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Helicobacter pylori Urease Activity is Influenced
by Ferric Uptake Regulator
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Purpose: The role of the Ferric Uptake Regulator (FUR) in the acid resistance of Helicobacter pylori (H. pylori)
has been thought to be independent of urease. However, we demonstrated in this study that Fur influences urease
activity. Materials and Methods: A fir knockout mutant of H. pylori was constructed by replacing the Fur gene
with a kanamycin resistant marker gene. The wild-type H. pylori and fir mutant were compared for survival. The
integrity of the inner membrane of the bacteria was evaluated by confocal microscopy using membrane-permeant
and -impermeant fluorescent DNA probes. Urease activity of intact H. pylori was measured between pH 3 and 8.
Real time PCR of both strains was performed for urease genes including urel, ureE, ureF, ureG, and ureH.
Results: The fur deletion affected the survival of H. pylori at pH 4. The urease activity curve of the intact fur
mutant showed the same shape as the wild-type but was 3-fold lower than the wild-type at a pH of less than 5. Real
time PCR revealed that the expression of all genes was consistently down-regulated in the fir mutant. Conclusion:
The results of this study showed that fir appears to be involved in acid resistant H. pylori urease activity.
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INTRODUCTION

Helicobacter pylori (H. pylori), a gastric pathogen in humans, survives intragas-
tric acidity long enough to colonize the stomach. The gastric pH in the mucus
layer is thought to vary between 4 and 6.5, with occasional acid alterations to less
than pH 2."? Resistance of H. pylori to acid alterations requires production of
ammonia by urease-mediated degradation of urea. H. pylori produces large
amounts of urease that account for up to 10% of its total protein content.** Early in
this field of study of H. pylori, the presence of surface urease was suggested to
produce a cloud of ammonia that neutralizes the bacterial environment,*” how-
ever, intrabacterial urease activity was thought to play only a minor role in acid
resistance. This concept is now known to be incorrect for many reasons that have
experimentally been established in several laboratories. The evidence from earlier
studies revealed that external urease results from cell lysis, and that the surface-
bound urease is too low to contribute to acid resistance.® The most likely expla-
nation for the increase of urease activity observed with acidification is that there is
a urea transporter in the bacteria.” The urease gene cluster has seven genes: UreA,
UreB, Urel, UreE, UreF, UreG, and UreH. Urel encodes an inner membrane protein
with six transmembrane segments and is likely to be the transporter that is acid-
activated, enabling urea access to the intrabacterial urease. With activation, there
is a large increase of urea entry, thus increasing the intrabacterial urease. The
increased urea uptake is energy-independent, temperature-independent and
nonsaturable, indicating that Urel is a urea channel. Activation of this channel is
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rapid and is responsible for acute regulation of the ability
of the bacterium to buffer its periplasmic pH."

Although severe acid alterations have been shown to
depend on urease activity, relatively little is known about
the mechanisms involved in the growth at mildly acidic
conditions. H. pylori urel mutants were not able to elevate
their urease activity in a medium at pH 4.0"; acid-induced
increase of urease activity was entirely dependent on Urel
at pH lower than 4.0. However, elevated levels of urease
activity were observed in mutants at pH between 4.0 and
5.5. These findings suggest that urel independent mecha-
nisms are sufficient for the maintenance of bacterial
viability in such media in the presence of urea. During
growth at acidic pH, urease-independent acid resistance
mechanisms are essential,”” and 10 loci, not related to urease,
are required for this process.” One of these is the iron-
responsive regulator Fur, which is responsible for iron
homeostasis in many bacterial species."* This repressor
down-regulates transcription of iron transport systems when
the intracellular concentration of Fe** exceeds a certain level.
Fur is known to be involved in the acid resistance of several
bacteria.” Bijlsma, et al.' reported that growth of firr mu-
tants was severely impaired under acidic conditions. Addi-
tion of extra iron or removal of iron from the growth me-
dium did not improve the growth of the firr mutant at an
acidic pH, indicating that the phenotype of the fur mutant
at low pH was not due to increased iron sensitivity. In their
study, the urease activities of wild-type and fur mutant H.
pylori were comparable, and addition of urea to the growth
medium at pH 5 restored growth of the fir mutants to
levels similar to that of the wild-type strain, indicating that
the role of Fur in acid resistance of H. pylori is independent
of urease. Fur was demonstrated to mediate iron-responsive
regulation of the H. pylori paralogous amidases AmiE and
AmiF."” Both amidases degrade amide substrates to ammo-
nia and corresponding carboxylic acid; they probably
represent alternative systems for ammonia production at
times when urea is in a short supply.>'**

NikR is the regulator of nickel uptake. In H. pylori,
nickel metabolism has been of interest, because of its role
as a cofactor of the important colonization factor urease.
The NikR is known to directly control urease expression
and regulate the uptake of nickel; it is also able to regulate
the expression of other regulatory proteins including Fur.**'
Accordingly, van Vliet et al. hypothesized a cascade where
fur controls the amidases independently of urease, and
NikR regulates Fur and urease (Fig. 1). However, there have
been no other studies targeting the putative link bet-ween
urease and Fur without using the measurement of ammonia
production for the determination of urease activity.

In this study, we observed for the first time that Fur
influences urease activity, using the radiometrical meas-
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Fig. 1. The previously known relationship of NikR, Fur, amidase, and urease in H.
pylori, suggested by van Vliet’. Our new suggestion is demonstrated by the
arrow linked with a question mark.

urement for urease activity of intact H. pylori at different
pH, and the real time PCR of wild and fir mutant strains
of urease genes.

MATERIALS AND METHODS

Bacterial strains and culture conditions

The H. pylori strain ATCC 43504 was obtained from the
American Type Culture Collection. An ATCC 43504 fur
deletion mutant was constructed by allelic exchange using
a kanamycin resistance gene as described below. H. pylori
was grown under microaerobic conditions (5% O, 10%
CO:, 85% N2) either on trypticase soy agar (TSA) plates
supplemented with 5% sheep blood (Becton Dickinson,
Cockeysville, MD, USA) or in brain heart infusion (BHI)
medium (Difco Laboratories, Detroit, MI, USA) supple-
mented with 7% horse serum (Gibco BRL-Life Techno-
logies Inc., Carlsbad, CA, USA) and 0.25% yeast extract
(Difco Laboratories). All bacteria were grown in the media
with the Dent selective supplement (Oxoid Limited, Hamp-
shire, UK), and the fir mutant was grown in the presence
of 20 pg/mL of kanamycin (Sigma Chemical Co., St.
Louis, MO, USA).

Construction of the firr knockout mutant

A genomic knockout of HP1027 was constructed by homo-
logous recombination (fir knockout mutant). pBluescript
(Stratagene) containing a kanamycin resistance gene in the
multicloning site flanked by Sall (5”) and BglII (3”) was
used to generate the knockout plasmid. Primers were design-
ed to flank the regions approximately 600 bp upstream of
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the 5” end of the gene and 400 bp downstream from the 3’
end. The upstream segment was amplified with a 5° primer
containing a site for digestion by Xbal (5’-GCTTCCATC
TAGAATCTGGCGCGCTTGATTGC-3’) and a 3’ primer
containing a site for digestion by Sall (5’-GTTTCTAATG
TCGACATGCTGATATCTTCC-3). The downstream
segment was amplified with a 5* primer containing a site
for digestion by Bglll (5’-CCAAGCTG ATTAGATCTG
ACATGAAAATGTTTGTGTGG-3") and a 3’ primer
containing a site for digestion by Acc651 (5°’-GCATAATG
GTACCTTCTATGCTTATGG-3’). The purified PCR
products were sequentially ligated into pBluescript around
the kanamycin resistance gene. The construct was
introduced into the H. pylori strain ATCC 43504 by natural
transformation, and colonies were selected in the presence
of kanamycin (20 pg/mL). The knockouts were confirmed
by a series of PCRs.

Survival assay

The H. pylori wild type and the fir mutants were grown
overnight on agar plates. The bacteria were removed from
the plates and resuspended in 10 mL of BHI medium, pH
7.4 or 4.0, and incubated for 60 min in a microaerobic
environment at 37°C Tenfold serial dilutions of the bacterial
suspension were plated on TSA plates supplemented with
5% sheep blood and incubated for 3 to 5 days in a micro-
aerobic atmosphere at 37°C. Survival at pH 4.0 was deter-
mined for each condition by comparison to the pH 7.4
controls. All experiments were performed in triplicate.

Membrane integrity

The integrity of the inner membrane of the bacteria was
evaluated by confocal microscopy using membrane-per-
meant and -impermeant fluorescent DNA probes (Live/
Dead; Molecular Probes). A compromised inner cell
membrane was considered indicative of cell death. The
membrane-permeant fluorescent DNA probe SYTO9,
when bound to DNA and excited at 488 nm, emits a green
light (emission, > 505 nm). Propidium iodide, which is
membrane impermeant, emits a red light (excitation, 543
nm; emission, > 633 nm) when bound to DNA and quenches
SYTO9 fluorescence. Therefore, viable bacteria will emit
a green light but bacteria with their inner membrane
integrity compromised will fluoresce red.

Wild-type H. pylori and the fur mutants were grown
overnight on TSA plates at 37°C in a microaerobic atmo-
sphere. The bacteria were scraped off of the plates and
suspended in BHI medium at pH 7.4 or 4.0 containing the
Live/Dead indicators. The bacteria were incubated for 30
min at 37°C in a microaerobic environment at the two pH
values and then mounted on glass slides. Fluorescence was
observed by confocal microscopy (LSM 510; Carl Zeiss,

Inc., Oberkochen, Germany).

Urease activity of intact H. pylori between pH 3 and 8
Urease activity was measured radiometrically.® Wild-type
and fur mutant bacteria were added to 100 mM sodium
phosphate buffer containing 5 mM KCl, 138 mM NaCl,
0.5 mM MgClL,, 1 mM CaCl, 10 mM glucose, 1 mM glu-
tamine, and 5 mM [“Clurea with a specific activity of 10
puCi/umol at pH 3, 4, 5, 6, 7, and 8. The range of pH of the
buffers used was between 4.0 and 8.5. The pH of the buffer,
between 4.5 and 8.5, was achieved by mixing various
amounts of 100 mM monobasic and dibasic sodium phos-
phate to the desired pH. Below pH 4.5, the desired pH was
achieved by the addition of HCl. The pH of the buffer
during the course of the experiment did not change by
more than 0.1 pH unit, as measured with a pH electrode.
Plastic wells containing 0.5 M KOH-soaked filter paper
hung from rubber stoppers were used to collect the liberated
“CO: that resulted from the hydrolysis of urea by urease.
Urease activity was measured for 30 min at 37°C with
constant agitation. The reaction was terminated by the
addition of 5 N H.SOs, which liberates all labeled CO:
from the incubation medium. The wells containing the
filter paper were placed in a scintillation cocktail (Hilo-
nicFluor; Packard Instruments, Meriden, CT, USA), and
the radioactivity was measured by scintillation counting
(1216 RackBeta; LKB Instruments, Gaithersburg, MD,
USA). All experiments were performed in triplicate. The
urease activity is reported as micromoles of CO: released
per minute per milligram of protein. The protein concen-
tration was determined by the Lowry method.

Real-time qPCR

Unique primers were designed for 100- to 300-bp regions
of five urease genes (urekE, ureF, ureG, ureH, urel). Primer
design was aided by Primer 3 software available at http://
www-genome.wi.mit.edu/genomesoftware/other/ primer3.
html.*> Genomic DNA from the H. pylori strain ATTC
43504, serially diluted 10-fold, was used to obtain the
standard curve. Each reaction mixture, which contained the
SYBR Green label (Qiagen Inc., Hilden, Germany) and
the primers, was added to a 96-well plate along with 1 pL.
of cDNA or genomic DNA template; the final reaction
volume was 50 pL/well. The negative control contained the
reaction mixture but no DNA. The reactions were perfor-
med with an Icycler real-time PCR machine (Bio-Rad,
Hercules, CA, USA) for 40 cycles (95°C for 30 s, 52°C for
30 s, 72°C for 40 s). Data were collected during the exten-
sion step and were expressed in arbitrary fluorescence
units per cycle. A melting curve was used at the end to
confirm that there was only one peak and only one product.
Each sample was measured in duplicate.
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RESULTS

Deletion of H. pylori fur (HP1027)

The H. pylori fur deletion mutant was constructed by ho-
mologous recombination. The gene deletion was confirmed
with a series of PCRs using primers to the kanamycin
resistance cassette and the upstream sense and downstream
antisense primers used to construct the original knockout
plasmid. The kanamycin resistance cassette used was 844
bp, from pUC4K (Amersham), and its presence was con-
firmed in the genomic DNA of the knockout. The remaining
primers were used in combination with the kanamycin
resistance gene primers to confirm that the resistance gene
was in the proper position.

Survival of H. pylori fur mutant and wild strain at pH
4.0orpH 74

Wild-type H. pylori and fur mutants were compared for
survival. Both strains of H. pylori were incubated at pH 4.0
and pH 7.4 for 1 hour and bacterial survival was deter-
mined by colony counting. The survival of wild type H.
pylori at pH 4.0 was 71.1% of the control at pH 7.4,
whereas only 2.9% of H. pylori fur mutants survived at pH
4.0 (Fig. 2).
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Fig. 2. Survival of H. pyloriwild strain and furkKQ mutant at pH 4.0. WT, wild type;
KO, furknockout mutant.

Urease activity of intact H. pylori between pH 3 and 8
The urease activity curve of the intact fir mutants showed
the same shape as the wild-type but was approximately 3-
fold lower than the wild-type at a pH less than 5 (Fig. 3).

Real-Time qPCR

Real time PCR, of both strains, was performed for the
urease genes: urel, ureE, ureF, ureG, and ureH. Cycle
thre-shold values were calculated and converted into RNA
concentration using the statistical standard curve. The
expression of all genes was consistently down-regulated in
the fur mutants (Fig. 4). RNA concentration was approxi-
mately 2-fold lower in ureE, 3-fold lower in ureF, 5-fold
lower in ureG, 2-fold lower in ureH, and remarkably 20-
fold lower in urel, the actual urea channel.

DISCUSSION

The results of this study demonstrate that Fur is involved
in acid resistant H. pylori urease activity contrary to van
Vliet’s hypothesis that fur controls the amidases indepen-
dently of urease (Fig. 1). This was strongly supported by
our findings that even though the curves of urease activity,
in the intact H. pylori strains, have the same pattern, the
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Fig. 3. Urease activity of intact H. pylori. furKQ, furknockout mutant.
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Fig. 4. Real-time qPCR. furKO, furknockout mutant.
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strength of the activity was significantly different at a pH
under 5, and that the expression of the urease genes was
down-regulated in the fir mutants.

The adaptation of H. pylori to growth at an acidic pH is
multifactorial. Urease has been shown to play an important
role in this process; animal models have demonstrated that
urease-negative mutants of H. pylori are unable to colonize
the stomach.” There is also a urease-independent acid
resistance in H. pylori; this is observed when H. pylori are
grown under acidic conditions in the absence of urea.”* The
iron-responsive regulator Fur is involved in acid resistance
independent of urease. The NikR protein can control the
expression of different pathways for ammonia production
directly via urease and indirectly through the Fur regulator
and possibly other regulators.”’ In addition, growth at
acidic pH induces changes in the lipopolysaccharide com-
position,” increases the expression of chaperone-like pro-
teins” and results in the induction of ammonia-producing
pathways.’

The growth defect of the firr mutant at low pH is consis-
tent with the findings of a previous report' that suggested
fur mutants are acid sensitive. It is known that the role of
Fur in acid resistant H. pylori is independent of urease.
Originally, H. pylori Fur was implicated in the regulation
of urease expression,” and the acid sensitivity of the fur
mutant were thought to be due to reduced urease activity.
However, the urease activity of the wild strain and firr mu-
tant proved to be comparable.' In addition, the amidases,
degrading amide substrates to ammonia, were shown to
represent alternative systems for ammonia production in
times of urea shortage.” Most reports showing that Fur is
independent of urease have measured ammonia production
from urea hydrolysis by the Berthelot reaction for urease
activity. However, we used a radiometrical measurement
of urease activity. Our results revealed that the urease activity
of the intact bacteria had the same pattern with a 3-fold
difference observed when the wild strain and the fir mutants
were compared. This finding would not be predicted from
van Vliet’s hypothesis that Fur and urease act indepen-
dently.?" Therefore, we performed real time PCR of the
urease genes: urel, ureE, ureF, ureG, and ureH in order to
confirm the urease activity results. The findings showed
that the expression of the genes in the fur mutant was
consistently down-regulated. This finding strongly supports
our hypothesis that Fur is involved in the acid resistant H.
pylori urease activity. Because Urel is an actual urea channel,
which allows extremely fast transport of urea across the
inner membrane of the bacteria,’ these results strongly sug-
gest that Fur is related to the urease activity.

Three H. pylori regulators have been implicated in acid
adaptation””: the NikR protein, the Fur protein and the
HP0164/0165-HP0166 two-component system. Among

these, the Fur protein has been suggested to be located
between NikR and the HP0166 system within a cascade,
NikR > Fur > HP0166. Fur appears to have various roles in
H. pylori that have not been previously described. The role
of Fur in acid resistant H. pylori appears to be inde-pendent
of its role in iron acquisition." However, the biology of iron
is closely related to acidity, because it is more soluble under
acidic pH conditions. To elucidate the mechanisms by
which Fur influences urease and acid resistance in H.
pylori, further investigation of Fur in iron homeostasis and
its association with gastric acidity is needed.
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