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Mitochondria play key roles in energy production and intracellular reactive oxygen species (ROS) generation. Lines of evidence 
have shown that mitochondrial dysfunction contributes to the development of metabolic syndrome. The causes of mitochondrial 
dysfunction are complex, but overnutrition and sedentary living are among the best known causes of mitochondrial dysfunction. 
ATP synthesized in the mitochondria is exchanged for cytosolic ADP by adenine nucleotide translocator (ANT) to provide a 
continuous supply of ADP to mitochondria. We recently found that ANT function is essential for peroxisome proliferator-acti-
vated receptor-γ coactivator 1-α (PGC-1α)’s action on endothelial cells. PGC-1α is a transcriptional coactivator of nuclear re-
ceptors, playing an important role in fatty acid oxidation and mitochondrial biogenesis. Recent studies have shown that PGC-1α 
decreases intracellular ROS generation by increasing the expression of antioxidant genes. In our study, PGC-1α reduced cell 
apoptosis and ROS generation in endothelial cells by increasing ATP/ADP translocase activity of ANT and ANT1 expression. 
Here we review the role of ANT in maintaining proper mitochondrial function, and possible role of ANT dysfunction in the 
pathogenesis of metabolic syndrome.
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INTRODUCTION

Metabolic syndrome is a cluster of common metabolic risk fac-
tors for atherosclerosis and type 2 diabetes occurring in obese 
subjects [1]. Metabolic syndrome is rapidly increasing in prev-
alence worldwide as a consequence of the continued obesity 
“epidemic”, and as a result will have a considerable impact on 
the global incidence of cardiovascular disease and type 2 dia-
betes [2]. The major pathophysiologic mechanism of metabol-
ic syndrome is insulin resistance [3]. Growing body of evidence 
has shown that mitochondrial dysfunction is an important 
pathogenic mechanism of diseases associated with insulin resis-

tance, i.e., diabetes, atherosclerosis, and fatty liver disease [4]. 
 Mitochondrion is the main organ of energy production, 
mostly in the form of ATP via oxidative phosphorylation (OX-
PHOS) and also a major site of intracellular reactive oxygen 
species (ROS) generation [5]. The ATP synthesized in the mi-
tochondria is exchanged for cytosolic ADP by adenine nucle-
otide translocator (ANT) to provide a continuous supply of 
ADP to mitochondria. ATP/ADP exchange by ANT is essential 
for the maintenance of ATP synthase activity [6]. On the other 
hand, in states of impaired function of ATP/ADP exchange, 
ANT plays a major role in generating ROS and inducing cell 
apoptosis [7,8]. In this article, we will review the role of ANT 
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in maintaining mitochondrial function, and possible role of 
ANT dysfunction in the pathogenesis of metabolic syndrome.

STRUCTURE AND FUNCTION OF 
MITOCHONDRIA 
 
Structure 
Mitochondrion is an intracellular double-membrane organelle 
present in most of eukaryotic cells [9]. Mitochondria form a 
reticulum that is in continuous communication through dy-
namic fusion and fission events, moving actively to different 
regions of the cell through interactions with the cytoskeleton 
[10]. The mitochondrial reticulum is composed of an inner and 
outer membrane, between which lies the intermembranous 
space, and a matrix contained within the inner membrane. The 
surface of the inner membrane is folded into cristae, which 
gives mitochondrion its characteristic morphology (Fig. 1). 

 Mitochondrion has its own circular mitochondrial DNA 
(mtDNA) molecule, which encodes for 37 genes (13 of which 
are subunits of the electron transport chain, ETC) [11]. The 
majority of proteins regulating mitochondrial structure, func-
tion and biogenesis are encoded by the nuclear DNA. However, 
mtDNA gene products are essential for normal functioning of 
the mitochondrial respiratory chain. The mtDNA has no in-
trons and is poorly equipped with repair mechanism, render-
ing it susceptible to oxidative damage and mutations. The mtD-
NA mutations accumulate with age, and these mutations might 
have an important role in the process of senescence and diabe-
tes [12].
 
Function
Inner membrane contains all the transmembrane proteins of 
the ETC as well as the mitochondrial ATPase. The matrix con-
tains the enzymatic machinery for TCA cycle, which provides 

Fig. 1. Mitochondrial electron-transport chain (ETC). Electrons derived from reducing equivalents (NADH and FADH2) are 
transported within ETC to molecular oxygen to produce water. As the electrons are transported, the free energy released is used to 
pump the protons into the intermembranous space. The proton gradient generated creates mitochondrial membrane potential 
(Δψm). The proton gradient produced is dissipated through the mitochondrial ATPase to produce ATP (OXPHOS or coupled res-
piration). The ATP synthesized in the mitochondria is exchanged for cytosolic ADP by adenine nucleotide translocator (ANT). 
Reactive oxygen species (ROS) is normally produced in the ETC during respiration, but delay of electron transport in the ETC re-
sults in the overproduction of ROS. ROS generation is more likely to occur when the proton gradient is large (increase in Δψm). Ac-
cumulation of ROS activates uncoupling protein (UCP), which dissipates the proton gradient without producing ATP (uncoupled 
respiration), decreases Δψm and ROS production. ANT also exhibits uncoupling activity or proton leak, and decreases ROS pro-
duction and Δψm.
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reducing equivalents, such as NADH and FADH2, to the ETC, 
and for β-oxidation, which generates acetyl-CoA from acyl 
chains. The ETC is composed of four large multisubunit com-
plexes (complex I to IV) with more than 85 individual gene 
products. Electrons derived from reducing equivalents NADH 
and FADH2 are transported within the ETC to molecular oxy-
gen to produce water. As the electrons are transported, the free 
energy released is used to pump the protons into the inter-mem-
branous space. The proton gradient thus generated creates elec-
trochemical gradient across the inner mitochondrial membrane 
(mitochondrial membrane potential, Δψm) (Fig. 1). The ener-
gy contained in the proton gradient is then coupled to ATP 
production as protons flow back into the matrix through the mi-
tochondrial ATPase. This process is known as OXPHOS, or cou-
pled respiration [13]. The high proton gradient also drives the 
rapid entry of Ca2+ into the mitochondrial matrix, buffering its 
concentration in the cytoplasm [14]. 
 Mitochondria are also a potent source of ROS [15]. ROS is 
normally produced in the ETC during respiration, but delay of 
electron transport in the ETC results in the overproduction of 
ROS. ROS generation is more likely to occur when the proton 
gradient is large: increase in Δψm is associated with delay of 
electron transport in ETC [16]. Consistent with this idea, we 
recently reported that overexpression of uncoupling protein 2 
(UCP2), which dissipates the proton gradient without produc-
ing ATP, decreased Δψm and ROS production in cultured en-
dothelial cells [17]. 
 Mitochondria are also the prime regulator of apoptosis [12]. 
When confronted with cellular stress, mitochondria open the 
mitochondrial permeability transition pore (mtPTP) [18]. Open-
ing of the mtPTP allows the release of mitochondrial proteins, 
such as cytochrome c, caspases, and apoptosis initiating factor, 
to induce apoptosis [19]. 

MITOCHONDRIAL DYSFUNCTION IN 
METABOLIC SYNDROME 

Skeletal muscle is the major organ that determines whole body 
insulin sensitivity. In 1963, Randle et al. [20] proposed that in-
creased free fatty acids (FFA) availability and oxidation lead to 
insulin resistance in skeletal muscle by inhibiting glucose oxi-
dation and glycogen synthesis. Subsequent studies have shown 
that both glucose oxidation and glycogen synthesis are impaired 
in state of high FFA availability [21-23]. However, recent studies 
have suggested that defective intracellular fatty acid metabolism 

in skeletal muscle, rather than a simple oversupply of fatty acid 
fuel, is causally related to the development of insulin resistance 
[24]. In accordance with this concept, we previously showed 
that lipolysis in skeletal muscle was decreased in high fat-fed 
rats, suggesting that intracellular triglyceride accumulation in 
the insulin resistant state is the consequence of a diminished 
fatty acid oxidation capacity rather than the cause of insulin 
resistance [25]. 
 Insulin resistance in the elderly or diabetic offspring is relat-
ed to a reduction in the mitochondrial oxidative phosphoryla-
tion capacity [26,27]. Petersen et al. [26] reported that insulin 
resistance in the skeletal muscle of insulin resistant offspring 
of patients with type 2 diabetes was associated with dysregula-
tion of intramyocellular fatty acid metabolism, possibly be-
cause of an inherited defect in mitochondrial oxidative phos-
phorylation. It was suggested that insulin resistance in humans 
arises from defects in mitochondrial fatty acid oxidation, which 
leads to increases in intracellular fatty acid metabolites (fatty 
acyl CoA and diacylglycerol) that disrupt insulin signaling [28]. 

OVERNUTRITION AS A CAUSE OF 
MITOCHONDRIAL DYSFUNCTION IN 
METABOLIC SYNDROME

The cause of mitochondrial dysfunction in metabolic syndrome 
may be multifactorial [29]. Among them, overnutrition and 
underutilization of nutrition are shown to induce mitochon-
drial dysfunction [30]. Chronic aerobic exercise increases mi-
tochondrial content in muscle, thereby increasing ATP gener-
ating capacity [31]. On the other hand, chronic disuse of mus-
cle decrease mitochondrial content and oxidative capacity lead-
ing to impaired glucose utilization [32]. 
 It is well established that fasting prolongs lifespan. SIRT (mam-
malian homologues of Sir2; silent information regulator 2), 
which was identified as a mediator of longevity, increases mi-
tochondrial biogenesis and improves mitochondrial function 
[33]. Conversely, high-fat diet (HFD) has been shown to reduce 
mitochondrial function. Genes necessary for OXPHOS and 
mitochondrial biogenesis were downregulated in skeletal mus-
cle of the mice given HFD [34]. It was also shown that HFD de-
creases the expression of oxidative genes in healthy human indi-
viduals [34]. As a consequence of mitochondrial dysfunction 
and impaired fatty acid oxidation, intracellular levels of lipid 
metabolites, i.e., long chain fatty acyl coenzyme A (LCAC), dia-
cylglycerol, and ceramides, are increased in skeletal muscle, liv-
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er, heart and pancreas β-cells of obese subjects [28]. Excess in-
take of nutrients also increases ROS production in the mito-
chondria. ROS-induced peroxidation may in turn leads to dam-
age of mitochondria and further deterioration in oxidative ca-
pacity [35]. 

ATP/ADP TRANSLOCASE (ANT)

Human ANT has four isoforms (ANT1, ANT2, ANT3, and 
ANT4), which display distinct tissue-specific expression pat-
terns. ANT1 is predominantly expressed in the heart, skeletal 
muscle, and brain. ANT2 is predominantly expressed in the 
liver and in cells with increased proliferative activity. ANT3 is 
ubiquitously detected. ANT4 is expressed in the liver, testis, and 
undifferentiated embryonic stem cells [36]. Among them, we 
will primarily focus on ANT1. 
 
FUNCTIONS OF ANT ATP/ADP 
TRANSLOCASE(ANT)

ATP/ADP translocase 
ANT is a protein complex of two subunits that is located in the 
inner mitochondrial membrane and facilitates the exchange of 
mitochondrial ATP and cytosolic ADP [37]. ANT provides a 
continuous supply of ADP necessary to maintain the oxidative 
phosphorylation process. ATP/ADP exchange by ANT plays 
an essential role for the maintenance of ATP synthase activity 
and normal levels of Δψm. Impaired ATP/ADP translocase ac-
tivity of ANT decreases intramitochondrial ADP and ATP 
synthesis, and increases Δψm [6]. 

Regulation of apoptosis
As described above, the prime function of ANT is to facilitate 
the ATP/ADP exchange across the inner mitochondrial mem-
brane. However, in states where ATP/ADP translocase activity 
is impaired, ANT plays a major role in promoting apoptosis. 
 Mitochondrial membrane permeabilization (MMP) is a 
rate limiting step of apoptosis and is mediated by the mito-
chondrial permeability transition pore (mtPTP) [38]. mtPTP 
is a nonspecific pore, permeable to all molecules of less than 
1.5 kDa and is formed by the voltage-dependent anion channel 
(VDAC), members of the pro- and anti apoptotic Bax/Bcl2 
protein family, cyclophilin D, and the ANT [39]. Additional 
proteins that were proposed to be part of the mtPTP complex 
are hexokinase, creatine kinase, and peripheral benzodiaz-

epine receptor [40]. mtPTP opening causes swelling of the mi-
tochondrial matrix and outer membrane rupture. This is fol-
lowed by release of cytochrome c and other proapoptotic pro-
teins into cytosol [38]. 
 ANT has been widely accepted as a component for the 
mtPTP complex, which was first proposed by Halestrap et al. 
in 1990 [41]. ANT has been proposed to interact with VDAC, 
which is located in the outer mitochondrial membrane, to form 
a large protein-permeable conduit [42]. However, Wallace et 
al. have shown that mitochondria from livers of ANT-knock-
out mice, in which the ANT has been genetically inactivated, 
still possess mtPTP activity [18]. This would imply that the 
ANT is not an essential component of the mtPTP. Despite these 
debates, ANT is still considered to play a major regulatory role 
in the genesis of mtPTP [42]. 

Mitochondrial uncoupler 
Under physiological conditions, mitochondrial oxygen con-
sumption is tightly coupled to ATP synthesis. The bulk of pro-
ton re-enter the matrix via the F0F1 ATPase, which uses the 
energy to regenerate ATP from ADP (coupling of OXPHOS). 
A small proportion of proton can bypass the F0F1 ATPase, so 
that mitochondrial oxygen consumption is not coupled to ATP 
synthesis (mitochondrial uncoupling) [43]. In the 1970s, a pro-
tein responsible for non-shivering thermogenesis was identified 
in the inner mitochondrial membrane of brown adipose tissue 
mitochondria, and was named as uncoupling protein (UCP1) 
[44]. More recently, four more UCP homologues have been 
identified (UCP2, UCP3, UCP4 and UCP5/BCMP1 [brain mi-
tochondrial carrier protein 1]) [45]. These proteins mediate pro-
ton leak across the mitochondrial membrane and decrease 
Δψm [46]. Since ROS production increases with increasing 
Δψm, UCP-mediated uncoupling has been proposed to play a 
role in decreasing mitochondrial ROS production [17]. This 
may represent a mechanism by which mitochondria protect 
themselves from oxidative damage [47]. 
 Several lines of evidence suggested that ANT is also a mito-
chondrial uncoupler and is responsible for basal uncoupling 
or proton leak [43]. In rodents, ANT1 and ANT2 were shown 
to mediate uncoupling by fatty acids and to lower mitochon-
drial membrane potential in heart and skeletal muscle [48]. It 
was also demonstrated that ANT1-deficient mice have a 50% 
decrease in proton conductance in skeletal muscle [49]. In the 
heart, 4-hydroxy-2-nonenal-induced proton leak could be in-
hibited by the ANT inhibitor carboxyatractyloside, but not by 
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the UCP inhibitor GDP [50]. These results suggest that ANT 
may decrease mitochondrial ROS production by functioning 
as an uncoupler.

INCREASED INTRACELLULAR LCAC IN 
METABOLIC SYNDROME IMPAIRS ATP/ADP 
TRANSLOCASE ACTIVITY 

Central obesity is associated with increased cytosolic triglyc-
eride stores in non-adipose tissue such as muscles, liver and 
pancreatic β-cells [51-53]. Cytosolic triglyceride is a source of 
LCAC, the metabolically active form of fatty acids. LCAC may 
accumulate under pathological conditions with excess lipid 
supply, such as obesity, and conditions with a mitochondrial 
fatty acid β-oxidation defect [54]. LCAC was shown to inhibit 
the ATP/ADP translocase activity of the ANT by competitive 
displacement of the nucleotide from its binding site on the pro-
tein [55]. 
 It has been thus hypothesized that increased concentrations 
of LCACs in the cell interfere with mitochondrial function 
through inhibition of the ANT. Inhibition of ATP/ADP trans-
locase activity lowers cytosolic ATP and matrix ADP availabil-
ity, and increases mitochondrial membrane potential (Δψm) 
[8]. These events promote the formation of ROS, resulting in 
impaired cellular functions and cell death. Inhibition of the mi-
tochondrial ANT by LCACs has been thus proposed to contrib-
ute to mitochondrial dysfunction in metabolic syndrome [8,56]. 

PGC-1α PREVENTS ENDOTHELIAL 
APOPTOSIS BY INCREASING ATP/ADP 
TRANSLOCASE ACTIVITY 

Peroxisome proliferator-activated receptor-γ coactivator 1-α 
(PGC-1α) is a transcriptional coactivator of nuclear receptors, 

playing an important role in energy metabolism [57]. PGC-1α 
increases mitochondrial biogenesis and fatty acid oxidation [58]. 
In addition, recent studies have reported that PGC-1α is a ma-
jor regulator of intracellular ROS generation. It was suggested 
that PGC-1α increases the expression of antioxidant genes [59]. 
 We recently found that PGC-1α prevents endothelial apop-
tosis by increasing ATP/ADP translocase activity of ANT [7]. 
It is well known that fatty acids, such as linoleic acid (LA), in-
crease ROS generation and cell apoptosis in endothelial cells 
[17]. LA treatment in human aortic endothelial cells increased 
intracellular and mitochondrial ROS generation and apopto-

Table 1. Effect of linoleic acid (LA) and PGC1-α on various functions of endothelial cells

Δψm ROS Apoptosis
Antioxidant 

enzyme/
UCP2

ANT-1 
expression

ATP/ADP 
translocase 

activity
FAO Intracellular lipid 

metabolites

Control + + + + + + + +

LA ++ ++ ++ ++ ++ - - ++

PGC-1 α + + + ++ ++ ++ +++ +

LA + PGC-1 α + + + ++ ++ ++ ++ +

PGC1-α, peroxisome proliferator-activated receptor-γ coactivator 1-α; ROS, reactive oxygen species; Δψm, mitochondrial membrane potential; 
UCP2, uncoupling protein 2; FAO, fatty acid oxidation. 

Fig. 2. Proposed model of PGC-1α actions on endothelial 
cells to prevent ROS generation and cell apoptosis. PGC1-α, 
peroxisome proliferator-activated receptor-γ coactivator 1-α; 
ROS, reactive oxygen species; FAO, fatty acid oxidation; 
LCAC, long chain fatty acyl coenzyme A; DAG, diacylglycerol; 
ANT, adenine nucleotide translocator. 
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sis. PGC-1α overexpression prevented LA-induced increases 
in ROS generation and apoptosis (Table 1, Fig. 2). 
 LA increased the mRNA and protein expression of antioxi-
dant enzymes, including manganese superoxide dismutase, 
copper-zinc superoxide dismutase, catalase, glutathione per-
oxidase, and uncoupling protein2 UCP2, consistent with the 
notion that oxidative stress can induce cellular antioxidant re-
sponses [60]. As previously reported [59], adenoviral overex-
pression of PGC-1α also increased the mRNA and protein ex-
pression of the same antioxidant enzymes and UCP2. However, 
in the presence of LA, endogenous PGC-1α did not further 
increase the expression of antioxidant enzymes or UCP2. This 
result suggests that PGC-1α’s effect on antioxidant genes may 
not fully explain its effect to decrease intracellular ROS pro-
duction and cell apoptosis. 
 Similar to other antioxidant genes, LA significantly increased 
ANT-1 expression. On the other hand, LA significantly de-
creased ATP/ADP translocase activity, as measured by 14C-
ADP import. This was associated with a significant increase in 
Δψm (hyperpolarization) and ROS generation. Interestingly, 
inhibitors of fatty acyl CoA synthase and ceramide synthase 
reduced LA-induced effects on ATP/ADP translocase activity, 
suggesting involvement of lipid metabolites, such as LCAC, 
diacylglycerol, and ceramide, in LA-induced impairment of 
ATP/ADP translocase activity. As expected, this was associat-
ed with changes in intracellular ceramides levels. On the other 
hand, antioxidant N-aceylcysteine prevented LA-induced ANT-
1 expression, but did not affect ATP/ADP translocase activity 
regardless of LA treatment. These results suggest that increased 
ROS generation with LA may be responsible for the increase in 
ANT-1 expression. More importantly, changes in ANT-1 ex-
pression may not account for the decrease in ATP/ADP trans-
locase activity with LA.
 PGC-1α overexpression completely reversed LA-dependent 
decreases in ATP/ADP translocase activity, and prevented LA-
induced changes in Δψm. PGC-1α also increased ANT-1 ex-
pression but did not increase ANT-1 expression above the lev-
els induced by LA. In isolated aortic ring, LA treatment signif-
icantly decreased endothelium-dependent vascular relaxation. 
PGC-1α significantly inhibited LA-induced decreases in en-
dothelium-dependent vasorelaxation, confirming that PGC-
1α has antiatherogenic effects in vascular endothelial cells. 
Taken together, PGC-1α-dependent enhancement of ATP/
ADP translocase activity of ANT is critically required for the 
beneficial effects of PGC-1α on endothelial function. 

CONCLUSION

From this brief review, we have shown that ANT function is 
important in the maintenance of mitochondrial function. The 
prime function of ANT is exchange of ATP and ADP across the 
inner mitochondrial membrane, which is important for both 
ATP production and maintenance of normal Δψm. ANT also 
plays a role as an uncoupler. These two functions are impor-
tant to protect the mitochondria from increased ROS genera-
tion associated with increased Δψm. However, in states where 
ATP/ADP translocase activity is impaired, ANT participates 
to play a role in the genesis of mtPTP and cell apoptosis. We 
have shown recently that PGC1-α regulates ROS generation 
and apoptosis in endothelial cells by enhancing ATP/ADP trans-
locase activity of ANT. Understanding these mechanisms may 
help to find measures to prevent or treat metabolic syndrome. 
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