SENSE (Sensitivity Encoding)

```
Sensitivity encoding(SENSE)
                                                                                   가
                                            SENSE
                     : 16
                                                    1.5T
            SENSE
                                                        (TR/TE=6755/74 or 5871/66msec, ETL
            127 or 67, NEX=3, matrix 128 x 128, FOV 22 cm, 4 mm slice thickness with no gap, b
            value=600s/mm<sup>2</sup>, 6
                                                          PC
                                          ).
                                      ADC
                                                         (FA)
                                                                        , ADC FA
                                                  Fisher's exact test Mann-Whiteney test
                                                                   SENSE
                  (p < 0.05).
                                             SENSE
                                                                                          14
                                  . ADC
            (87.5%)
                                                       SENSE
                                                 SENSE
                      , FA
                                                                                      (p < 0.05).
                                     8.44, SENSE
                                                       11.40
                                 SENSE
                                                                                 FΑ
                                                                       , SENSE
                                                       3
                                                                                     (3, 4).
                                          (diffusion
                                                                              (5),
                                                                                        (color map),
                                                                                     (fiber tracking)
anisotropy)
                   (1, 2).
                                                       (vector map),
                                                                                                (6 - 8).
                   가
             (diffusion tensor imaging)
                                                                                가
                                                                                                  가
                                                3×
                                                                               micron
                                                                      mm
                                                                    가
                                                                            (8),
        2004 2 16
                           2004 4 23
```

399

: SENSE (Sensitivity Encoding)

	(9, 10). 가	SENSE Pruessman (15, 16) , SENSE encoding (receiver
(eddy current artifact),		coil) .
(magnetic susceptibility art	tifact).	SENSE cartesian K - sampling
(background noise), gradie	,	line Fourier encoding step
(10).		undersampled K space Fourier
(10).	single - shot EPI	(receiver coil element)
navigator echo	multi - shot	(folded image) . SENSE
· ·	muiti - Snot	(Tolueu Illiage) . SENSE
(40, 44)		(receiver eail element)
(10, 11).		(receiver coil element)
Sensitivity encoding (SENSE)		(sensitivity map)가 .
(spatial sensitivity) 가	(multiple	sensitivity encoding (aliased signal)
receiver coil)	,	(unfold) . Full fourier encoding
가, EPI	가 가	SENSE phase encoding step
. SENSE		SENSE reduction factor R . R
(12 - 14), single - shot EP	I	, geometrical relationship
•		가 . (noise
SENSE		enhancement) (,
) . SENSE local
SENSE		geometry factor g , SENSE
		sense/ standard = 1/g R (15). Simulation
		R 2 가 geometric factor 1
		TO 2 77 goometre lactor 1
		R 2 SENSE
16 (: =14:2.	27)	R 2 SENSE
,	27)	R 2 SENSE 70.7% .
16 (: =14:2,	27)	
,	27)	70.7% .
,	27)	70.7% . (Dxx, Dyy, Dzz, Dxy,
,	27)	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) on - line (Pacman tool, Philips
· · · · · · · · · · · · · · · · · · ·	27) .	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) on-line (Pacman tool, Philips Medical System) voxel multiple
,		70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyy, Dzz, Dxy) (Pacman tool, Philips Voxel multiple linear regression .
,	slew rate가 150	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) on - line Medical System) linear regression ADC(isotropic apparent diffusion
	slew rate가 150	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) on - line Medical System) linear regression ADC(isotropic apparent diffusion coefficient , mm²/sec ADC) (fractional
MR 30 mT/m T/m/sec 1.5T (Intera	slew rate가 150	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) on - line Medical System) Inear regression ADC(isotropic apparent diffusion coefficient , mm²/sec ADC) (fractional anisotropy, FA) Standard matrix
MR 30 mT/m T/m/sec 1.5T (Interactions), 6 SENSE	slew rate가 150 ; Philips Medical	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dxy, Dxz, Dyz) on - line (Pacman tool, Philips Medical System) voxel multiple linear regression ADC(isotropic apparent diffusion coefficient, mm²/sec ADC) (fractional anisotropy, FA) standard matrix procedure
MR 30 mT/m T/m/sec 1.5T (Interactions), 6 SENSE	slew rate가 150	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) on - line Medical System) Inear regression ADC(isotropic apparent diffusion coefficient , mm²/sec ADC) (fractional anisotropy, FA) Standard matrix
MR 30 mT/m T/m/sec 1.5T (Interactions), 6 SENSE	slew rate가 150 ; Philips Medical ngle - shot EPI SENSE	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyy, Dxz, Dxy, Oxz, Dyz) on - line (Pacman tool, Philips Voxel multiple linear regression . ADC(isotropic apparent diffusion coefficient, mm²/sec anisotropy, FA) standard matrix procedure . ADC ,
MR 30 mT/m T/m/sec 1.5T (Interaction factors), 6 SENSE SENSE 2 sin	slew rate가 150 ; Philips Medical ngle - shot EPI SENSE	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dxy, Dxz, Dyz) on - line (Pacman tool, Philips Medical System) voxel multiple linear regression ADC(isotropic apparent diffusion coefficient, mm²/sec ADC) (fractional anisotropy, FA) standard matrix procedure
MR 30 mT/m T/m/sec 1.5T (Interaction factors), 6 SENSE SENSE 2 sin	slew rate가 150 ; Philips Medical ngle - shot EPI SENSE tor(R) 2 msec, SENSE	$70.7\% \qquad \qquad (Dxx,\ Dyy,\ Dzz,\ Dxy,\ Dxz,\ Dyz) \text{on - line} \qquad (Pacman\ tool,\ Philips\ Medical\ System) \qquad voxel \qquad multiple\ linear\ regression \qquad ADC (isotropic\ apparent\ diffusion\ coefficient\ ,\ mm^2/sec \qquad ADC) \qquad (fractional\ anisotropy, \qquad FA) \qquad standard\ matrix\ procedure \qquad ADC \qquad , \qquad ADC = \left(\sum_{all\ high\ b-values} ln\ \left[\frac{SI_{low\ b-value}}{SI_{high\ b-value}}\right]$
MR 30 mT/m T/m/sec 1.5T (Interaction Systems, Best, the Netherlands) , 6 SENSE SENSE 2 sim phase encoding reduction fact TR/TE 6755/74 5871/66 msec echo train length	slew rate가 150 ; Philips Medical ngle - shot EPI SENSE tor(R) 2 msec, SENSE	$70.7\% \qquad \qquad (Dxx,\ Dyy,\ Dzz,\ Dxy,\ Dxz,\ Dyz) \text{on - line} \qquad (Pacman\ tool,\ Philips\ Medical\ System) \qquad voxel \qquad multiple\ linear\ regression \qquad ADC (isotropic\ apparent\ diffusion\ coefficient\ ,\ mm^2/sec \qquad ADC) \qquad (fractional\ anisotropy, \qquad FA) \qquad standard\ matrix\ procedure \qquad ADC \qquad , \qquad ADC = \left(\sum_{all\ high\ b-values} ln\ \left[\frac{SI_{low\ b-value}}{SI_{high\ b-value}}\right]$
MR 30 mT/m T/m/sec 1.5T (Interaction Systems, Best, the Netherlands) , 6 SENSE SENSE 2 sim phase encoding reduction fact TR/TE 6755/74 5871/66 msec echo train length	slew rate7 150 r; Philips Medical ngle - shot EPI SENSE tor(R) 2 msec, SENSE 127 67 8 acquisition/256	70.7% . (Dxx, Dyy, Dzz, Dxy, Dxz, Dyy, Dxz, Dxy, Oxz, Dyz) on - line (Pacman tool, Philips Voxel multiple linear regression . ADC(isotropic apparent diffusion coefficient, mm²/sec anisotropy, FA) standard matrix procedure . ADC ,
MR 30 mT/m T/m/sec 1.5T (Interaction factors) , 6 SENSE SENSE 2 simple for the second factors of the second	slew rate7 150 r; Philips Medical ngle - shot EPI SENSE tor(R) 2 msec, SENSE 127 67 8 acquisition/256	$70.7\% \qquad \qquad (Dxx,\ Dyy,\ Dzz,\ Dxy,\ Dxz,\ Dyz) \text{on - line} \qquad (Pacman\ tool,\ Philips\ Medical\ System) \qquad voxel \qquad multiple\ linear\ regression \qquad ADC (isotropic\ apparent\ diffusion\ coefficient\ ,\ mm^2/sec \qquad ADC) \qquad (fractional\ anisotropy, \qquad FA) \qquad standard\ matrix\ procedure \qquad ADC \qquad , \qquad ADC = \left(\sum_{all\ high\ b-values} ln\ \left[\frac{SI_{low\ b-value}}{SI_{high\ b-value}}\right]$
MR 30 mT/m T/m/sec 1.5T (Interaction Systems, Best, the Netherlands) , 6 SENSE SENSE 2 sim phase encoding reduction fact TR/TE 6755/74 5871/66 msec echo train length , ; 12 reconstruction, 22 cm FOV, 4 mm slice sign, 34 slices, NSA = 3. 6	slew rate7 150 ; Philips Medical . ngle - shot EPI SENSE tor(R) 2 msec, SENSE 127 67 8 acquisition/256 thickness with no (Gxx, Gyy,	$70.7\% \qquad . \\ (Dxx, Dyy, Dzz, Dxy, \\ Dxz, Dyz) \text{on - line} \qquad (Pacman tool, Philips \\ Medical System) \qquad voxel \qquad multiple \\ linear regression \qquad . \\ ADC (isotropic apparent diffusion \\ coefficient , mm²/sec \qquad ADC) \qquad (fractional anisotropy, FA) \qquad standard matrix \\ procedure \qquad . \\ ADC \qquad , \\ ADC = \left(\sum_{all\ high\ b-values} ln\left[\frac{SI_{low\ b-value}}{SI_{high\ b-value}}\right] \\ \dot{\div}(b_{high}\ b_{low})\right) / number\ of\ b-values$
MR 30 mT/m T/m/sec 1.5T (Interaction Systems, Best, the Netherlands) 6 SENSE SENSE 2 sin phase encoding reduction factor TR/TE 6755/74 5871/66 msec echo train length 7 reconstruction, 22 cm FOV, 4 mm slice of gap, 34 slices, NSA = 3. 6 Gzz, Gxy, Gxz, Gyz), b-value	slew rate7 150 c; Philips Medical ngle - shot EPI SENSE tor(R) 2 msec, SENSE 127 67 8 acquisition/256 thickness with no (Gxx, Gyy, (0, 600s/mm²)	$70.7\% \ .$ $(Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) \ on \ - line \ (Pacman tool, Philips Medical System) \ voxel \ multiple linear regression ADC \ (isotropic \ apparent \ diffusion \ coefficient \ , mm^2/sec \ ADC) \ (fractional \ anisotropy, FA) \ standard \ matrix procedure ADC \ \ , ADC = \left(\sum_{all \ high \ b-values} ln \left[\frac{SI_{low \ b-value}}{SI_{high \ b-value}}\right] \dot{\div} (b_{high} \ b_{low}) \right) / number \ of \ b-values ADC \ (ADCi) \ phase \ - encoding, \ read, \ slice $
MR 30 mT/m T/m/sec 1.5T (Interaction Systems, Best, the Netherlands) , 6 SENSE SENSE 2 sin phase encoding reduction fact TR/TE 6755/74 5871/66 msec echo train length , ; 12 reconstruction, 22 cm FOV, 4 mm slice in gap, 34 slices, NSA = 3. 6 Gzz, Gxy, Gxz, Gyz), b - value 7 in the second sec	slew rate7 150 ; Philips Medical . ngle - shot EPI SENSE tor(R) 2 msec, SENSE 127 67 8 acquisition/256 thickness with no (Gxx, Gyy,	$70.7\% \qquad \qquad (Dxx, \ Dyy, \ Dzz, \ Dxy, \\ Dxz, \ Dyz) \text{on - line} \qquad (Pacman \ tool, \ Philips \\ Medical \ System) \qquad voxel \qquad multiple \\ linear \ regression \qquad ADC (isotropic \ apparent \ diffusion \\ coefficient , \ mm^2/sec \qquad ADC) \qquad (fractional \ anisotropy, \qquad FA) \qquad standard \ matrix \\ procedure \qquad ADC \qquad , \qquad \\ ADC = \left(\sum_{all \ high \ b-values} ln \ \left[\frac{SI_{low \ b-value}}{SI_{high \ b-value}}\right] \\ \dot{\div} (b_{high} \ b_{low}) \right) / number \ of \ b-values \\ ADC \ (ADCi) \qquad phase - encoding, \ read, \ slice \\ selection \qquad ADC \qquad . \qquad .$
MR 30 mT/m T/m/sec 1.5T (Interaction Systems, Best, the Netherlands) 6 SENSE SENSE 2 sin phase encoding reduction factor TR/TE 6755/74 5871/66 msec echo train length 7 reconstruction, 22 cm FOV, 4 mm slice of gap, 34 slices, NSA = 3. 6 Gzz, Gxy, Gxz, Gyz), b-value	slew rate7 150 c; Philips Medical ngle - shot EPI SENSE tor(R) 2 msec, SENSE 127 67 8 acquisition/256 thickness with no (Gxx, Gyy, (0, 600s/mm²)	$70.7\% \ .$ $(Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) \ on \ - line \ (Pacman tool, Philips Medical System) \ voxel \ multiple linear regression ADC \ (isotropic \ apparent \ diffusion \ coefficient \ , mm^2/sec \ ADC) \ (fractional \ anisotropy, FA) \ standard \ matrix procedure ADC \ \ , ADC = \left(\sum_{all \ high \ b-values} ln \left[\frac{SI_{low \ b-value}}{SI_{high \ b-value}}\right] \dot{\div} (b_{high} \ b_{low}) \right) / number \ of \ b-values ADC \ (ADCi) \ phase \ - encoding, \ read, \ slice $

```
FA = \left( \sqrt{\sum_{i=1,2,3} (\lambda_i - ADC_i)^2} \right)
                                                                      SENSE
                                                                                                     unfolding
       \div \left(\sqrt{\left(\sum_{i=1,2,3} \lambda_i^2\right)/3}\right)
                                                                                                                             가
                                                                            (15, 17).
                                                                                                            SENSE
          ADC map FA map
                                 UltraSPARC II
                                                                                                                       2
                                                                                                                                  4
  (EasyVision, software release 5.1; Philips Medical
                                                                                  SENSE
Systems)
                                                 . EasyVision
                                                                                                                          2×
                                                                                ROI
                                                                                             SI/
                                                                                                             ROI
                                                                                                                   SD (18).
                                                 FΑ
                       ROI
                                         ADC
                  ROI
        T2
                                                                                   Mann - Whiteney test Fisher's exact test
                    (b=0)
                                                                                         (SPSS, version 10.1.; SPSS, Chicago, III)
                                                                                            . Mann - Whiteney test ADC
                                                                          SENSE
                                                                    Fisher's exact test
                           b0
                                                           FΑ
                                                                               . P
                                                                                       0.05
                                                                          가
map
                   grade 1 (
       ), grade 2 (
                                     2 slice
                                         ), grade 3 (
                                              ),
                                                                                                                               3,
           grade 1 (2 mm
                                  phase encoding
                                                                    SENSE
                                                                                           44
  가
                                                       가
                                                                                                                              가
                 ), grade 2 (2 - 10 mm
                                                                                              ADC
                                                                                                                740 \pm 30
       ), grade 3 (10 mm
                                                                                    835 \pm 77
                                                                                                    (Table 1). ADC
                                                           )
                                                                                SENSE
                                                                                           (p > 0.05).
                                                                                              0.4
```

Table 1. Mean ADC Values from Brain ROIs in 16 Human Subjects: Single Slice Data (x 10⁻³ mm²/sec)

	SFC	CC	FWM	CAUD	PUTA	IC	THAL	MCP	Pons
Standard SENSE	810 ± 62 749 ± 58	822 ± 68 815 ± 84	820 ± 60 792 ± 46	768 ± 51 735 ± 55	731 ± 28 747 ± 31	815 ± 48 816 ± 45	817 ± 40 837 ± 33	782 ± 55 752 ± 44	855 ± 70 819 ± 81
Total	775 ± 66	818 ± 76	804 ± 53	750 ± 55	740 ± 30	815 ± 45	828 ± 37	765 ± 51	835 ± 77

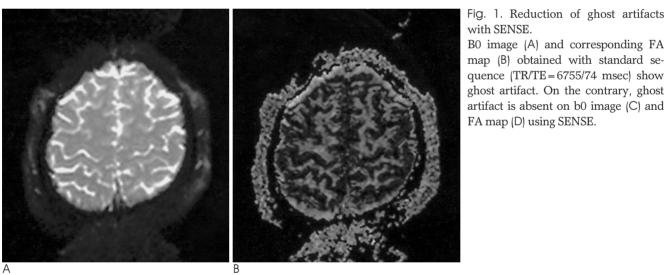
Note - Numbers are mean ± standard deviation.

SFC: superior frontal cortex, CC: corpus callosum, FWM: frontal white matter, CAUD: caudate nucleus

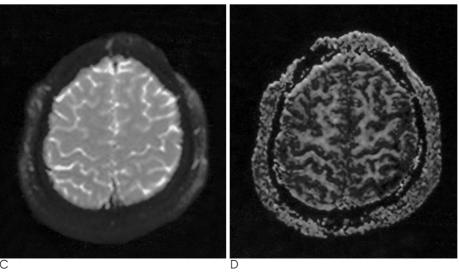
PUTA: putamen, IC: internal capsule, THAL: thalamus, MCP: middle cerebellar peduncle

Table 2. Mean FA Values from Brain ROIs in 16 Human Subjects

	SFC	CC	FWM	CAUD	PUTA	IC	THAL	MCP	Pons
Standard	0.278 ± 0.050	0.765 ± 0.057	0.498 ± 0.064	0.308 ± 0.070	0.283 ± 0.056	0.732 ± 0.033	0.378 ± 0.072	0.664 ± 0.064	0.463 ± 0.046
SENSE	0.436 ± 0.073	0.824 ± 0.089	0.462 ± 0.045	0.388 ± 0.070	0.399 ± 0.081	0.763 ± 0.039	0.502 ± 0.116	0.748 ± 0.049	0.579 ± 0.060
Total	0.365 ± 0.103	0.793 ± 0.078	0.481 ± 0.057	0.346 ± 0.080	0.338 ± 0.089	0.746 ± 0.038	0.449 ± 0.115	0.706 ± 0.070	0.521 ± 0.079


Note - Numbers are mean ± standard deviation.

SFC: superior frontal cortex, CC: corpus callosum, FWM: frontal white matter, CAUD: caudate nucleus


PUTA: putamen, IC: internal capsule, THAL: thalamus, MCP: middle cerebellar peduncle

: SENSE (Sensitivity Encoding)

```
0.7
                         . SENSE
                  FΑ
                                       (Table 2).
                                          SENSE
                           (p < 0.05).
                                                                        SENSE
                                                                    가
                           SENSE
                                         SENSE
                                                                                    . SENSE
                                   14 (87.5%)
                                                                                                    ADC
                                SENSE
       (Fig. 1).
                                                                                         , FA
10 ,
           6
                                       (p < 0.05) (Fig.
2).
                 SENSE
                                          12 ,
                                                                                     (11).
4
                                                                                                   가
          (p < 0.05) (Fig. 3).
                                                                                                         3 \times 3
                b0
              8.44, SENSE
                                    11.40
                                              SENSE
                                                                                   6
              , 1
                                                                                diagonalization
                                                                    (ellipsoid)
                                                                                          3
                                                                                                eigenvector 3
```


with SENSE. B0 image (A) and corresponding FA map (B) obtained with standard sequence (TR/TE = 6755/74 msec) show ghost artifact. On the contrary, ghost artifact is absent on b0 image (C) and FA map (D) using SENSE.


```
50 )
                                                                                            (11, 22).
     eigenvalue
                               (11). Eigenvalue
                             (relative anisotropy, RA)
                                                                                                     navigator echo
             가
                       eigenvalue
                                    eigenvector
                                                                               , single - shot EPI
                                                                                                          5
                                                                                                (11).
                                              (13).
                                                                                                                  EPI
                                                                              (12, 15, 16)
                                                                                                    SENSE
가
                                              scheme
                                                                         echo train length
single - shot EPI
                    (13, 19 - 21) navigator echo
                                                                                                              가
                                                                                   가
                                                                      가
   multi - shot EPI
                            (11, 22). Multi-shot EPI
single - shot EPI
                                                                                                           SENSE
                                                                   (TE 74 msec, vs 66 msec)
                                                                                                      echo train length
```

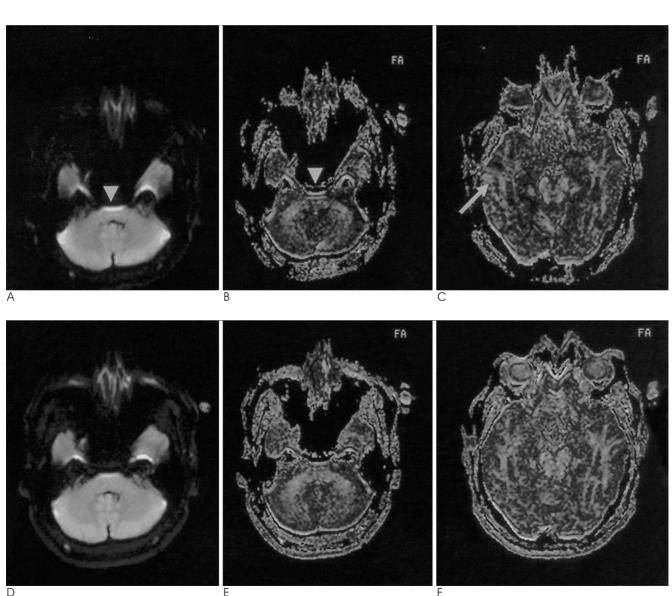
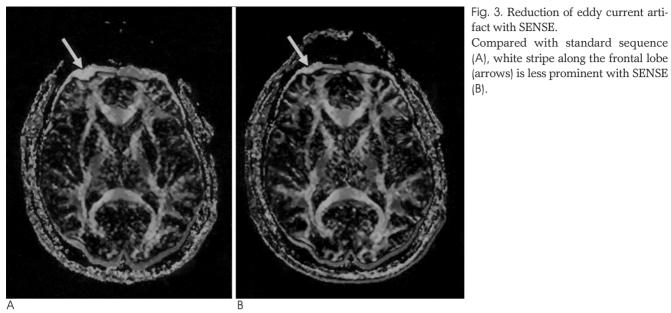



Fig. 2. Reduction of magnetic susceptibility artifact with SENSE. With standard sequence, distortion of brain stem (arrowhead) and temporal white matter (arrow) is prominent in b0 image (A) and corresponding FA maps (B, C). With SENSE, distortion of brain stem and temporal white matter is minimal in b0 image (D) and FA maps (E, F).

: SENSE (Sensitivity Encoding)

fact with SENSE. Compared with standard sequence (A), white stripe along the frontal lobe (arrows) is less prominent with SENSE

	SEN:	SE	FA 가 가		
			SENSE		(15,
	,		16).	(15, 16)	reduction
		(functional	factor R		
tract)		71 05105			가
(frontal te	mporal association tract)	가 SENSE			SENSE 가
			(23)		가
SENSE	ADC		,	(17).	
	,	(20, 23).	SENS	E	가 가
FA					
SENSE			, EPI	echo train lengt	h 가
	(9, 14, 24)		가	가	
SENSE EF		E full FOV	ROI		가가
	SENSE		(15). geomet	ric factor	SENSE
	FA	(9).			가 가
FA	diagnonal element 3	eigenvalue 	,		
	, 가	eigenvalue			가
	71	(9). ,	•		71
	가	(F 0)	ADC	DOI	가 .
	가	(5, 9).	ADC FA	ROI	voxel 가
FA가 기	L	SENSE FA가	by voxel		7[
FA기 기 가	r . 가			•	
	가	,			
, 가	가			가	
-	·				
			SE	NSE	, single - shot EPI

가

3

FΑ

SENSE

가

- Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. *Radiology* 1990;176:439-445
- Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 1990;177:401-405
- 3. Crank J. The Mathematics of Diffusion. Oxford: Clarendon; 1975
- Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self diffusion tensor from the NMR spin echo. J Magn Reson B 1994;103:247-254
- Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996;36:893-906
- Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. *Magn Reson Med* 1999;42:526-540
- Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. *Ann Neurol* 1999;45:265-269
- 8. Mori S, van Zijl PC. Fiber tracking: principles and strategies a technical review. NMR Biomed 2002;15:468-480
- Basser PJ, Pajevic S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med 2000;44: 41-50
- Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 2002; 15:456-467
- 11. Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van

- Zijl PC. Diffusion tensor MR imaging of the brain and white matter tractography. AJR Am J Roentgenol 2002;178:3-16
- Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002;48:128-136
- Yamada K, Kizu O, Mori S, et al. Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience. *Radiology* 2003;227:295-301
- Cercignani M, Horsfield MA, Agosta F, Filippi M. Sensitivity-encoded diffusion tensor MR imaging of the cervical cord. AJNR Am J Neuroradiol 2003;24:1254-1256
- Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962
- Willinek WA, Gieseke J, von Falkenhausen M, Neuen B, Schild HH, Kuhl CK. Sensitivity encoding for fast MR imaging of the brain in patients with stroke. *Radiology* 2003;228:669-675
- Preibisch C, Pilatus U, Bunke J, Hoogenraad F, Zanella F, Lanfermann H. Functional MRI using sensivity-encoded echo planar imaging (SENSE-EPI). Neuroimage 2003;19:412-421
- Firbank MJ, Harrison RM, Williams ED, Coulthard A. Quality assurance for MRI: practical experience. Br J Radiol 2000;73:376-383
- Shimony JS, McKinstry RC, Akbudak E, et al. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. *Radiology* 1999;212:770-784
- Melhem ER, Itoh R, Jones L, Barker PB. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR Am J Neuroradiol 2000;21:1813-1820
- Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK. Correlation
 of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study. *Radiology* 2002;222:212-218
- Stieltjes B, Kaufmann WE, van Zijl PC, et al. Diffusion tensor imaging and axonal tracking in the human brainstem. *Neuroimage* 2001;14:723-735
- Bammer R, Keeling SL, Augustin M, et al. Improved diffusionweighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med 2001;46:548-554
- 24. Bastin ME, Armitage PA, Marshall I. A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. *Magn Reson Imaging* 1998;16:773-785

J Korean Radiol Soc 2004;50:399 - 406

SENSE (Sensitivity Encoding) for Diffusion Tensor Imaging of the Brain¹

Joong Woo Lee, M.D., Won-Jin Moon, M.D., Eun Chul Chung, M.D., Seung-Rho Lee, M.D., Chang Kok Hahm, M.D., Shin-Ho Kook, M.D., Young Rae Lee, M.D., Hyon Joo Kwag, M.D., Min Hee Lee, M.D.

¹Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine ²Department of Radiology, Hanyang University College of Medicine

Purpose: The sensitivity encoding (SENSE) technique is increasingly being used with clinical MRI scanners. The object of this study is to compare the normative human data and image quality of the diffusion tensor imaging (DTI) with sensitivity encoding (SENSE) and standard single-shot EPI techniques.

Materials and Methods: 16 normal volunteers underwent single-shot echo-planar DTI with both standard and SENSE sequences using a 1.5 T Philips Intera MR scanner (TR/TE=6755/74 or 5871/66 ms, echo train length 127 or 67, NEX=3, matrix=128 × 128, FOV=220 × 220 mm, slice thickness=4 mm, b value=600 s/mm², six orthogonal diffusion gradients). The diffusion tensor-encoded MR images were transferred to a PC workstation and analyzed using in-house software. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were calculated. The presence of artifacts (ghost susceptibility, eddy current) was graded with a two- or three-point scale. The ADC and FA values were measured in the major white matter tract and gray matter nuclei. The signal-to-noise ratio was also measured. Fisher 's exact test and the Mann-Whitney test were used for the statistical analysis.

Results: With SENSE, the acquisition time was reduced from 2 min 57 sec to 1 min 22 sec for DTI. Susceptibility artifacts (around the brain stem and temporal base) and eddy current artifacts were significantly reduced on the SENSE DTI as compared with those on the standard DTI (p<0.05). No ghost artifacts were observed on the SENSE DTI, whereas such artifacts were observed in 14 cases (87.5%) on the standard DTI. The ADC value was not significantly different between the SENSE DTI and the standard DTI, whereas the FA values in the cerebral cortex and white matter were significantly higher on the SENSE DTI than on the standard DTI (p<0.05). The signal-to-noise ratio was 8.44 on the standard DTI and 11.40 on the standard DTI.

Conclusion: The use of SENSE DTI significantly reduces the geometric distortion caused by artifacts, shortens the acquisition time, and allows a relatively high SNR to be maintained, but tends to erroneously increase the FA value of the tissue. Therefore, DTI with SENSE may provide better white matter fiber tracking and diffusivity indices when the imaging parameters for SENSE are optimized.

Index words: SENSE, DTI

Magnetic resonance (MR), diffusion tensor

Brain, MR

Address reprint requests to: Won-Jin Moon, M.D., Department of Radiology, Kangbuk Samsung Hospital, 108 Pyung-dong, Jongro-gu, Seoul 110-746, Korea.

Tel. 82-2-2001-2334 Fax. 82-2-2001-1030 E-mail: mdmoonwj@kbsmc.co.kr