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Various diseases, including stroke, spinal cord injury, and ce-
rebral palsy (CP), may result in central or peripheral nerve in-
juries and can cause denervation of muscles. Denervation of 
muscles results in muscle atrophy, decreased muscle strength, 
and diminished locomotor abilities. Denervation of muscles 
can also cause changes in muscle architecture.1 Muscle archi-
tecture is an important determinant of muscle function2 and 
is defined as the arrangement of muscle fibers within a mus-
cle relative to the axis of force generation.3 Muscle architec-
ture refers to bundles of fibers known as fascicles and is de-
scribed by fascicle lengths (FLs) and pennation angles (PAs).4 

Also contributing to muscle architecture are muscle-tendon 
properties, which are associated with functional performance.5,6

Ultrasonography (US) has become a popular method for 
characterizing muscle architecture because of its safety and 
noninvasive nature.7 The reliability of muscle architecture mea-
surements by B-mode ultrasound imaging has been demon-
strated in previous studies.8,9 Using US, changes in the muscle 
architecture of children with CP were reported after botulinum 
neurotoxin (BoNT) injection,10 and muscle architecture was 
compared between the paretic limbs and non-paretic limbs in 
chronic stroke patients.11

To the best of our knowledge, architectural changes of healthy 
muscle without any comorbid disease after denervation have 
not yet been reported. This study aimed to investigate archi-
tectural changes in the gastrocnemius muscles (GCMs) after 
aesthetic tibial nerve ablation in healthy adults using US. This 
was a prospective study conducted in a university-affiliated 
hospital. Ethical approval was granted by Yonsei University 
College of Medicine institutional review board and ethics com-
mittee (4-2016-0505).

We recruited 19 healthy adults who were scheduled to un-
dergo aesthetic volume reduction of the medial GCM. Sub-
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jects were excluded if they had a previous history of (a) central 
nervous system disease, (b) neuromuscular disease, or (c) any 
surgical procedures at examined extremities, such as BoNT 
injection and liposuction. In total, 19 adults (17 females and 2 
males) with ages ranging from 19–48 years (28.68±7.99) were 
enrolled. Thirty-eight limbs from 19 healthy adults underwent 
aesthetic tibial nerve ablation. 

US was used to identify the location of nerves and vessels in 
the popliteal fossa and calf area, with the subject lying in a 
prone position. After local anesthesia using 1% lidocaine, a ra-
dio frequency probe connected to a 400-kHz electrical surgical 
unit (ITC-300D; ITC, Daejeon, Korea) was inserted through a 
small incision in the skin below the popliteal crease. After find-
ing the exact location of the motor nerve branches to the me-
dial GCM with electrical nerve stimulation and placing the tip 
of the probe on the nerve, radio frequency energy was trans-
mitted to ablate the motor nerve branches innervated to the 
medial GCM. The surface of the radio frequency probe was in-
sulated, except for the tip area, so that we could ablate nerve 
branches precisely with minimal injury to adjacent tissues. 
After the procedure, we confirmed that the nerve ablation was 
successful when the maximum root mean square (RMS) value 
of electromyography of the GCM decreased to at least 30% of 
the maximum pre-ablation value during walking.12 We re-
corded surface electromyography (MA300-XVI, Motion lab 
systems, USA; sampling frequency=1000 Hz) with the elec-
trodes placed on the medial head of the GCM. RMS values 
were calculated for individual muscles. Pre- and post-proce-
dure RMS values are expressed as a ratio of the maximum pre-

procedure RMS value (Fig. 1). 
US images of medial GCMs were taken by a single trained 

physician using B-mode and real-time US (Accuvix V10c sys-
tem; Samsung Medison, Seoul, Korea) with a linear-array 
probe (5–12 MHz) before nerve ablation, at 1 week after nerve 
ablation, and at 3 months after nerve ablation in an anatomi-
cal standing position with the feet approximately shoulder-
width apart (Figs. 2 and 3). US images were taken within 15 
minutes per patient. 

Muscle thickness (MT) was measured as the longest dis-
tance between the superficial and the deep fascia of the GCM 
in a longitudinal US image. Muscle FL was defined as the 
straight-line distance between the superficial and deep mus-
cular fascia parallel to the lines of the collagenous tissue visi-
ble on the image. The PA was defined as the angle made be-
tween the upper fascia and the direction of the muscle fascicles 
(Fig. 4). 

Statistical analyses were performed using SAS statistical soft-
ware, version 9.4 (SAS Institute, Cary, NC, USA). A linear mixed 
model was applied to analyze data from repeated measure-
ments. Parameters after tibial nerve ablation were compared 

Fig. 1. Root mean square (RMS) ratio values of the medial head of the 
gastrocnemius muscles. X-axis indicates that one gait cycle divided 
into 16 equally spaced intervals.

Fig. 2. Time table. GCM, gastrocnemius muscle.
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Fig. 3. Gross photos of gastrocnemius muscles (GCMs). Subjects were 
asked to elevate the heel to contract the GCM. (A) Gross photo taken 
before tibial nerve block. (B) Gross photo taken three weeks after the 
tibial nerve block. The size of the GCMs has decreased.

Fig. 4. Ultrasound image showing muscle architecture parameters 
measured. 
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to those before intervention to determine whether there were 
changes in muscle architecture. p<0.050 was considered sta-
tistically significant.

The clinical features of the participants are shown in Table 1. 
MT of the medial GCM was significantly reduced on the left 
side at 1 week and 3 months after tibial nerve ablation and on 
the right side 3 months after tibial nerve ablation (p<0.050). 
Although the FLs of the medial GCM were not significantly 
changed, the PAs of the medial GCM were significantly reduced 
on both sides at 3 months after tibial nerve ablation (p<0.050) 
(Table 2, Fig. 5). 

Significant reductions in muscle volumes of paretic limbs in 
individuals with central nervous system lesions from CP and 
peripheral nervous system lesions from post-traumatic periph-
eral neuropathy have been demonstrated by magnetic reso-
nance imaging in previous studies.13,14 An in vivo US image study 
has also been successfully conducted in studies of muscular 
geometric architecture in humans. A US image study is faster, 
more convenient, and less expensive for assessing muscular 
architecture. According to previous reports, the architectural 
characteristics of muscle structures can be determined using 

conventional grayscale brightness mode (B-mode) ultrasound 
imaging to assess components of muscle morphology (struc-
ture) and morphometry (size) in exploration of muscle func-
tion.15-18 Musculoskeletal US is considered a potential tool for 
quantifying muscle architectural changes in vivo, revealing 
the arrangement of muscle fibers within a muscle.4

Architectural parameters, such as FL and PA, affect muscle 
functions, as well as intrinsic factors, such as fiber composi-
tion.19,20 In previous studies, human muscle architecture was 
observed in cadaver specimens and suggested to be related to 
functional characteristics,21-24 although very little data has been 
reported for healthy human muscles. FL is indicative of the 
number of sarcomeres in a series, whereas PA reflects the posi-
tive angle between muscle fibers and muscle aponeurosis.4 

Muscle fiber length is the primary determinant of muscle ex-
cursion and is proportional to the maximum excursion of the 
muscle and velocity of contraction. Therefore, the fiber length 
to muscle length ratio is a good indicator of the design of skele-
tal muscle, either for producing high force or high excursion.25,26 
Unfortunately, the only method to determine muscle fiber 
length in muscle is to obtain whole, fixed muscles and to dis-
sect individual fibers or fiber bundles from these fixed mus-
cles. Most studies have measured the length of a small bundle 
of fibers, and thus, most of these lengths were actually FLs. 
The PA gives information about muscle strength, and the larger 
the PA, the more contractile material can be packed within a 
certain volume to increase the physiological cross sectional 
area of the muscle.27 An increase in PA therefore indicates an 
increase in the muscle’s capacity to produce force.4,27 

The present study showed that MT and PA for both sides 
were significantly decreased, whereas the FL for both sides was 
not significantly changed, in the medial GCMs of subjects in 
an anatomical standing position after tibial nerve ablation. 
Some previous studies have reported that toxin injection into 
healthy muscles induces muscle atrophy in animals28-31 and 
humans,13 although muscle architectural changes were not 
reported. In pathological studies, architectural changes after 
denervation have been analyzed using musculoskeletal US. The 
brachialis muscle showed shorter FL and the PA was larger in 
the affected side, compared to the unaffected side, in patients 

Table 1. Characteristics of Participants

Values
Age (yr)  28.68±7.99 (19–48) � � � � � �
Sex (n, %)

Male   2 (10.53)
Female 17 (89.47)

Height (cm) 162.04±4.84 (155–178) � � � �
Body weight (kg)   57.27±7.26 (47–69)� � � � � �
Left

Thickness     2.23±0.24 (1.73–2.53)
Fascicle   9.77±13.70 (4.83–66.20)
Pennation   20.11±2.82 (15.30–27.40)

Right
Thickness     2.24±0.22 (1.71–2.65)
Fascicle     6.86±0.87 (5.19–8.36)
Pennation   19.37±2.43 (16.50–25.20)

Values are expressed as a mean±standard deviation (range) or number (%).

Table 2. Changes in Muscle Architecture

Time 1 (baseline) Time 2 (1 week) Time 3 (12 weeks)
Left

Thickness (cm)  2.23±0.24 (1.73–2.53)   2.12±0.27 (1.64–2.58)*   1.69±0.27 (1.29–2.23)*
Fascicle length (cm)  6.64±1.06 (4.83–9.34) 6.92±0.99 (5.50–8.85) 6.60±1.04 (5.13–8.34)
Pennation angle (degrees)    20.10±2.80 (15.30–27.40)   18.60±3.30 (13.60–25.50)     15.10±2.80 (10.60–21.00)*

Right
Thickness (cm)  2.24±0.22 (1.71–2.65) 2.17±0.30 (1.53–2.60)   1.70±0.29 (1.07–2.29)*
Fascicle length (cm)  6.86±0.87 (5.19–8.36) 6.89±0.82 (5.91–8.71) 6.55±0.85 (5.28–8.06)
Pennation angle (degrees)    19.40±2.40 (16.50–25.20)   18.80±3.10 (12.90–24.50)      15.00±2.50 (10.20–18.10)*

Values are expressed as a mean±standard deviation (range).
*p<0.050 vs. Time 1 in linear mixed model.
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with stroke.11 Decreases in MT and PA and increases in FL were 
shown in the hemiplegic side of stroke patients at 2 months af-
ter BoNT-A injection when US examination was performed in 
the resting ankle position with knee extension.32 In children 
with spastic CP, the MT and PA were significantly decreased, 
whereas the FL was increased, at 1 and 3 months after BoNT-A 
injection in the resting ankle position. However, there was no 
significant change in FL in the neutral ankle position.10 Anoth-
er recent study reported that PA decreased, while FL increased, 
at 12 weeks after BoNT-A injection in children with CP both in 
the resting and the maximum dorsiflexion position of the an-
kle.33 However, the changes in FL at the neutral ankle position 
was not reported in that study. 

The above-mentioned changes in denervated FL could not 
be compared to our study because we performed US only in 
the neutral ankle angle (anatomical standing position), not in 
the resting ankle and the maximum dorsiflexion position of 
the ankle. As participants still had pain at 1 week after the pro-
cedure, maximum ankle DF and relaxed resting ankle position 
were difficult to maintain. Therefore, we used only a neutral an-
kle position.

While our study revealed no significant difference in FL, 
there were differences in PA before and after nerve ablation in 
the neutral ankle angle. This is similar to the results of a previ-
ous study in children with CP after BoNT-A injection.10 This 
suggests that the architectural changes of muscles after nerve 
ablation in healthy muscles were similar to those after BoNT-A 
injection in spastic muscles at a neutral ankle angle. Although 

a neutral ankle angle has an advantage of being able to mea-
sure and compare the muscle architecture more reliably, pos-
sible differences in architectural and physiological character-
istics at a resting ankle angle between healthy and spastic 
muscles should also be considered. There has been few stud-
ies, however, to determine whether the resting sarcomere length 
of a spastic muscle is shortened, lengthened, or unchanged. If 
the resting sarcomere length is shortened in a spastic muscle 
due to pathological hypertonus, it might be lengthened after 
BoNT-A injection and the FL might be lengthened in the rest-
ing position. However, we could not study FL in a resting ankle 
position after nerve ablation in healthy muscle. In addition, we 
do not know how sarcomere length may change after dener-
vation. Further study is needed to evaluate the microstructur-
al changes (e.g., sarcomere length) after denervation in both 
healthy and spastic muscles that cannot be measured using US.

Previous studies demonstrated a significant relationship be-
tween MT and PA,27 as well as a significant decrease in the PA 
of healthy young adults in response to disuse.34,35 Both muscle 
atrophy and a decrease in PA of the vastus lateralis muscles may 
be contributing factors to the decreased force production of 
the quadriceps observed in CP.4 The decreases in the PA and 
MT after nerve ablation in our study suggest a negative influ-
ence of denervation on the ability of healthy muscle to produce 
force. 

This study was the first study to report on architectural chang-
es of the GCM after tibial nerve ablation in healthy adults. The 
MT and PA of the muscle fascicle of the medial head of GCM 

Fig. 5. Changes in muscle architecture parameters after tibial nerve block. Changes of (A) left gastrocnemius muscle (GCM)  thickness, (B) left GCM 
fascicle length, (C) left GCM pennation angle, (D) right GCM thickness, (E) right GCM fascicle length and (F) right GCM pennation angle. Bars indicate 
one standard deviation. *p<0.050 vs. baseline (post-hoc test). 
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were significantly reduced, although FL was not significantly 
changed in the anatomical standing position. Muscle architec-
ture is a key determinant of muscle power and function. Fur-
ther studies are therefore needed to determine the effect of 
structural changes of healthy muscles after nerve ablation on 
muscle power and function.

There were some limitations in our study. First, we only 
measured FL using US. As we did not evaluate the microscopic 
structure of the muscles, we could not determine changes in 
the number or length of sarcomeres: it is still unclear whether 
there are changes in the number or length of sarcomere after 
nerve ablation. Second, most of the subjects were females, and 
sex differences might have been a limitation. A previous study 
reported sex differences in muscle architecture in human sole-
us and GCMs in healthy adults.36 Third, we only assess changes 
in the neutral ankle position, and muscle architecture at vari-
ous ankle angles was not analyzed. These limitations should 
be addressed in future studies.
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