 10% (volfvol) glycerol, 50 mM NaF,
1 mM phenylmethylsulfonylfluoride, 1 mM Na;Voy, and
10 pg/mL leupeptin) for 20 min on ice. Lysed cells were
transferred to microcentrifuge tubes and centrifuged at
10,000 g for 10 min at 4C. After determining the con-
centration of the protein with a BCA protein quantifi-
cation kit, 20 ug of each proteins was loaded onto 10%
SDS-polyacrylamide gel and sepatated for 1 hr at 100
V. Separated proteins were then transferred to nitrocel-
luose filters for 1 hr at 80 V. After blocking with 2%
(wt/vol) BSA, filters were probed with monoclonal anti-
bodies to phosphotyrosine. The immune complex was
detected by a electrochemiluminescent system and auto-
radiography.
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Measuring generation of inositol phosphates

The PLC activity was determined by measuting the
formation of inositol phosphates according to the method
desctibed by Downes et al. (18) with a slight modifica-
tion. In btief, cells were labeled with [*H] neyo-inositol.
When maintained in serum-free medium, 12 yCi/mL of
[°H] myo-inositol was added to each well and labeled for
18-20 hrs. After labeling, [*H]myo-inositol was removed
by aspirating the labeling medium and washing twice
with DMEM/Ham’s F-12 medium containing 20 mM
HEPES (pH 7.3) and 0.1% BSA. Cells were then incu-
bated in 300 yL of DMEM/Ham’s F-12 medium con-
taining 20 mM HEPES (pH 7.3), 0.1% BSA and 15 mM
LiCl for 10 min at 37 C. EGF or All-or both-was/were
added to the medium and incubated for a further 10
min. The stimulation was terminated by aspirating the
medium and cells wete rinsed twice with ice-cold PBS,
then treated with 0.6 mL of ice-cold 5% perchlotic acid
for 20 min. They were scraped into microcenttifuge tubes
and the cellular debris was pelleted by centrifugation.
The supetnatants were saved and 0.55 mL was diluted
with 15 mL DW and loaded onto a column containing
2 mL of Dowex AG-1X8 anion exchange resin. The col-
umn was washed with 8 mL DW and 10 mL of 60 mM
sodium formate/5 mM sodium borate solution, and ino-
sitol phosphates were eluted with 5 mL of 1M ammo-
nium formate/0.1 mM formic acid solution. The radio-
activity of the elutes was measured with a Beckman /3
countet.

Statistical analysis

The experimental results wete analyzed with a SAS sta-
tistical package, and expressed as mean *standard devi-
ation. Comparisons were made using unpaired Student’s

t test or ANOVA (Sheffe’s method).

RESULTS

Stimulation of aldosterone secretion by EGF

To investigate the effect of EGF on aldosterone secte-
tion in cultured porcine adrenal glomerulosa cells, these
cells were treated 3 hrs after stimulation with increasing
concentrations of EGF and the concentration of aldoste-
rone in culture supernatant was measured 3 hours after
stimulation. EGF stimulated aldosterone secretion and
statistically significant stimulation was observed at con-
centrations of 10 ng/mL or mote of EGF (Fig. 1).

Effect of EGF on All-induced aldosterone secretion

To determine whethet EGF had any synergistic, addi-
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Fig. 1. The effects of increasing concentrations of epidermal
growth factor(EGF) on aldosterone secretion in cultured porcine
adrenal glomerulosa cells. Cells were incubated in medium
containing the indicated concentrations of EGF. Each value
represents mean=+S.D. of five separate experiments. * P<0.05
vs. basal
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Fig. 2. The effects of EGF on basal and All-stimulated aldo-
sterone secretion in cultured porcine adrenal glomerulosa cells.
Cells were incubated in a medium containing the indicated
concentrations of Al in the absence (lll) or presence ([ ]) of
10 ng/mL EGF. Each value represents mean®S.D. of six sep-
arate experiments. *P<0.05 vs. basal

tive ot inhibitoty effect on All-induced aldosterone secre-
tion, adrenal glometulosa cells were concurtently stimu-
lated with EGF and AIL For all experiments, 10 ng/mL
EGF was added to incteasing concentrations of AIl. EGF
alone increased aldosterone secretion (0.7610.54 vs.
1.38+0.77 ng/10° cells/3 hrs), but the addition of EGF
neither increased not decreased the aldosterone secretion
induced by different concentrations of All (Fig. 2).
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Fig. 3. Time course of EGF or All-induced protein tyrosine
phosphorylation in cultured porcine adrenal glomerulosa cells.
Cells were treated with vehicle (lane 1), 10 ng/mL EGF or 10°®
M All for 2 min at 37°C as described in the method section.
Stimulation was then terminated and cells were solubilized.
Total cellular proteins were separated on 10 % SDS-polyacryl-
amide gel and transferred to a nitrocellulose filter. The immune
complex was probed with anti-phosphotyrosine antibodies and
visualized by the technique of enhanced chemiluminescence.
The positions of prestained molecular mass markers are indi-
cated.

Tyrosine phosphorylation of cellular proteins induced by
EGF or All

The treatment of adrenal glomerulosa cells with 10
ng/mL of EGF provoked a rapid and transient tyrosine
phosphotylation of several proteins (Fig. 3). EGF treat-
ment not only enhanced the tyrosine phosphorylation of
proteins already phosphotylated in the basal state (105
kDa and 60 kDa), but also evoked tyrosine phosphotyla-
tion of new proteins (170 kDa and 50 kDa). This EGF-
induced tyrosine phosphotylation peaked at 1 min, then
decreased rapidly, and returned to near basal level after
20 min. To determine the effect of vatying amounts of
EGF, cells were treated for 2 min and the extent of tyro-
sine phosphotylation was analyzed by immunoblot. Tyro-
sine phosphorylation continued to inctease until EGF
concentration teached 50 ng/mL, then decreased when
100 ng/mL of EGF were added (Fig. 4). AII (1 X10°M)
enhanced tyrosine phosphotylation of several proteins,
which had already been phosphotylated in the basal state,
but failed to induce the phosphorylation of new proteins.
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Fig. 4. The effects of increasing concentrations of EGF on
protein tyrosine phosphorylation in cultured porcine adrenal
glomerulosa cells. Cells were treated with 0-100 ng/mL EGF
for 2 min at 37°C and tyrosine phosphorylation was detected
with anti-phosphotyrosine antibodies. The positions of pre-
stained molecular mass markers are indicated.
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Fig. 5. The effects of All alone or both EGF and All on protein
tyrosine phosphorylation in cultured porcine adrenal glomer-
ulosa cells. Cells were treated with the indicated concentrations
of All with or without 10 ng/mL EGF for 2 min at 37°C as de-
scribed in the method section.

In otder to determine whether EGF-induced tyrosine
phosphotylation was affected by All, cells wete treated
with 10 ng/mL of EGF and different concentrations of
AIL Alchough AIl alone elevated tyrosine phosphotyla-
ton of cellular proteins in a dose dependent manner
(10" M to 10° M), it neither increased nor decreased
tyrosine phosphotylation elicited by EGF (Fig. 5).

Formation of inositol phosphates after stimulation with
EGF or All

Because All-stimulated aldosterone secretion is known
to be mediated by the PLC action, we investigated
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Fig. 6. Lack of EGF effects on total inositol phosphates forma-
tion in cultured porcine adrenal glomerulosa cells. Cells were
labeled with 12 mCi/mL [*H])myo-inositol for 20 hrs. After label-
ing, they were treated with the indicated concentrations of EGF
for 10 min at 37°C in the presence of 15 mM LiCl. On termina-
tion of the reaction, samples were assayed for the total accu-
mulation of [*H] inositol phosphates by anion-exchange chro-
matography. Each value represents the mean®=S.D. of four
separate experiments.

whether EGF-induced aldosterone secretion was associ-
ated with the activation of PLC. To measure PLC acti-
vity, cells were labeled with [*H]myo-inositol and the
formation of inositol phosphates after stimulation with
EGF for 10 min was measured. Although EGF is known
to induce tyrosine phosphotylation of PLC-y1, activating
it in various cell systems, we did not observe any increase
of inositol phosphates at vatious concentrations of EGF
at which EGF had elicited tyrosine phosphorylation of
many proteins (Fig. 6). At a concentration of 10” M or
more, however, All stimulated the formation of inositol
phosphates (Fig. 7), but the addition of 10 ng/mL of EGF
at various concentrations did not affect All-induced acti-
vation of PLC at any concentrations.

DISCUSSION

In the present study, we demonstrated that EGF
stimulated aldosterone sectetion in cultured porcine adre-
nal glomerulosa cells through tyrosine phosphorylation,
but probably not through the activation of PLC. We also
showed that although EGF alone stimulated aldosterone
secretion, the addition of EGF neither increased not
decreased All-induced aldosterone secretion, which sug-
gested that interaction between the AIl- and EGF-stimu-
lated signaling pathways obliterated EGF-induced aldo-
sterone sectetion. The same was true for EGE-provoked
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Fig. 7. Effects of All alone or both EGF and All on total inositol
phosphates formation in cultured porcine adrenal glomerulosa
cells. Cells were labeled with 12 mCi/mL [*H]myo-inositol for
20 hrs and stimulated with the indicated concentrations of All
in the absence () or presence ([_]) of 10 ng/mL EGF for 10
min. Data are expressed as the folds of increase from the basal
state, defined as 1 fold. Each value represents the mean=+S.D.
of 2-4 separate experiments performed in duplicate. *,' P<0.05
vs. basal

tyrosine phosphotylation, which temained the same
whether or not AIl was added.

Although EGF has been reported to affect steroid hot-
mone biogenesis in gonadal cells (8-10) and stimulate
cottisol sectetion in adrenal cottical cells (12, 19), its role
in aldosterone secretion is not fully understood. Natarajan
et al. (7) reported that stimulation of rat ot human glo-
merulosa cells with EGF led to the secretion of aldo-
sterone, and this stimulatoty effect was further increased
by the simultaneous addition of AIl. Our results showed
that the effect of EGF on aldosterone secretion in potcine
adrenal glomerulosa cells was similar.

Although EGF exerts its effect through a vatiety of
pathways (20-26), tyrosine phosphorylation is the most
impottant signaling pathway (27-30). Once EGF binds to
its teceptor, activated EGF teceptors dimetize and auto-
phosphotylate their tyrosine residues. By recognizing these
residues, many cellular proteins containing SH2 domain,
such as PLC- 7, Gtb2, phosphatidylinositol-3-kinase, ot
GTPase activating protein, then move to the EGF recep-
tot; this phosphorylates these SH2-containing proteins
and thus activates or inactivates them (31). Antiphos-
photyrosine immunoblotting revealed the 170 kDa-band.
Though immunoblot assay using anti-EGF receptor Ab
was not petformed, we speculated that this 170 kDa-band
might be an EGF receptor; its molecular weight corre-
sponded to the known molecular weight of the EGF
receptot, its phosphotylation peaked at 1 min after stimu-
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lation, and it was not observed when cells were stimulated
with AIL Furthermore, tyrosine phosphotylation increased
as the amount of EGF increased, and peaked at 50 ng/mL
of EGF. EGF-induced aldosterone sectetion showed a
similar increase, suggesting that EGF-induced tyrosine
phosphotylation might be responsible for EGF-stimulated
aldosterone secretion. We did not scrutinize the effect of
tyrosine kinase inhibitors on EGF-induced aldosterone
secretion, therefore we concluded that EGF-induced tyro-
sine phosphotylation was most probably the mechanism
involved in the stimulation of aldosterone sectetion by
EGE.

If ¢his is so, our next question was whether or not PLC
activation was involved in this process. In most cellular
systems, EGF is known to be an important signal to acti-
vate PLC-7y (32-36), but in cells such as Swiss 3T3 fibro-
blasts (37), BALB/c/3T3 fibroblasts (38), Chinese ham-
ster fibroblasts (39) and T-cell hybridoma (40), it did not
stimulate tyrosine phosphorylation of PLC-7. This was
the case in our expetiment. EGF definitely induced tyro-
sine phosphorylation of many intracellular proteins in
potcine adrenal glometulosa cells, but we obsetved no evi-
dence of PLC activation, as measured by the formaiton
of inositol phosphates. The discrepancy between EGE-
induced tyrosine phosphorylation and the lack of inositol
phosphates formation can be explained in several ways.
First, if porcine adrenal glomerulosa cells contain PLC-3
isoforms but not PLC-7 isoforms, EGF can induce tyrosine
phosphotylation but cannot stimulate the formation of
inositol phosphates. We did not petform expetiments to
look at the presence of PLC-7 isoforms in this cell because
antibodies to PLC-y2 were not commercially available.
However, although we did not observe PLC-7 in this cell,
it cannot be said that it was definitely not present. Based
on the experiments using anti-PLC-/1, anti-PLC-71 and
anti-PLC-51 antibodies, Rhee et al. (41) showed that
while PLC-1 and PLC-§1 may be lost when cells are
transformed to permanent cell lines, every cell line studied
in their experiment tetained PLC-71. Because this is acti-
vated mainly by growth factors, it is speculated that it
may be essential for cell growth. This implies that PLC-y
is a kind of house-keeping enzyme, requited by every cell
for growth and proliferation. It cannot, therefore, be relia-
bly concluded that the absence of inositol phosphates
formation was due to the absence of PLC-y. Second, it
is possible that too little inositol phosphates was formed
by this to have been detected by conventional assay. If,
however, PLC really mediated the effect of EGF on aldo-
sterone sectetion, the extent of PLC activation would be
associated with the aldosterone secretion. In All-mediated
aldosterone sectetion, the generation of inositol phos-
phates increased about 18 times (at 10° M of AID but
aldosterone secretion increased by a factor of only six. In
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our study, EGF treatment caused aldosterone sectetion
to approximately double, but we detected no increase in
the formation of inositol phosphates. According to All-
induced activation, we should have observed an approxi-
mately six-fold increase in inositol phosphates formation,
and this should have been easily detected. Third, EGE-
induced tyrosine phosphotylation might not have acti-
vated PLC-7, and aldosterone secretion was mediated by
another molecule phosphorylated by EGF receptot.
Natarajan et al. (7) suggested that EGF-induced aldoste-
rone sectetion might be mediated by increased DAG.
Since this inctease can be achieved not only by the acti-
vation of PLC or phospholipase D, ot by de novo synthesis
of DAG, their data implied that aldosterone sectretion can
be induced without the activation of PLC. This PLC-
independent increase of DAG might be a plausible mech-
anism of aldosterone secretion in this particular cell. Avail-
ability of antibodies to PLC-y1 or PLC-72 would be
critical to prove this possibility.

AlI receptor belongs to the seven transmembrane te-
ceptor family, which couples to G protein and thus acti-
vates PLC ot adenylate cyclase. Several investigators have
recently demonstrated that AIl stimulated tyrosine phos-
photylation of vatious proteins; PLC-71 through the
recruitment of soluble tyrosine kinases in vascular smooth
muscle cells (13) and mesangial cells (14). Furthermore,
recent repotts have insisted that AIl stimulated aldoste-
rone sectetion through the activation of tyrosine kinases
in adrenal glomerulosa cells (15, 16) and our data also
suggested that AIl enhanced tyrosine phosphorylation of
several proteins. For two reasons, it could not be con-
cluded that tyrosine phosphorylation played an important
tole in aldosterone secretion. First, AIl did not induce
tyrosine phosphotylation of new proteins; rather it en-
hanced tyrosine phosphotylation of proteins alteady phos-
photylated in the basal state. Second, although tyrosine
phosphotylation of several proteins was induced by AlL,
these same proteins wete also phosphorylated by EGF.
Furthermore, EGF induced a much higher degree of
phosphotylation than AIl did. These results suggest that
Al can induce tyrosine phosphorylation of several pro-
teins. Phosphorylation, however, did not seem to be the
ptincipal mechanism involved in aldosterone secretion;
although it can induce stronger phosphotylation of same
proteins, EGF failed to activate PLC. It therefore seems
reasonable to conclude that a G protein-mediated signal,
rather than tyrosine phosphorylation, is the main pathway
involved in All-mediated aldosterone secretion.

In our study, EGF stimulated aldosterone secretion,
though costimulation of cells with EGF and All had no
additive ot synergistic effect. Because the responsiveness
of glomerulosa cells to external stimuli varies consider-
ably from preparation to preparation, the precise detet-
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mination of EGF-induced aldosterone secretion induced
by EGF might be somewhat difficult. Furthermore, since
the level of this was only 30% of the level of All-induced
aldosterone secretion (data not shown), a small increase
in EGF-induced aldosterone sectetion might be masked
by a larger increase in aldosterone secretion stimulated
by a stronger All-mediated signal. However, our obset-
vations showed repeatedly that the addition of EGF did
not affect All-stimulated aldosterone secretion, no mattet
the concentration of AIl. If this is the case, our results
suggest a close interaction between All- and EGF-medi-
ated signaling pathways. If these were independent,
aldosterone secretion would be additive, unless substrates
for synthesis were limited. This was not the case, how-
ever. No additive effect was observed, even at low con-
centrations of AIl at which substrate availability should
be sufficient. We therefore suggest that once the All-
mediated pathway is activated, it inhibits EGF-mediated
aldosterone sectetion, as was observed in the phosphory-
lation of cellular proteins by AIl or EGF. Although AIl
alone enhanced tyrosine phosphotylation of 150 kDa-
and 60 kDa-proteins, the addition of AIl did not alter
the phosphorylation pattern induced by EGF alone. This
in turn suggests that once EGF is activated, AIl might
no longer have any effect.
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