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INTRODUCTION

Alzheimer’s disease (AD), as a major cause of neurodegenera-
tive disease, poses a major healthcare challenges to older adults 
worldwide.1 The pathology of AD is characterized by cognitive 
loss and pathological hallmarks of amyloid and neurofibrillary 
tangles.2 Meanwhile, research has shown that amyloid β pep-

tides (Aβ1-40 and Aβ1-42) and hyperphosphorylation of tau pro-
tein (p-Tau) contribute to AD development.3,4 Although great 
attention has been given to the diagnosis and treatment of AD, 
strategies for preventing AD progression remain limited. 

Noncoding RNAs (ncRNAs), including long ncRNAs (ln-
cRNAs) and microRNAs (miRNAs), have been implicated in the 
onset and pathogenesis of AD.5 Emerging evidence suggests 
lncRNAs as promising targets in the treatment, diagnosis, and 
prevention of neurodegenerative diseases, including AD.6 For 
example, lncRNA sex-determining region Y (SRY)-related HMG 
box (SOX) 21 antisense RNA 1 (SOX21-AS1) knockdown atten-
uated neuronal oxidative injury in mice with AD by regulating 
Wnt signaling via Frizzled 3/5 (FZD3/5).7 LncRNA early B cell 
factor 3 antisense RNA (EBF3-AS) facilitated neuronal apopto-
sis in an in vitro AD model.8 LncRNA nuclear enriched abun-
dant transcript 1 (NEAT1) was indicated as a promising target 
in neurodegenerative diseases. Chanda, et al.9  reported that 
NEAT1 is upregulated in Huntington’s disease and that its 
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knockdown weakens the formation of aggregates. Further-
more, NEAT1 has been described as promoting neurotoxin 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-in-
duced autophagy by regulating phosphatase and tensin ho-
molog deleted on chromosome ten-induced kinase 1 (PINK1) 
in Parkinson’s disease.10 Additionally, NEAT1 knockdown has 
been found to increase cell viability and to suppress apoptosis 
in a MPTP/MPP+-induced Parkinson’s disease model,11 and 
research has indicated that NEAT1 is highly expressed in the 
temporal cortex and hippocampus of AD patients.12 However, 
the potential role of NEAT1 in AD progression and its underly-
ing mechanism are largely unclear.

miRNAs are a class of small ncRNAs, and have been described 
as promising diagnostic and therapeutic tools for AD treat-
ment.13 miR-107 has been shown to be associated with patho-
genesis in human diseases.14-16 Moreover, miR-107 is reported 
to be downregulated in AD and to play an essential role in AD 
pathology.17 Bioinformatics analysis has predicted the poten-
tial binding sites of NEAT1 and miR-107, indicating a potential 
interaction between them. Therefore, we hypothesized that 
miR-107 might be involved in NEAT1-mediated progression of 
AD. In this study, we established an AD model using SH-SY5Y 
and SK-N-SH cells treated with amyloid β1-42 (Aβ). Therein, we 
explored the effect of NEAT1 on Aβ-induced neuronal dam-
age and its underlying mechanism.

MATERIALS AND METHODS

Cell culture and treatment
The human neuroblastoma cell lines (SH-SY5Y and SK-N-SH) 
and human embryonic kidney cells 293T were purchased from 
American Tissue Culture Collection (ATCC; Manassas, VA, 
USA). All cells were maintained in Dulbecco’s Modified Eagle 
Medium (Gibco, Carlsbad, CA, USA) with 10% fetal bovine se-
rum (Gibco), 100 U/mL of penicillin, and 100 μg/mL of strep-
tomycin (Gibco) at 37°C and 5% CO2. For establishment of AD 
model in vitro, SH-SY5Y and SK-N-SH cells were treated with 
different concentrations (0, 5, 10, or 20 μM) of Aβ (purity: 
95.64%; MedChemExpress, Monmouth, NJ, USA) in dimethyl 
sulfoxide (DMSO; Thermo Fisher, Wilmington, DE, USA) for 
24 h or 10 μM Aβ for different treatment times (0, 12, 24, or 48 h).

Small interfering RNA (siRNA) against NEAT1 (si-NEAT1) 
(5'-GUGAGAAGUUGCUUAGAAACUUUCC-3'), siRNA nega-
tive control (si-NC) (5'-UUCUCCGAACGUGUCACGUTT-3'), 
NEAT1 overexpression vector (NEAT1) (Forward, 5'-CTTC 
CTCCCTTTAACTTATCCATTCAC-3'; Reverse, 5'-CTCTT CC 
TCCACCATTACCAACAATAC-3'), pcDNA empty vector (pcD-
NA), miR-107 mimic (miR-107) (Forward, 5'-AGCAGCAUUG 
UACAGGGCUAUCA-3'; Reverse, 3'-AUAGCCCUGUACAAU 
GCUGCUUU-5'), mimic negative control (miR-NC) (Forward, 
5'-UUCUCCGAACGUGUCACGUTT-3'; Reverse, 3'-ACGUGA 
CACGUUCGGAGAATT-5'), miR-107 inhibitor (anti-miR-107) 

(5'-UGAUAGCCCUGUACAAUGCUGCU-3'), and inhibitor 
negative control (anti-miR-NC) (5'-CAGUA CUUUUGUGUA 
GUACA-3') were synthesized by Genephar ma (Shanghai, Chi-
na). Cell transfection was conducted in SH-SY5Y and SK-N-SH 
cells for 48 h using the Lipofectamine 2000 (Invitrogen, Carls-
bad, CA, USA) platform according to the manufacturer’s in-
structions prior to Aβ treatment.

Quantitative real-time polymerase chain reaction
Total RNA extracted from cells using TRIzol reagent (Invitro-
gen) was used for cDNA synthesis by TransScript miRNA First-
stand cDNA Synthesis SuperMix (TransGen Biotech, Beijing, 
China) according to the manufacturer’s instructions. Subse-
quently, cDNA was diluted and used for quantitative real-time 
polymerase chain reaction (qRT-PCR) with SYBR green (Ap-
plied Biosystems, Foster City, CA, USA) using the ABI 7300 sys-
tem (Applied Biosystems). The relative expressions of NEAT1 
and miR-107 were measured with GAPDH or U6 small RNA as 
internal control using 2-ΔΔCt method.18 The primers used in this 
study were as follows: NEAT1 (Forward, 5'-TGGCTAGCTCAG 
GGCTTCAG-3'; Reverse, 5'-TCTCCTT GCCAAGCTTCCTTC-3'), 
miR-107 (Forward, 5'-AGCAG CATT GTACAGGG-3'; Reverse, 
5'-GTGCAGGGTCCGAGGT-3'), U6 (Forward, 5'-CTCGCTTC 
GGCAGCACA-3'; Reverse, 5'-AAC GCTTCACGAATTTGCGT-3'), 
GAPDH (Forward, 5'-TATGAT GATATCAAGAGGGTAGT-3'; 
Reverse, 5'-TGTATCCAAACT CATTGTCATAC-3').

Cell viability
MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazo-
lium bromide) assay was conducted to measure cell viability. 
SH-SY5Y and SK-N-SH cells (1×104 cells per well) were seeded 
into 96-well plates and treated with 10 μM Aβ for 24 h. Then 
cells were incubated with 0.5 mg/mL of MTT solution (Sigma, 
St. Louis, MO, USA) for another 4 h. Subsequently, 100 μL of 
DMSO was added to each well until the solubilization of forma-
zan. Absorbance was measured at 490 nm using a microplate 
reader (Bio-Rad, Hercules, CA, USA). All samples were prepared 
in triplicate, and relative cell viability was normalized to non-
Aβ group.

Immunocytochemistry
SH-SY5Y and SK-N-SH cells transfected with si-NEAT1 or si-
NC were cultured in 24-well plates and exposed to 10 μM Aβ 
for 24 h. Cells were then fixed with 4% paraformaldehyde and 
permeabilized with 0.1% Triton (Sigma). After blocked with 
1% bovine serum albumin (Sigma), cells were incubated with 
Alexa Flour 488-conjugated primary antibodies against Ki67 
(ab197234, Abcam, Cambridge, MA, USA). A DAPI solution (Sig-
ma) was used for nuclear staining (blue).

Cell apoptosis
Cell apoptosis was measured using Annexin V-FITC/PI apop-
tosis detection kits (Solarbio, Beijing, China) via flow cytome-
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try according to the manufacturer’s instructions. After wash-
ing with PBS, SH-SY5Y and SK-N-SH cells were resuspended 
in binding buffer and then stained with 5 μL of Annexin V-
FITC for 10 min and 5 μL of PI for 5 min in the dark at room 
temperature. Stained cells were analyzed using a flow cytom-
eter (Becton Dickinson, San Jose, CA, USA). Samples from each 
group were prepared in triplicate, and experiments were re-
peated three times. The apoptotic rate comprised the percent-
age of cells in early apoptosis and last apoptosis or death.

Western blot
SH-SY5Y and SK-N-SH cells were washed with cold PBS and 
then lysed with RIPA lysis buffer (Beyotime Biotech, Shanghai, 
China). After centrifugation at 12000×g for 5 min, total proteins 
in supernatant were quantified using BCA protein assay kits 
(Thermo Fisher). Equal amounts of protein (25 μg) were de-
natured in SDS-PAGE sample loading buffer (Beyotime Bio-
tech) at 100°C for 5 min and then separated on SDS-PAGE gel. 
Polyvinylidene difluoride membranes (Millipore, Billerica, 
MA, USA) were used for transfer of protein and were blocked 

with 5% non-fat milk for 1 h at room temperature. Subsequent-
ly, the membranes were incubated with primary antibodies 
against p-Tau (ser396) (ab109390; Abcam) or β-actin (ab8227; 
Abcam) overnight at 4°C and then interacted with horseradish 
peroxidase-conjugated secondary antibody (ab6721; Abcam) 
for 2 h at room temperature. Protein signaling was visualized 
using enhanced chemiluminescence chromogenic substrate 
(Beyotime Biotech) and was analyzed with β-actin as a load-
ing control.

Bioinformatics analysis and luciferase activity assay
The putative binding sites of miR-107 and NEAT1 were predict-
ed by bioinformatics analysis using StarBase online (http://
starbase.sysu.edu.cn/). The 3’-UTR sequences of NEAT1 car-
rying wild-type (WT) or mutant (MUT) putative binding sites 
of miR-107 were amplified and cloned into pmirGLO vectors 
(Promega, Madison, WI, USA) to synthesize luciferase report-
er vectors (NEAT1-WT or NEAT1-MUT). 293T cells were co-
transfected with NEAT1-WT or NEAT1-MUT and miR-107 or 
miR-NC using Lipofectamine 2000 according to the manufac-
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turer’s protocols. After transfection for 48 h, cells were collect-
ed and luciferase activity was analyzed with luciferase assay 
kits (Promega) according to the manufacturer’s instructions.

RNA immunoprecipitation
RNA immunoprecipitation (RIP) assay was conducted using 
Magna RNA immunoprecipitation kits (Millipore) according 
to the manufacturer’s protocols. In brief, SH-SY5Y and SK-N-
SH cells transfected with miR-107 or miR-NC were lysed in RIP 
immunoprecipitation buffer containing magnetic beads bound 
with antibody against Ago2 or IgG. The enrichment of NEAT1 
on beads was measured by qRT-PCR.

Statistical analysis
Data are presented as means±standard deviations from three 
independent experiments. Differences between groups were 
measured by one-way analysis of variance using GraphPad 
Prism 7 Software (GraphPad Inc., La Jolla, CA, USA). p<0.05 
was regarded as statistically significant.

RESULTS

NEAT1 expression is enhanced in Aβ-treated SH-SY5Y 
and SK-N-SH cells
To explore the potential role of NEAT1 in AD progression, the 
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expression of NEAT1 was measured in an Aβ-induced AD mod-
el in vitro. As shown in Fig. 1A and B, after treatment of Aβ for 
24 h, NEAT1 levels significantly increased in SH-SY5Y and SK-
N-SH cells in a concentration dependent manner, compared 
with those in the non-treated group. Moreover, an abundance 
of NEAT1 was obvious in 10 μM Aβ-treated SH-SY5Y and SK-
N-SH cells in a time dependent manner, compared with the 
non-treated group (Fig. 1C and D). SH-SY5Y and SK-N-SH cells 
treated with 10 μM Aβ for 24 h were used for the following ex-
periments because of the significant alteration of NEAT1 levels.

Knockdown of NEAT1 attenuates Aβ-induced neuro-
nal damage in SH-SY5Y and SK-N-SH cells
To investigate the effect of NEAT1 on AD progression, SH-SY5Y 
and SK-N-SH cells were transfected with si-NEAT1 or si-NC 
and then treated with 10 μM Aβ for 24 h. As displayed in Fig. 
2A and B, the abundance of NEAT1 was effectively reduced in 
SH-SY5Y and SK-N-SH cells upon transfection of si-NEAT1, 
compared with the si-NC group, after treatment of Aβ. MTT as-
say showed that cell viability was markedly inhibited by treat-
ment of Aβ in SH-SY5Y and SK-N-SH cells, which was reversed 
by depletion of NEAT1 (Fig. 2C and D). Meanwhile, immuno-
cytochemistry analysis revealed that exposure of Aβ significant-
ly decreased Ki67 expression, and this effect was weakened 
via silencing NEAT1 (Fig. 2E and F). Furthermore, exposure of 
Aβ led to a strong increase in apoptosis of SH-SY5Y and SK-N-
SH cells, which was attenuated via down-regulation of NEAT1 

(Fig. 2G and H). Furthermore, the effect of NEAT1 on accumu-
lation of p-Tau was evaluated in Aβ-treated SH-SY5Y and SK-N-
SH cells. Western blot analysis demonstrated that protein levels 
of p-Tau were obviously increased in SH-SY5Y and SK-N-SH cells 
after treatment of Aβ, compared with the non-treated group, 
while it was greatly abated by inhibition of NEAT1 (Fig. 3). 
These findings indicated that Aβ successfully induced neuro-
nal damage, which was attenuated by NEAT1 silencing.

MiR-107 is bound to NEAT1
In order to elucidate the underlying mechanism accounting 
for NEAT1 involvement in AD development, we explored 
miRNA that bind to NEAT1 by bioinformatics analysis. Star-
Base online assay provided the putative binding sites of miR-
107 and NEAT1, suggesting that miR-107 might be targeted by 
NEAT1 (Fig. 4A). To validate the prediction, luciferase activity 
and RIP assays were conducted. Luciferase activity was obvi-
ously inhibited in 293T cells transfected with miR-107, com-
pared with that in cells treated with miR-NC in the NEAT1-
WT group, while it was not affected in the NEAT1-MUT group 
(Fig. 4B). Moreover, the addition of miR-107 resulted in great-
er expression of NEAT1 enriched by Ago2 RIP in SH-SY5Y and 
SK-N-SH cells, whereas it showed little capacity for enrich-
ment in the IgG RIP group (Fig. 4C and D). Then, the effect of 
NEAT1 on miR-107 expression was analyzed in SH-SY5Y and 
SK-N-SH cells. The results showed that overexpression of 
NEAT1 suppresses miR-107 levels in SH-SY5Y and SK-N-SH 
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cells, compared with pcDNA transfection, while its knockdown 
causes an opposite effect on miR-107 abundance (Fig. 4E and 
F). These results revealed that NEAT1 is a sponge of miR-107.

MiR-107 is lowly expressed in Aβ-treated SH-SY5Y and 
SK-N-SH cells
Having established that miR-107 is targeted by NEAT1, the 
abundance of miR-107 was measured in SH-SY5Y and SK-N-
SH cells after treatment of Aβ. Compared with the non-treated 
group, treatment of Aβ for 24 h led to a marked reduction in 
miR-107 expression in the two types of cells in a concentration 
dependent manner (Fig. 5A and B). Furthermore, a progres-
sive decrease in miR-107 levels was observed in SH-SY5Y and 

SK-N-SH cells after treatment of 10 μM Aβ in a time dependent 
manner (Fig. 5C and D). These data suggested that low ex-
pression of miR-107 might be associated with AD progression.

NEAT1 mediates neuronal damage by sponging miR-
107 in Aβ-treated SH-SY5Y and SK-N-SH cells
To analyze the potential role of miR-107 in AD progression, 
SH-SY5Y and SK-N-SH cells were transfected with miR-107 or 
miR-NC and then treated with 10 μM Aβ for 24 h. In result, the 
expression of miR-107 was effectively rescued by transfection 
of miR-107 mimic, compared with that in the miR-NC group, 
among Aβ-treated SH-SY5Y and SK-N-SH cells (Fig. 6A and B). 
Moreover, overexpression of miR-107 reversed Aβ-induced vi-
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ability inhibition and apoptosis induction in SH-SY5Y and SK-
N-SH cells (Fig. 6C-F). Meanwhile, knockdown of miR-107 ag-
gravated Aβ-induced injury, while its knockdown alone showed 
little effect on cell viability and apoptosis in SH-SY5Y and SK-
N-SH cells without Aβ treatment (Supplementary Fig. 1, only 
online). Furthermore, up-regulation of miR-107 abated Aβ-
induced phosphorylation of Tau in SH-SY5Y and SK-N-SH 
cells, compared with miR-NC treatment (Fig. 7). These results 
highlighted the suppressive effect of miR-107 on Aβ-induced 
neuronal injury. Additionally, to explore whether miR-107 was 
associated with the regulatory effect of NEAT1 on AD develop-
ment, SH-SY5Y and SK-N-SH cells were co-transfected with si-
NEAT1 and anti-miR-107 or anti-miR-NC before treatment 
with Aβ. qRT-PCR assay showed that the abundance of miR-
107 was obviously decreased in SH-SY5Y and SK-N-SH cells 
transfected with si-NEAT1 and anti-miR-107, compared with 
that in cells treated with si-NEAT1 and anti-miR-NC, after treat-
ment of Aβ (Fig. 6A and B). Additionally, exhaustion of miR-
107 alleviated the regulatory effect of NEAT1 knockdown on 
cell viability, apoptosis, and phosphorylation of Tau in Aβ-
treated SH-SY5Y and SK-N-SH cells (Figs. 6C-F and 7). These 
results indicated that NEAT1 knockdown mitigates Aβ-

induced neuronal damage by upregulating miR-107.

DISCUSSION

Aβ-treated SH-SY5Y and SK-N-SH cells have been widely used 
for establishment of AD models in vitro.19,20 In the present 
study, we also established an AD model in SH-SY5Y and SK-N-
SH cells via exposure of Aβ. Our results showed that treatment 
of Aβ leads to inhibition of cell viability and increases in apop-
tosis and p-Tau levels in SH-SY5Y and SK-N-SH cells, which 
supported the viability of our AD model. NEAT1, as a promis-
ing lncRNA, has been reported to contribute to neuronal inju-
ry in Huntington’s disease and Parkinson’s disease.9,11 On the 
basis of previous results, NEAT1 might play an important role 
in neurodegenerative disease. However, the role of NEAT1 in AD 
progression remains obscure. Here, we discovered that NEAT1 
aggravates Aβ-induced neuronal damage in AD by sponging 
miR-107.

Previous research suggested that NEAT1 is highly expressed 
in AD patients, compared to control brain tissues.12 Similarly, 
we also found high expression of NEAT1 in our Aβ-induced AD 
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model in vitro. In this work, silencing of NEAT1 attenuated Aβ-
induced inhibition of cell viability and increases in apoptosis 
and phosphorylation of Tau in vitro, indicating NEAT1 as a 
potential neuro-regulator in AD progression. Nevertheless, the 
underlying mechanism by which NEAT1 participates in neu-
ronal damage in AD needs to be further explored. Former ef-
forts have suggested NEAT1 as novel target for diagnosis and 
treatment of human cancers by functioning as a sponge of miR-
NAs.21 Chen, et al.22 reported that NEAT1 promotes ox-LDL-in-
duced inflammatory and oxidative stress injury by sponging 
miR-128 in macrophages. Zhou, et al.23 suggested that abroga-
tion of NEAT1 suppresses migration and invasion by regulat-
ing miR-132 in glioma cells. In this study, using luciferase ac-
tivity and RIP assays, we confirmed the regulatory network of 
NEAT1 and miR-107 in SH-SY5Y and SK-N-SH cells, which was 
also demonstrated as a main pathway in progression of glio-
ma and laryngeal squamous cell cancer.24-26

We discovered that miR-107 expression was reduced in our 
in vitro Aβ-induced AD model, which is in agreement with 
previous works that reported low expression of miR-107 in AD 
brains.27,28 Liu, et al.29 reported that miR-107 prevented Aβ-
induced disruption of the blood-brain barrier (BBB) and dys-
function of endothelial cells in AD by regulating endophilin-1, 

suggesting that miR-107 might play a neuroprotective role in 
AD progression. Meanwhile, we hypothesized that NEAT1 
could promote BBB dysfunction in AD by regulating miR-107, 
which warrants further study in the future. Moreover, Wang, 
et al.30 suggested that miR-107 was decreased in AD and that it 
might increase vulnerability to AD. In this study, our results 
showed that addition of miR-107 inhibited Aβ-induced neu-
ronal damage, which was consistent with research showing 
that miR-107 is negatively correlated with Aβ-induced reduc-
tions of cell viability and increases in apoptosis and phosphor-
ylated Tau levels.31,32 These data demonstrate that miR-107 
might be involved in a neuroprotective mechanism in AD pro-
gression. Meanwhile, we demonstrated that deficiency of miR-
107 counteracted interference of NEAT1-mediated inhibition 
of neuronal damage in AD. This indicated that knockdown of 
NEAT1 plays a protective role in AD by regulating miR-107. 
Former efforts have suggested that rodent models are indis-
pensable for research on AD.33 Hence, an animal model of AD 
and clinical experiments should be performed in the future to 
investigate the role of NEAT1 in vivo. Moreover, the potential 
targets of miR-107 and promising signaling pathways should 
be explored in further studies for better understanding the 
mechanism.
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In conclusion, NEAT1 expression was increased in Aβ-treated 
SH-SY5Y and SK-N-SH cells. Knockdown of NEAT1 attenuated 
Aβ-induced neuronal injury, possibly via sponging miR-107, 
in an in vitro Aβ-induced AD model, indicating a novel ave-
nue for treatment of AD.
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