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CD4+ T helper (Th) precursor cells are activated by the antigenic stimulation of T
cell receptor (TCR) and are subsequently differentiated into different subsets of
effector Th cells in order to boost the immune responses.1 Th1 and Th2 cells are
traditionally thought to be the major subsets generated upon antigenic stimulation
and produce distinct cytokine interferon γ  (IFNγ) and interleukin (IL)-4, which are
then involved in the elimination of intracellular and extracellular pathogens, res-
pectively.2 Coordinated cytokine signaling induces the activation of specific
transcription factors to promote lineage-specific cytokine production. While T-
box-containing protein expressed in T cells (T-bet) is activated by IL-12 and IFNγ
and is exclusively expressed in Th1 cell differentiation,3 GATA-binding protein 3
(GATA-3) and c-Maf are required for the chromatin remodeling and direct
activation of Th2 cytokines IL-4, IL-5, and IL-13 for Th2 cell development.4,5 The
balance of Th1/Th2 cells is thought to be determined by the expression ratio of T-
bet/GATA-3 and is important for inducing autoimmune and allergic immune
responses.6 However, the Th1/Th2 paradigm was recently shifted to the Th1/
Th2/Th17/regulatory T (T-reg) hypothesis, a multi-lineage commitment from the
same Th precursor cells.7,8 regulatory T cells, referred to as regulatory T cells,
express forkhead box P3 (FoxP3) and suppress activated immune responses by
producing transforming growth factor β (TGFβ)‚9,10 whereas Th17 cells induce
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retinoic acid-related orphan receptor γ t (RORγ t) -mediated
IL-17 production and control the inflammatory autoim-
mune response.11,12 The differentiation of Th17 and T-reg
cells requires the activation of TGFβ-mediated signaling,
and IL-6 selectively drives Th17 cell differentiation from
TGFβ-stimulated Th cells by promoting sequential activa-
tion of IL-21 and IL-23 signaling.10,13

Here, we review the current understanding of the trans-
cription factors involved in the regulation of Th17 cell dif-
ferentiation, including updates of RORγ t , FoxP3, and
other Th17-specific transcription factors such as interferon
regulatory factor 4 (IRF4), B-cell activating transcription
factor (BATF), peroxisome proliferator activated receptor
(PPARγ), T-bet, and suppressors of cytokine signaling

(SOCS) 3 (Fig. 1).

Many scientists have reported that TGFβ and IL-6 are
essential for Th17 cell differentiation.12,14,15 TGFβ, which is
produced by innate immune cells, binds to its specific recep-
tor and induces engagement of TGFβ receptor I and II with
subsequent activation of receptor-associated SMADs. Acti-
vated SMADs interact with a variety of transcription factors,
resulting in chromatin remodeling and modulation of gene
transcription of TGFβ target genes.16 TGFβ inhibits signal

Fig. 1. Cytokine signaling and transcription factors in the regulation of Th17 cell differentiation. TCR stimulation activates gene expression of general transcription
factors such as NFAT, AP-1, and NF-κB, and induces Th cell activation and proliferation. BATF is activated upon TCR stimulation and stimulates IL-17 gene
transcription. TGFβ stimulation induces both FoxP3 and RORγt (also RORa) activation. High concentrations of TGFb increase FoxP3 through the activation of SMAD4
and subsequently induce TGFb production and simultaneously suppress RORγt activity and Th17 cell differentiation. However, the presence of cytokine IL-6 or IL-21
activates STAT3 and induces gene expression of the IL-21 and IL-23 receptor, activating positive IL-21 autocrine regulation for Th17 cell differentiation. In addition, IL-1
induces IRF4 or epidermal FABP4, which in  turn induces IL-17 gene transcription. While T-bet and Ets-1 antagonize RORγt activity and thus function as suppressors of
Th17 cell development, PPARγintrinsically suppresses IL-17 gene transcription by blocking the activation-induced removal of repressor complexes from the IL-17
gene promoter. SOCS1 and SOCS reciprocally modulate Th17 cell differentiation. TCR, T cell receptor; NFAT, nuclear factor of activated T cells; AP, activator protein;
BATF, B cell-activating transcription factor; IL-17, interleukin-17; TGFβ, transforming growth factor β; RORγt, retinoic acid-related orphan receptor γt; STAT, signal
transducer and activator of transcription; IRF-4, interferon-inducible factor-4; E-FABP, epidermal-fatty acid-binding protein; PPARγ, peroxisome proliferator activated
receptor γ; SOCS, suppressors of cytokine signaling.
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transducer and activator of transcription (STAT5)-medi-
ated IL-2 production in TCR-stimulated T cells17 and also
interferes with Th1 and Th2 cell differentiation by inhibiting
expression of master transcription factor T-bet and GATA-
3.18,19 In addition, TGFβ increases FoxP3 expression and
induces generation of T-reg cells.10 FoxP3-positive T-reg
cells potently suppress cell proliferation and differentiation
of Th cells by boosting TGFβ production.10 Overexpres-
sion of TGFβ in a T cell-specific manner in mice leads to
the generation of T cells with regulatory functions and pro-
tects IL-2-deficient mice from developing severe systemic
inflammation with autoimmunity.20,21 However, additional
production of the pro-inflammatory cytokine IL-6 along
with TGFβ suppresses FoxP3 expression and T-reg cell
generation and simultaneously induces IL-17 production,
resulting in Th17 cell differentiation.12 Consistent with this,
TGFβ transgenic mice treated with myelin oligodendrocyte
glycoprotein (MOG) in complete Freund’s adjuvant (CFA)
exhibit substantially increased Th17-mediated immune
responses and aggravated experimental autoimmune encep-
halomyelitis (EAE),12 indicating that TGFβ plus IL-6 in-
duces the generation of Th17 cells. Despite the importance
of TGFβ function in murine Th17 cells, TGFβ is dispen-
sable for human Th17 cell differentiation. Instead, human
Th17 cells are induced by stimulation with IL-6, together
with another cytokine such as IL-1, IL-21, or IL-23.15,22,23

IL-6 is a key factor for inducing human and murine Th17
cell differentiation by activating STAT3 and RORγ t ex-
pression. STAT3 activation is induced not only by IL-6 but
also by IL-21 and IL-23.13,24,25 While STAT3-null cells fail
to express RORγ t and produce a diminished level of IL-
17, retroviral restoration of STAT3 rescues the IL-17 de-
fect.26 Although it is still unclear whether STAT3 modula-
tes RORγ t gene transcription, activated STAT3 directly
binds to the STAT-binding sites in the IL-17 gene pro-
moter and increases IL-17 gene transcription.27 In addition
to the functional importance of STAT3 activation in Th17
cell differentiation, RORγ t has been identified as a master
regulator of Th17 cell differentiation. Analogous to STAT4-
mediated T-bet in Th1 cells and STAT6-dependent GATA-
3 in Th2 cells, Th17 cells require activation of STAT3 and
subsequent RORγ t induction.11 RORγ t , a spliced isoform
of RORγ, is a member of the nuclear receptor superfamily,
and is closely related to the retinoic acid receptor (RAR)
subfamily,28 and is required for thymocyte survival and

lymphoid organogenesis.29 Deficiency of RORγ t results in
profound Th17 deficiency and protects mice from EAE
development.11 Ectopic overexpression of STAT3 in RORγt-
deficient cells, and vice versa, fails to restore IL-17 produc-
tion.13 This suggests that STAT3 and RORγ t may each
regulate the other’s gene transcription and induce IL-17
expression parallel to some extent. More recently, RORα
was reported as a novel Th17-specific transcription factor.
Like RORγ t , RORα is induced by TGFβ plus IL-6 in a
STAT3-dependent manner, and promotes Th17 cell dif-
ferentiation through direct activation of IL-17 gene trans-
cription.30 Double deficiency of RORγ t and RORα results
in complete blockade of IL-17 production and EAE devel-
opment.30

IRF4 was originally identified as a GATA-3 inducer in Th2
cell differentiation.31,32 However, IRF4-null mice exhibit
impaired generation of Th17 cells in response to TGFβ
and IL-6 and increased resistance to EAE.33 In addition,
IRF4-deficient Th cells exhibit an intrinsic defect in the
autocrine IL-21 loop and an increased population of
FoxP3-mediated T-reg cells with no effect on STAT3 acti-
vation and SOCS3 expression.34 A more recent report
implies that IRF4 is activated upon IL-1 signaling and is
critical for early Th17 cell differentiation.35 Despite the
importance of IRF4 in Th17 cell differentiation, the mole-
cular mechanisms are unclear. The fact that IRF4 interacts
with NFATp to induce IL-4 expression may suggest that
IRF4 modulates NFATp-dependent IL-2 expression, which
is associated with IL-17 production.36,37

The BATF is a basic leucine zipper (bZIP) transcription
factor and dimerizes with Jun class factors of the activator
protein-1 (AP-1) family.38-40 BATF is known to function as
a potent inhibitor of AP-1-mediated gene expression via
the phosphorylation of BATF.40-42 In addition, expression
analysis reveals that BATF is highly expressed in hemato-
poietic cells and is increased in B and T cells by the activa-
tion of NF-κB in response to viral infection or IL-6-sti-
mulation.43-47 BATF gene transcription is substantially inc-
reased in activated Th cells subsets including Th1, Th2,
and Th17 cells.48 Despite its wide expression in all Th1,
Th2, and Th17 cells, BATF-deficiency fails to generate IL-
17 in CD4+ and CD8+ T cells in vitro and in vivo, but
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rather increases T-reg cell generation, thus protecting mice
from EAE development.48 While the levels of RORα and
RORγ t expression are not sustained in BATF-deficient
Th17 cells compared with those in wild type (WT) cells,
enforced RORγ t expression is not able to restore IL-17
production in BATF-deficient Th cells. Nevertheless,
BATF synergizes with RORγ t to induce IL-17 expression
through direct interaction with the IL-17 gene promoter.48

Many questions regarding BATF, such as whether IL-6-
induced STAT3 activation is affected by BATF deficiency
and whether BATF is required for DNA binding of RORγ t
or IRF4, remain to be addressed in the future.49

Differentiation of FoxP3-directed T-reg cells and RORγ t -
driven Th17 cells has been shown to be triggered by TGFβ
signaling, but the Th17 differentiation program requires
additional IL-6 or IL-21 cytokine signaling either to switch
off FoxP3 or to switch on RORγ t ,10,11,15 suggesting recipro-
cal regulation of T-reg and Th17 cells during Th cell differ-
entiation. It has been asked whether T-reg can be convert-
ed to Th17 in response to IL-6 and how FoxP3 and RORγ t
modulate each other’s expression or activity.30,50,51 Interes-
tingly, FoxP3 and IL-17 are both induced upon TGFβ sti-
mulation.13,52 In addition, FoxP3-positive Th cells produce
IL-17 in the presence of IL-6 through the activation of
RORγ t , whereas FoxP3 antagonizes RORγ t activity in a
manner dependent on SMAD4, suggesting the plasticity of
T-reg cells.30 Others also report that FoxP3 inhibits IL-17
expression by antagonizing RORγ t  function in a TGFβ
concentration-dependent manner53 or through direct
interaction with RORγ t .54 Like the suppressive function of
FoxP3 on IL-17 expression, the Th1-specific transcription
factor T-bet suppresses RORγ t -mediated Th17 cell differ-
entiation.55-57 Several functional studies indicate that T-bet
suppresses RORγ t expression and Th17 cell differentiation
and further attenuates autoimmune responses.56,58-62 None-
theless, the mechanism by which T-bet directly or indirectly
inhibits IL-17 expression and whether T-bet antagonizes
RORγ t  activity remain to be characterized. In addition, a
T-bet-interacting transcription factor, Ets-1 positively mo-
dulates Th1 cell differentiation but inhibits Th17 cell genera-
tion.63,64 Ets-1-deficient Th cells exhibit preferential differen-
tiation into Th17 cells and increased IL-22 and IL-23
receptor expression.64 Moreover, targeting of Ets-1 by mi-
croRNA miR-326 promotes Th17 differentiation.65 Since
there is no apparent interaction between Ets-1 and IL-17
gene promoter, how Ets-1 modulates IL-17 expression
must be defined in the future. 

Peroxisome proliferator-activated receptorγ (PPARγ) is a
nuclear receptor like RORγ t and RORα and forms hetero-
dimers with retinoid X receptors (RXRs) to bind to the gene
promoter.66,67 PPARγ activation upon ligand binding is criti-
cal for the expression of genes such as adiponectin and
fatty acid-binding protein (FABP) (also referred as aP2) in-
volved in adipocyte differentiation and lipid metabolism68,69

While enforced PPARγ expression induces adipocyte dif-
ferentiation from fibroblasts, PPARγ-deficiency attenuates
white adipose tissue development.70 Although PPARγ func-
tions as a master transcriptional regulator for adipocyte
differentiation, the anti-inflammatory activity of PPARγ is
also well-characterized.71-73 The anti-inflammatory function
of PPARγ is mediated through the inhibition of both matu-
ration and function of dendritic cells and macrophages.74,75

More precisely, the ligand-binding domain of PPARγ is
sumoylated upon ligand activation and prevents the removal
of repressor complexes composed of nuclear receptor core-
pressor and histone deacetylase-3, thus resulting in sustain-
ed repressor complex-induced silencing of pro-inflamma-
tory cytokine genes.76,77 In addition to the modulation of
macrophage function, PPARγ modulates T cell activity by
inhibiting IL-2 production in T cell receptor-stimulated Th
cells78 and by suppressing Th2 cell differentiation.79 There-
fore, PPARγ ligands including endogenous and synthetic
agonists such as linoleic acid, prostaglandin J2, and thia-
zolidinediones have been extensively studied due to the
interest in treating inflammatory diseases.71,80,81 A recent
study demonstrates that PPARγ is an intrinsic suppressor
for Th17 cell generation.82 PPARγ activation is thought to
prevents removal of repressor complexes from RORγ t
gene promoter, thus suppressing RORγ t expression and
RORγ t -induced Th17 cell differentiation in an intrinsic
manner. Moreover, human multiple sclerosis patients are
impressively susceptible to PPARγ-mediated suppression
of Th17 cell development, strongly asserting PPARγ as a
promising target for specific immunointervention in auto-
immune disorders.82

In contrast to the suppressive function of adipogenic
PPARγ, epidermal FABP (E-FABP) is characterized as a
positive modulator of IL-17 production in Th cells.83 FABP-
deficiency contributes to the protection from EAE devel-
opment,84 which has been explained by the reduced level
of pro-inflammatory cytokines in macrophages and
dendritic cells.85 Moreover, FABP-deficient Th cells ex-
press increased amounts of PPARγ and subsequently
suppress IL-17 production; however, this can be reversed
by treatment with the PPARγ antagonist, GW9662.83 More
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detailed molecular mechanisms of E-FABP have yet to be
characterized.

The SOCS inhibit STAT-mediated cytokine signaling.86,87

Since SOCS1 suppresses both IFNγ- and IL-4-mediated
Th1 and Th2 cell differentiation, genetic ablation of SOCS1
results in unconditional hyperactivation of T cells.88 In
addition, T cell-specific SOCS1-conditional knockout mice
exhibit attenuated Th17 cell generation and induced hyper-
activation of SOCS3 in Th cells,89 suggesting that SOCS1
as a transcriptional activator for Th17 cell development.
Activated SOCS3 is known to selectively suppress STAT-3
activation induced by IL-6, granulocyte-colony stimulating
factor (GCSF), and leptin,90,91 whereas deficiency of
SOCS3 increases TGFβ production and simultaneously
enhances Th17 cell development.27,92 It is also reported that
TGFβ inhibits SOCS3 gene transcription and prolongs
STAT3 activation during Th17 cell differentiation.93

With the recent reports of the functions of IL-17-producing
Th17 cells in autoimmune responses and the regulatory
mechanisms for Th17 cell differentiation, a new paradigm
of Th cell differentiation has been established. The Th1/
Th2 paradigm is mainly shifted to a Th1/Th2/ Th17/T-reg
program. This review describes the function and potential
mechanisms of transcription factors critical for the regul-
ation of Th17 cell differentiation and also includes inter-
connection among transcription factors such as Th1-
specific T-bet, T-reg-limited FoxP3, and Th17-specific
RORγ t . These transcription factors have prevalent roles in
determining lineage commitment through interaction with
cytokine gene promoters and/or other lineage-specific
transcription factors. Targeting these transcription factors,
as well as signature cytokines, may be beneficial for
controlling several autoimmune diseases, although re-
search is currently underway to identify the detailed me-
chanisms. 
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