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Promoter Methylation in the Genesis
of Gastrointestinal Cancer
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Colorectal cancers (CRC)-and probably all cancers-are caused by alterations in genes. This includes activation of
oncogenes and inactivation of tumor suppressor genes (TSGs). There are many ways to achieve these alterations.
Oncogenes are frequently activated by point mutation, gene amplification, or changes in the promoter (typically
caused by chromosomal rearrangements). TSGs are typically inactivated by mutation, deletion, or promoter
methylation, which silences gene expression. About 15% of CRC is associated with loss of the DNA mismatch
repair system, and the resulting CRCs have a unique phenotype that is called microsatellite instability, or MSI. This
paper reviews the types of genetic alterations that can be found in CRCs and hepatocellular carcinoma (HCC), and
focuses upon the epigenetic alterations that result in promoter methylation and the CpG island methylator phenotype
(CIMP). The challenge facing CRC research and clinical care at this time is to deal with the heterogeneity and
complexity of these genetic and epigenetic alterations, and to use this information to direct rational prevention and
treatment strategies.
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THE GENETIC BASIS OF COLORECTAL CANCER

Cancers are caused by alterations in genes. However, there are many different types
or classes of alterations and diverse genetic targets that can be found in cancers. This
review is focused on the genetic, and epigenetic, alterations associated with
colorectal cancer (CRC).

It must be understood at the outset that there is not a single mechanism for
carcinogenesis that is common to all CRCs. There are at least three general
patterns that can be found, and there is a complex interaction among these, in
which one type of genetic signature is a consequence of one or another of the other
two. Furthermore, some of these diverse changes can be found in any CRC, at
least to some degree. Typically, one type of genomic instability predominates, and
creates a principal “genetic signature” in most CRCs. These signatures provide
insight into how that tumor developed, and may provide roadmaps in the future
from which prevention and treatment strategies may be developed.

GENETIC AND EPIGENETIC SIGNATURES IN CRC

Three different genetic signatures are characteristically seen in CRC; to be precise,
two of these are truly genetic, and the third is more properly considered epigenetic.
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Chromosomal instability

The first of these, chromosomal instability or CIN, is a
process that creates genetic deletions, duplications and
chromosomal rearrangements in the nucleus of a tumor cell.
This is manifested as aneuploidy, which is readily recog-
nized using cytogenetic techniques (and even the light
microscope), and is commonly present in all types of cancer.
Chromosomal rearrangements that put growth-supporting
genes under the control of an inappropriately active gene
promoter are commonly seen in many types of leukemias
and lymphomas. However, this has not been found to be a
prominent mechanism in CRC. At least 50% of CRCs have
a prominent CIN phenotype'* and some have speculated
that all CRCs have some degree of this, if one examines the
chromosomes carefully.’ There is no accepted mechanism
that explains CIN or aneuploidy in a generalized way for all
cancers, but mutations or abnormal expression of multiple
different genes have been proposed to explain this.** The
basis of CIN remains an open question, and a fundamental
one for the understanding of all cancer.

Microsatellite instability

A second type of genetic signature is microsatellites instabi-
lity, or MSI, which is a “mutator phenotype” that occurs in
about 15% of CRC. Interestingly, most CRCs with MSI are
apparently diploid or near-diploid.” MSI is the consequence
of inactivation of the DNA mismatch repair (MMR) system,
and is characterized by very frequent mutations at simple
repeat sequences (microsatellites). In this case, the predo-
minant outcome is inactivation of tumor suppressor genes
that have microsatellite sequences (typically a mononu-
cleotide that is repeated 7-10 times) that are strategically
located in the gene. The characteristic signature of MSI is
the deletion of one element in the repetitive sequence, which
creates a frameshift in the coding sequence, inactivating
gene expression.

Such critically-located microsatellite sequences are relati-
vely uncommon in human genes, but a few human genes
encoding microsatellites happen to be critical in the control of
epithelial cell growth." Examples of these genes are the
transforming growth factor beta-1 receptor Il gene, which
encodes a sensitive A sequence in exon 3," and the BAX
gene,” which encodes a Gs sequence, just to name two. This
phenotype is always caused by loss of the DNA mismatch
repair system, and is seen either in association with germline
mutations in the DNA MMR genes (Lynch Syndrome), or the
acquired methylation-induced silencing of the MLH1 gene.”

The CpG island methylator phenotype

Promoter methylation results in gene silencing, a process
that normally accompanies aging. However, substantial
increases in the amount of methylation can be found in
certain CRCs which can lead to the silencing of certain tumor

suppressor genes. It is less certain whether different genes
are more likely to be affected when methylation is seen in
cancers. In any event, when it occurs in tumor DNA, the
phenotype is called the CpG Island methylator phenotype
(CIMP)."* About half of the promoters of human genes are
embedded in CpG islands, and are susceptible to methylation-
induced silencing, but certain genes are more frequently
affected than others. CpG islands typically encompass 1-2
kb of the promoter regions, but can also extend to 5’-
untranslated regions within the first exon of certain tumor
suppressor genes.” CIMP is also referred to as an ‘epige-
netic” phenomenon since this does not involve a permanent
change (a ‘genetic event’ such as a point mutation or
deletion) in the target DNA sequence, but simply reflects a
potentially reversible alteration due to methylation of the
cytosine nucleotides that occur in context of CpG dinu-
cleotide. The mechanism responsible for CIMP is
unknown. Although most investigators in the field accept
the concept that there is a “methylator phenotype”, there is a
minority opinion on the subject that is not so sure.'

THE DISCOVERY OF CIMP AND ITS ROLE IN CRC

The discovery of CIMP is an interesting example of seren-
dipity and opportunities taken in biological research. The
first evidence of a CIMP-like phenomenon was made in
1997, when a group of investigators was investigating
aberrant methylation of several tumor suppressor genes
including p16, TSP-1 and /GF?2 in sporadic CRCs. They
observed that CRCs with MSI were more frequently hyper-
methylated compared to microsatellite stable (MSS) tumors."”
In this study, more than 60% of sporadic MSI CRCs showed
concordant methylation of = 2 loci compared with MSS
cancers."” The same group subsequently proposed a panel of
7 methylation loci, or markers, that were frequently methy-
lated in tumors, and referred to them as MINT clones:
MINT 1, 2, 12, 17, 25, 27, and 31."* However, the biological
relevance of methylation at these loci and the general
importance of CIMP were not fully appreciated until it was
recognized that methylation at the MINT clones was
associated with the transcriptional silencing of the DNA
MMR gene MLH]I, a mechanism that is the cause of the
majority of sporadic MSI CRCs."

In an effort to classify subsets of sporadic CRCs, Issa and
colleagues then proposed that concordant methylation of
these methylation loci in colonic tumors may be defined as
CIMP, and suggested that this reflected a unique epigenetic
pathway in colorectal carcinogenesis." In this context, a recent
study has proposed a newer set of CIMP markers that is
different from the original panel, but show comparable speci-
ficity for identifying CRCs with a methylator phenotype."”

Following the initial description of CIMP in sporadic
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CRC, the next several years witnessed independent efforts
to determine whether the CIMP markers were adequate for
the reproducible identification of a unique group of tumors.
Some investigators proposed that promoter hypermeth-
ylation might be present in all aging tissues, and to some
degree, in all CRCs. The discoverers of CIMP suggested
that methylation occurred in a bimodal distribution in CRC,
and proposed that CIMP-associated neoplasms would have
unique biological or clinical features. The majority of
studies have favored existence of CIMP as a unique carcino-
genic pathway. However, a handful of studies have raised the
contrary opinion that CIMP in CRC may not be the distinct
mechanism of epigenetic instability that was initially
proposed.'** However, the weight of the accumulating
evidence suggests that CIMP represents a unique pathway
and phenotype in CRC.**

However, there is not yet a consensus on what markers and
criteria should be used to define CIMP in CRC. This is
essentially because of the absence for a standardized panel of
CIMP-markers, use of different methylation assays, and non-
uniform thresholds for methylation among various studies.

CIMP AND GENOMIC INSTABILITY IN CRC

Characterizing sporadic CRCs: CIN vs. MSI

During the past decade, while other laboratories were involv-
ed in defining CIMP, we became interested in understand-
ing the relationship between various forms of genomic
instability in CRC. We proposed the hypothesis that some
form of genomic instability would be present in every CRC,
and that every CRC could be categorized based upon the
mutational (or epigenetic) signature present in the DNA of
the tumor. We began by characterizing 209 stage 11 or III
CRC for either CIN (looking for loss of heterozygosity or
LOH at loci on 1p, 2p, 3p, 5q, 17p or 18q) or MSI (using a
National Cancer Institute recommended panel of markers).
In this study, 14% of CRC showed MSI (specifically, MSI-
high), and 51% had LOH at 1 or more loci (Fig. 1A). Of the
107 cancers with at least one LOH event, only 6.5% were
MSI, indicating some degree of overlap, at least with these
LOH markers. The most unexpected and provocative finding
was that 38% of the non-MSI tumors had no LOH.? This
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Fig. 1. The relationships among various forms of genomic instability in CRC. (A) The pie chart llustrates the characterization of 209 sporadic CRCs for MSI and CIN.? As
shown, 48% of tumors had evidence of LOH, while 14% of tumors had MSI, including a minority of tumors (3%) that overlapped with LOH. \We were most interested in the
observation that nearly one third of the tumors (38%) did not have either MSI or LOH. (B) The bars demonstrate the mean methylation index based upon the number of
markers methylated in the three subsets of CRCs. ® Methylation alterations were analyzed at 12 markers including 6 canonical CIMP markers (MINT-1, -2, -31, p16, p14
and MLH1) and 6 additional tumors suppressor genes (PTEN, TIMP3, RUNX3, HIC1, APC, and RAR#2). The three vertical columns represent the mean methylation ratios
in MSI (blue), MSI-/LOH- (red) and LOH (white) CRCs. The error bars denote the S.D. The filled circles (color matched with vertical columns) represent the 95%
confidence interval (C) of the mean methylation ratios. The rectangular boxes in the upper panels represent the pair-wise correlation between the mean methylation
ratios in each subset of CRC; p-values were calculated by the Wilcoxon test. As shown in the three panels, analysis of the methylation ratios using only four CIMP-
related markers (versus using 12 or 6 CIMP-related markers) demonstrates a significant positive association for MSI and MSI-/LOH- tumors, but an inverse correlation
for LOH CRCs. (C) The relationship between methylation ratios calculated using all 12 methylation markers was compared with LOH ratios in the total cohort of 126 CRCs.
As shown, an inverse correlation was observed (p =-0.3690; p< 0.0001) between the methylation ratio and LOH.

CRC, colorectal cancers; MSI, microsatellite instability; LOH, loss of heterozygosity.
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led to the hypothesis that another type of genetic or nuclear
abnormality was operative in CRC. We proposed that the
unidentified abnormality might be CIMP.

Characterizing sporadic CRCs: tumors with neither
CIN nor MSI have CIMP

Therefore, we next examined 126 sporadic CRCs, and cate-
gorized them as having MSI, LOH, or neither using 6
markers previously linked to CIMP, and 6 new putative
methylation loci linked to likely tumor suppressor genes
(TSGs). As shown in Fig. 1B, we found that there was a
significant degree of methylation at the previously-identified
CIMP-associated loci (MINT-1, -2, -31, pl6, pl4, MLH]I),
as well as in our 6 new TSG markers (PTEN, TIMP3,
RUNX3, HICI, APC, and RAR[2). We also tested for a
mutation in the BRAF gene that had been linked with
CIMP, as defined by the traditional CIMP-associated
markers. BRAF V600E mutations were associated with
MSI, and with the non-MSI/non-LOH CRCs. There was a
significant inverse relationship between frequencies of
LOH and the degree of methylation in CRC (p < 0.0001;
Fig. 1C). We recognized that most of the non-MSI/non-
LOH CRCs were associated with CIMP, suggesting that
these are two independent pathways for tumor development.
Furthermore, most of the MSI tumors were associated with
CIMP, and methylation of the DNA MMR gene, MLH1.>
The exceptions to this are CRCs associated with Lynch
Syndrome, which is caused by germline mutations in a
DNA MMR gene, accompanied by loss of the wild type
allele, often through an LOH event. Thus, CRCs with MSI
are either caused by CIMP and methylation of the MLH1
gene, or they are found in patients Lynch Syndrome. With
this in mind, one can consider MSI to be a consequence of
either CIMP or Lynch syndrome plus the loss of the wild
type copy of the DNA MMR gene with the germline muta-
tion. In the latter situation, the loss of the wild type allele
could be due to an LOH event, which would explain the
apparent overlap between MSI and CIN. Current evidence
supports a role for either LOH* or methylation® as the me-
chanism for the second hit in Lynch syndrome.

Methylation of the O°-methylguanine-DNA
methyltransferase promoter in CRC

The MGMT gene is a DNA repair gene generally involved
in the removal of mutation-inducing DNA adducts, and is
specifically responsible for removing O°%-methylguanine
residues which are formed by the acquired (and presumably
accidental) methylation of guanine residues. Persistence of
these adducts give rise to G : C to A : T mutations, which are
common mutations found in two of the most important genes
altered in CRC : KRAS and p53.* Mutational inactivation of
MGMT is rare, and does not play a prominent role in CRC.
Interestingly, the MGMT promoter has two CpG clusters

that are sensitive to methylation. One, termed the Mp region,
is upstream of exon 1 and includes the minimal promoter.
The second, termed the Eh region, is downstream of Mp,
and contains several enhancer elements that are involved in
the regulation of gene expression. We examined DNA from
233 CRCs, 104 adenomatous polyps (APs) and 220 normal
colonic tissues for evidence of methylation at the Mp and Eh
regions of MGMT. We found that methylation was
extensive in the CRCs, there was partial methylation in the
APs, and there was significantly less methylation in the
normal colonic tissues. Additionally, there was less methy-
lation in the normal colonic tissues from patients who did
not have CRC compared with those that did. We found a
significant correlation between extensive methylation
(which was seen principally in the CRCs) and reduced or
absent expression of the MGMT protein. Another important
observation was made in these experiments; MGMT methy-
lation was significantly associated with G:A mutations in
the KRAS gene. Thus, methylation was quantitatively more
involved in the more advanced neoplastic lesions, was asso-
ciated with gradual loss of protein expression, and was linked
to activating mutations in the RAS-RAF signaling pathway.
These findings suggest the interpretation that methylation-
induced silencing of the MGMT gene occurs in a gradual or
step-wise manner, and is quantitatively correlated with pro-
gressive multistep carcinogenesis in the colon.”

The role of KRAS and BRAF mutations in the genesis of
CIMP

KRAS and BRAF are signal transduction proto-oncogenes
involved in the regulation of cell growth and proliferation.
These two proteins participate in the same serial signaling
pathway that begins with the epidermal growth factor
receptor (EGFr) on the plasma membrane of the intestinal
epithelial cell, and eventually triggers the proliferation
program in the nucleus. Activating KRAS and BRAF
mutations are commonly found in CRCs, but the two muta-
tions rarely are found in the same tumor, as there would be
little added fitness or growth advantage for having both.
KRAS was the first oncogene in which activating mutations
were found in CRC, and these occur in about half of all
CRCs.” Activating mutations in BRAF were later found to
be common in cancer,” and the V600OE mutation was linked
with CIMP in CRC." Although the mechanism linking
BRAF mutation and CIMP remains elusive, it has been
suggested that finding mutations in either KRAS or BRAF
may be important for our understanding of the pathogenesis
and clinical behavior of tumors that have one or the other of
these.

Therefore, we used 14 methylation markers (7 classic
CIMP markers, and 7 additional TSG loci) to evaluate the
promoter methylation status of 487 colorectal specimens,
including 243 CRCs and their corresponding normal

312 YONSEIMEDJ HTTP://WWW.EYMJ.ORG VOLUME 50 NUMBER 3 JUNE 2009



Methylation in GI Cancer

mucosa, and 36 samples of colonic tissue obtained from
individuals without colorectal neoplasia at colonoscopy.
The CRC group included 21 samples from patients with
Lynch syndrome, and another 15 cases of sporadic MSI
(caused by hypermethylation of the MLHI gene). We then
correlated the methylation data with mutations in KRAS and
BRAF.

First, we found relatively little methylation in the normal
colonic tissues, whether they came from CRC patients or
those without colorectal neoplasia. We then found that
aberrant methylation of the 7 canonical CIMP markers was
highest (mean 3.6 of 7) in BRAF-mutated CRCs compared
with KRAS-mutated CRCs (mean 1.2; p < 0.001), or CRCs
with wild type KRAS and BRAF genes (0.7, p < 0.0001;
Fig. 2A). By contrast, analysis of the 7 non-canonical CIMP
markers showed different associations. These novel markers
were associated with the same number of aberrantly methy-
lated loci in either BRAF or KRAS-mutated CRCs (4.4 and
4.3 respectively). CRCs with sporadic MSI had significantly
more methylation (8.4 markers of all 14), but the Lynch
syndrome CRCs had slightly more methylation than the
non-MSI tumors. Additionally, we found only BRAF (but
never KRAS) mutations in the sporadic MSI CRCs, and

only KRAS (but never BRAF) mutations in the Lynch syn-
drome tumors. BRAF mutations were found in 10/15 of the
sporadic MSI tumors, making it a reliable marker for exclud-
ing the diagnosis of Lynch syndrome in an ambiguous
situation of an MSI CRC with absence of MLHI expres-
sion. In a general way, the associations between CIMP and
KRAS/BRAF mutations in CRCs with MSI are dependent
upon the marker panel used. The canonical CIMP markers
associate best with sporadic MSI and the V60OE mutation
in BRAF.

Aberrant methylation in Lynch syndrome CRCs

Lynch syndrome, sometimes called hereditary non-polyposis
colorectal cancer (HNPCC), is an autosomal dominant inhe-
rited disease, which is caused by germline mutations in DNA
MMR genes, most often MLHI and MSH2. Mutations in
MMR genes cause MMR-deficiency that results in MSI, a
mutational signature present in more than 90% of Lynch
syndrome cancers.”> Although Lynch syndrome tumors
harbor germline mutation in one allele of the involved MMR
gene, a second inactivating event is imperative for the loss
of MMR activity in these cancers. The somatic inactivation
of the remaining wild-type allele (or ‘second hit’) could be
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Fig. 2. KRAS and BRAF signaling play a role in aberrant methylation, and may contribute to epigenetic alterations in Lynch Syndrome cancers. (A) These 3 boxes show
the average number of methylated loci in various subgroups of CRCs categorized by their BRAF/KRAS mutation status as published previously.”' The average number of
methylated loci in each subset was calculated using all fourteen markers (“All Loci”), seven canonical CIMP markers (“CIMP”) and the seven additional markers (“Non-
CIMP"). The p values are based on Kruskal-Wallis one way analysis of variance on ranks, and represent the statistical differences among all three subsets of CRCs
(BRAF-mutated, KRAS-mutated or wild type for both). BRAF-mutated cancers showed the highest degree of methylation at CIMP-related loci, and as a consequence,
the highest degree of methylation when data were analyzed from “All Loci”. KRAS mutated tumors exhibited methylation not only at the CIMP-markers, but interestingly,
when data were analyzed from the additional (Non-CIMP) markers, there was a minimal difference in the number of markers methylated between BRAF and KRAS-
mutated cancers. (B) These 3 bar charts illustrate the average number of methylated loci in sporadic MSI (MSI-H), Lynch syndrome and non-MSI (MSI-L and MSS)
CRCs?' As expected, sporadic MSI tumors were most frequently methylated at all markers (CIMP and Non-CIMP). Lynch syndrome CRCs also demonstrated frequent
methylation at canonical-CIMP markers, which was surprisingly slightly higher compared to the non-MSI tumors.

CRC, colorectal cancers; CIMP, CpG island methylator phenotype; MSI, microsatellite instability; MSS, microsatellite stable.
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a genetic change such a somatic mutation or LOH event,”
or alternatively an epigenetic alteration asso-ciated with
hypermethylation of the promoter.* Although somatic
mutations and deletions in MMR genes have been
described in these tumors,”* none of the previous studies
have reported conclusive evidence for the role of aberrant
methylation in Lynch syndrome cancers.*

We addressed this question in a recent study in which we
determined methylation frequencies in a series of 21 Lynch
syndrome subjects and compared this with sporadic MSS
and MSI CRCs, using a panel of 14 methylation makers
comprised of 7 CIMP-canonical markers and 7 additional
loci.”® We further correlated methylation profiles with the
presence of BRAF and KRAS mutations in these tumors.
Not surprisingly, we found that the mean methylation was
highest for each of the 14 methylation markers in sporadic
MSI CRCs (Fig. 2B). Interestingly however, we also
observed frequent aberrant methylation in Lynch syndrome
tumors. The average methylation in Lynch syndrome CRCs
was consistently higher than in non-MSI tumors, regardless
of whether we analyzed all 14 markers (average 5.1 vs. 4.5
in MSI-L and 4.4 in MSS) or used only the 7 canonical
CIMP markers (average 1.5 vs. 1.0 in MSI-L and 0.89 in
MSS). Additionally, we did not find V60OE BRAF mutations

in any Lynch syndrome cancer, but one third of these
tumors showed KRAS mutations. These findings indicate
that CIMP in CRC is associated with activating mutations
in either BRAF or KRAS, and that aberrant DNA
methylation is a common event, not only in sporadic CRC,
but also in Lynch syndrome CRCs.* In this scenario, aberrant
methylation of a DNA MMR gene may provide the ‘second
hit” necessary to inactivate the wild-type allele in some
proportion of Lynch syndrome patients.

CIMP and hepatocellular carcinoma
Although CIMP was historically discovered in the colon and
is probably best investigated in this organ, the existence of
this unique phenotype is not confined to CRC, and has also
been identified in several other malignancies including gastric
cancer,” leukemia® and hepatocellular carcinoma.*®

As mentioned, the mechanism responsible for promoter
methylation is unknown, which limits our understanding of
how the process occurs, and inhibits the development of stra-
tegies to prevent or modify this process. To test the potential
role of virally-induced inflammation in CIMP, we studied a
cohort of 81 HCCs and 77 non-cancerous liver tissues,
because of the well-documented role of chronic viral infec-
tions in these tumors. First, we analyzed the tumors for CIN

Group 1 Group 2
APC I
RASSF1A
GSTP1
HIC-1
P16
RIZ1
S0CS1
RUNX3
MINT31
CACNAI1G
CASP8
COX2
RASSF2
MINT1
SFRP2
MINT2
Reprimo
DCC
£ -catenin AA MM M A
P53 \ MM AMY A MA AAAN M A M A AMA A
Mutation HCC Group 1 (n=48) HCC Group 2 (n=33) p
* B-catenin mutations <.0001
With (n = 13) 0 13
Without (n = 68) 48 20
*p53 mutations .3389
With (n=27) 14 13
Without (n = 54) 34 20
*FAL (n=49) (24.3%: 18.0 t0 30.5) (28.2%: 20.7 t0 35.6) 3816

Fig. 3. Hepatocellular carcinomas (HCCs) are classified based upon methylation and mutational status. In the upper figure, all 81 HCCs are classified by hierarchical
clustering analysis based upon the degree of methylation and Zcatenin or p53 mutations as published previously.* The heat map (green-black-red) shows the tumors
with a lower methylation density as green, and higher methylation density as red. The Y-axis shows the loci analyzed. A solid triangle represents a tumor witha #catenin
mutation, and an open triangle indicates a HCC with a pA3mutation. As depicted, 4catenin mutations were significantly associated with the Group 2 HCCs on the right
(p < 0.0001). The table in the lower half of the figure highlights the significant association between higher methylation in Group 2 HCCs and #catenin mutations. FAL
indicates the “fractional allelic loss”, or proportion of analyzed loci with allelic imbalance, or LOH.
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and for mutations in a number of potential oncogenes. CIN
was determined using 400 microsatellite markers in the 81
HCCs, looking for allelic imbalance compared with the
normal, non-neoplastic liver (available in 77 of these). We
also analyzed for methylation abnormalities, using 21 promo-
ters, and quantitated the degree of methylation using combin-
ed bisulfite restriction analysis (called COBRA).

First, we found that methylation was significantly higher
in the HCCs than in the matched normal liver for 18 of the 21
methylation loci (p values ranged from 0.035 to < 0.0001;
Fig. 3). Using quantitative methylation data, we correlated
CIMP with the mutational studies, which segregated the
tumors into two groups by hierarchical clustering. One
group was characterized by mutations in the p53 gene, and
these tumors had significantly higher degrees of CIN (as
measured by “fractional allelic loss”, or FAL scores), and
lower levels of methylation. The other group was charac-
terized by mutations in the beta-catenin gene and signifi-
cantly higher levels of methylation. Thus, HCCs were similar
to CRCs, in that the tumors could be placed into two separate
groups: CIN or CIMP. The first type is associated with p53
mutations, and the second with beta-catenin.”

We used a supplemented cohort to correlate CIMP in HCC
with age and chronic infection with viral hepatitis. We used
our matched pairs of HCC/normal liver, and added to this,
22 samples of normal liver tissue removed from patients who
had undergone resections for metastatic CRC. For this study,
we had 15 HCCs from patients who had documented infec-
tions with hepatitis B, 46 who had been chronically infected
with hepatitis C, and 18 who had no evidence for infection
with either virus. We used a variety of statistical analyses to
determine associations between viral infection and methyla-
tion at 19 target loci (see the primary manuscript for the
details®).

Analysis of methylation segregated the target loci into
three groups. Normal tissues from patients who did not have
HCC showed methylation at seven “group 1” loci, which

included HIC-1, CASPS, GSTP1, SOCS1, RASSFIA, p16, and
APC. Group 1 loci were more highly methylated than five
markers in “group 2” (CDHI, RUNX3, RIZI, SFRP2, and
MINT31) or seven “group 3” (COX2, MINTI, CACNAIG,
RASSF2, MINT2, Reprimo, and DCC). The non-cancerous
hepatic tissue from patients with HCCs showed significant
increases in methylation at group 1 and 2 loci. Finally, me-
thylation was significantly greater in the HCC tissues in
each of the loci from all 3 groups, where the methylation
was both more frequent, and denser.

Methylation at the group 1 loci was significantly associated
with increasing patient age, and quantitatively, methylation
levels at all but one of the group 1 loci was significantly higher
in patients = 65 years old compared with those younger
than 65. This observation underscores the role of aging and
methylation at TSGs in the development of HCC. Inte-
restingly, methylation in the non-neoplastic liver was signi-
ficantly elevated at group 1 and 2 loci in the patients chroni-
cally infected with hepatitis C (compared to non-neoplastic
liver from hepatitis B patients). In the HCC tissues, although
methylation was extensive at the group 1 loci regardless of
the associated viral infection, chronic hepatitis C infection
was associated with higher levels of methylation at group 2
and 3 loci compared with the virus-negative HCCs.

Finally, we calculated the difference in methylation at
each locus in the non-cancerous liver and HCC for each
patient. Using hierarchical clustering analysis, we could
categorize HCCs into two groups. Group B HCC patients (n
= 36) had significantly more methylation than group A
HCC patients (n = 39). Among the group B patients, 81%
had chronic hepatitis C infections, 14% were positive for
hepatitis B, and 5% (only 2) had neither virus; fully 94%
had evidence for chronic viral hepatitis. However, in group
A patients, 38% had hepatitis C, 21% had hepatitis B infec-
tions, and 41% were virus-negative (p = 0.0002 by »
analysis). All of these results support the hypothesis that
chronic viral hepatitis infection, and prominently hepatitis

Table 1. Specificity of Methylation at Different markers, and Its Correlation with Aging, and Hepatitis Virus

Infection in the Liver

Methylation in non-

Methylated locus

cancerous liver

Methylation in HCC

Group 1 locus
(HIC-1,CASPS, GSTP1, SOCS1,
RASSF 14, p16, APC)
Group 2 locus
(CDHI, RUNX3, RIZI, SFRP2,
MINT31)

Group 3 locus
(COX2, MINT1, CACNAIG,

Age-related methylation

Inflammation-related

Dense methylation in all HCC

Dense methylation in HCV-

methylation and HBV-related HCC
C 6 thvlati Dense methlation in HCV-
ncer-specific m ion
ancerspectiic metylatio related HCC

RASSF2, MINT2, Reprimo, DCC)

HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HBV, hepatitis B virus.
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C, may cause the methylator phenotype that is seen in HCC
as summarized in Table 1.

ETIOLOGY OF CIMP CANCERS

Since the initial discovery almost two decades ago that the
PRb gene can be a target of aberrant hypermethylation,* it
has been appreciated subsequently that aberrant methylation
has consequences for transcriptional silencing of many
cancer-related genes.”* However, the molecular mechanisms
underlying the initiation and maintenance of aberrant me-
thylation are unclear. In this regard, dietary and lifestyle
factors have been proposed to influence aberrant methylation
of tumor suppressor genes in different individuals.* An
association between cigarette smoking and CIMP has been
described in a large cohort study.* Similarly, It is believed
that chronic exposures to yet other ‘epi-mutagens’ may
provide a favorable environment for epigenetic modification
of genomes in susceptible individuals. There are data to
suggest that Helicobacter pylori (H. Pylori) infection closely
correlates with aberrant methylation in gastric cancer.*"
The precise mechanisms by which H. pylori may regulate
aberrant hypermethylation in gastric cancer are still unclear,
but reversal of hypermethylation following eradication of
this organism from the stomach has resulted in demethyl-
ation of previously methylated genes.*** Along similar
lines, viruses have also been etiologically linked to human
cancers, and recent estimates suggest that as many as 15%
of all cancers worldwide may be associated with chronic
viral infections. We and others have provided provocative
data to suggest that chronic exposure to viruses may be
related to aberrant methylation of genes in several malig-
nancies including colon cancer,” hepatocellular carci-
noma,"*" and gastric cancer.”

A body of literature suggests that adult cancers are
derived from stem cells or early progenitor cells. Data gather-
ed in recent years also indicate that aberrant methylation of
genes is not a completely independent event, but acts in
concert with epigenetic modifications that occur at the
histone complexes within nucleosomes. The promoter chro-
matin state for the most hypermethylated genes in adult
cancers is virtually identical between embryonic stem cells
and adult cancer cells.” In embryonic stem cells, these genes
are held in a ‘transcriptionally ready’ status which is mediat-
ed by a bivalent promoter chromatin pattern that consists of
a repressive mark (histone H3 methylation at Lys 27; H3K27)
and an active mark (histone 3 dimethylation at Lys 4; H3K4),
regulated by the polycomb group proteins (PcG).* During
conditions of abnormal cell renewal, such as cell stress, inf-
lammation or chronic injury and repair, PcG complexes
recruit additional repressive marks (H3K27me3 and
H3K9me2) to these gene promoters, thus establishing an

abnormal DNA methylation pattern, and the resultant
silencing of specific growth regulatory genes. The loss of
function of these critical genes in turn locks these aberrantly
methylated stem cells in a state of abnormal clonal expansion
that begins a process of neoplastic initiation and transfor-
mation.™* It is just a matter of time before we gain sufficient
understanding of these events, which will eventually allow
us to assemble the puzzle of the dynamics of aberrant DNA
methylation in human cancer.

DNA METHYLATION: CLINICAL AND
THERAPEUTIC POTENTIAL

DNA methylation as a biomarker for cancer

The identification of specific methylation events occurring
early in multistep carcinogenesis and the suggestion that
epigenetic silencing of genes plays a causative role in tumor
development, have generated significant interest in the use
of DNA methylation as a diagnostic marker of CRC. Mul-
tiple studies have indicated that aberrantly regulated DNA
methylation is one of the key mechanisms for tumor sup-
pressor gene silencing during the adenoma-to-carcinoma
and serrated adenoma-to-carcinoma sequence in the colon.
The aberrant methylation of certain tumor suppressor genes,
such as p/6, has been reported in colonic adenomas and
aberrant crypt foci.™* To explore this, we investigated aber-
rant methylation of MGMT in a series of CRCs, adenoma-
tous polyps and normal colonic mucosa specimens. We
found a gradual increase in MGMT hypermethylation in a
normal-to-adenoma-to-carcinoma progression, suggesting
that methylation at this DNA repair gene may evolve and
spread throughout the promoter in a gradual manner as the
colonic epithelial cells move through the progressive, multi-
step cascade.” In another study, we asked whether loss of
one Netrin-1 receptor, UNC5C, were mediated via epigenetic
silencing of its promoter region in the colon.” We analyzed a
group of 147 CRCs, 52 adenomas and 21 normal mucosal
tissues. Interestingly, we found only rare evidence of UNC5C
methylation in the normal colon, but an increased frequency
of methylation in adenomas (63%) and CRCs (76%). When
these data were compared with allelic losses at a second
Netrin-1 receptor, DCC, we found that UNC5C methylation
occurred predominantly in the earlier lesions (adenomas
and early stage CRCs), whereas DCC losses occurred
frequently in advanced CRCs. These data clarified the impor-
tance of epigenetic silencing as an earlier event (UNC5C
methylation), compared to genetic alterations (DCC loss)
that happen at later stages in multistep colorectal carcino-
genesis.”” Another interesting feature is that these hyperme-
thylated genes are not only pathogenic events in the adenoma-
to-cancer progression, but are neoplasm-specific molecular
events that have the potential to be used as molecular
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biomarkers of pre-malignant tumors in the colon.

In fact, novel approaches to the early detection of CRC
that are possibly less expensive and might be better accepted
by patients are being compared to the most commonly used
screening methods. Pilot studies have shown promise for an
approach using tumor-derived DNA mutations in the feces
of cancer patients for the early detection of CRC. However,
the use of assays based on methylated genes for the detection
of colon polyps has not been as well studied to date.”** There
is evidence to suggest that epigenetic signatures can be
detected in the blood®” and stools®** of patients with colon
polyps and cancer.

DNA methylation and epigenetic therapy

Promoter methylation analysis may also provide useful prog-
nostic markers of disease progression and response to
therapy. Specific methylation events have been associated
with different tumor stages and with worse prognoses.®
Epigenetic changes are also under investigation as potential
predictors of response to traditional chemotherapy.®* Unlike
genetic events (mutations and allelic losses) that occur at

tumor suppressor genes, epigenetic modifications are
potentially reversible. The reversibility of DNA methylation
has led to the development of novel therapies based on
restoring the activity of methylation-silenced genes by inhi-
biting DNA methylation. At present, the most widely inve-
stigated inhibitors of methylation are the nucleoside analogs,
5-azacytidine (which has the commercial name, Vidaza),
and 5-aza-2’-deoxycytidine (5-AZA, with the commercial
name Decitabine), which are incorporated into DNA and
prevent the activity of DNA methyltransferases (DNMTs).”

Aberrant methylation of genes may be important for
chemosensitivity to various drugs currently used to treat
cancer. Because multiple genes become methylated in
individual cancers, many epigenetic targets can be affected
by a single demethylating drug. Furthermore, the chemothe-
rapeutic effect might be predictable prior to the administ-
ration of such drugs through an analysis of hypermethylated
genes in a patient’s tumor. The expression of a methylation-
silenced tumor suppressor gene can be restored by treatment
with a demethylating agent. Thus, even if a tumor has
become resistant to anticancer drugs, this might be reversed,

HCT116 & HCT116 + 2 ~ 5-FU .
MLH1 mut: MMR-defici ent MMR-deficient EEEE——— Resistant to cell death
(MMRI-IS;Ef:Ei;n?( _— MMR-proficient L Sensitive to cell death
SWag cells  5-Aza hMLH1 demethylated and 5-FU -
(MLH1 meth; MMR-deficient) re-expressed —— IEIive to cellAER
! Became MMR-proficient
A
120.0 120.0
100.0 100.0
—- S\W48
80.07 8001 —— SW48 + 5 M SAZA
60.0 60.0 -#- HCT116
HCT116 + 2
40.0 + 40.0 +
— HCT116+3
20.0 20.0
0.0 0.0
Untreated 1#4M5-FU 2.5 M 5-FU 54M 5-FU Untreated 14M5-FU 2.5 M 5-FU 54M 5-FU
B

Fig. 4. Treatment with a demethylating agent restores sensitivity to 5-FU toxicity in a MIMIR-deficient CRC cell line. (A) The top schematic summarizes the treatment plan
and results from the in-vitro experiments. Four CRC cell lines - HCT116 and HCT116 + 2 (both MMR-deficient due to mutation in MLH1), HCT116 + 3 (MMR-proficient
following restoration of MLH1 gene with chromosome 3 transfer in HCT116 cells) and SW48 (MMR-deficient due to hypermethylation of MLH1) - were cultivated in
growth medium or exposed to 5-AZA for 24 h.* Culture medium was exchanged and cells were allowed to form colonies over a period of 10-12 days. During this time, the
cells were continuously exposed to increasing concentrations of 5-FU. Cells were washed, fixed, stained and colonies counted. MLH1T methylation status, its expression
(mRNA and protein), and sensitivity to 5-FU sensitivity were monitored in each experiment. (B) A representative graph (in the left panel) depicts the mean = S.D. of three
different experiments for the colony forming assay from CRC cell lines exposed to different doses of 5-FU (1 M, 25 uM, and 5 uM). Cells were allowed to form colonies
for 10-12 days. The means and S.D. of three independently performed experiments are shown. As indicated, only HCT116 + 3 cells (MMR proficient cells) are sensitive to
5-FU, while all MMR-deficient cells demonstrate more colonies, indicating resistance to the chemotherapeutic drug. However, when SW48 cells were pretreated with 5
1M 5-Aza for 24 h before 5-FU exposure, MR activity is restored, and they behave similarly to the MIMR-proficient HCT116 + 3 cells (right panel).

MMR, mismatch repair; CRC, colorectal cancers.
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making the drugs effective at the usual therapeutic concen-
trations. As mentioned previously, 12% of sporadic CRCs
show MSI due to MLHI hypermethylation, and these
tumors are typically resistant to various chemotherapeutic
agents, including 5-fluorouracil (5-FU). Using an in vitro cell
culture model, we tested the hypothesis that demethylation
of the MLH]I promoter in hypermethylated colon cancer
cells would restore MMR proficiency and sensitivity to 5-
FU.* We studied a panel of MMR-deficient CRC cell lines
including SW48 (methylated at MLHI), HCT116, HCT116
+ chr2 (both mutated at MLHI) and the MMR-proficient
cell line HCT116 + chr3, in which the MLH1 gene was
reconstituted by the stable transfer of chromosome 3 (Fig.
4A). We observed that 5-AZA treatment resulted in the
demethylation of MLH1, and restored both mRNA and
protein expression of the gene in SW48 cells. As demon-
strated in the figure, 5-FU treatment strongly reduced the
cell growth (as measured by colony formation activity) only
in MMR-proficient HCT116 + chr3 cells, but was signifi-
cantly less effective in all MMR-deficient cell lines.

Combined treatment of SW48 cells with 5-AZA and 5-
FU resulted in the same growth inhibition as seen in 5-FU
treated HCT116 + chr3 cells (Fig. 4B). These data clearly
demonstrate that resistance to 5-FU can be overcome by re-
expression of MLHI protein through 5-AZA-induced deme-
thylation. These findings could have a significant impact on
the development of future chemotherapy strategies.*

One of the key limitations of these nucleoside analogs is
that they do not act in a gene-specific manner; they cause
global hypomethylation of all genes with CpG sequences.
Nonetheless, these agents have progressed into clinical trials
of several human cancers.” To date the treatment outcome
appears to be better in hematopoietic cancers than solid
tumors.”® The toxicity of nucleoside analogs due to non-

Genomic instability

specific hypomethylation of potential proto-oncogenes and
retrotranspoons has necessitated the development of other
direct or indirect inhibitors of DNMT activity, including pro-
cainamide, green tea polyphenol, epigallocatechin-3-gallate
(EGCQ), and antisense oligodeoxynucleotides.” These com-
pounds are less potent inhibitors of DNMT activity compared
to 5-AZA-based compounds, but offer less toxicity, and
potentially can be used as an adjunct to nucleoside analog
therapy.

A PUTATIVE UNIFYING MECHANISM
FOR GENOMIC AND EPIGENETIC

INSTABILITY IN CRC

The role of JC virus in the genesis of CRC and CIMP
JCV is a polyomavirus that infects most humans, and
usually is associated with no apparent disease. However,
JCV encodes a viral oncogene that induces cancer in two
different animal models.”” We have reported that most
CRCs harbor JCV DNA, and that over half of these express
the viral transforming protein, T-antigen (T-Ag).”™ JCV
DNA and protein expression can be found in adenomatous
polyps of the colon as well.” This has been reproduced and
supported by several other laboratories.”™ Although nearly
90% of CRC tissues harbor JCV DNA, we have found a
significant relationship between the expres-sion of T-Ag
protein in the CRC nuclei and both CIN and CIMP (Fig.
5).” It has been suggested by others previously that the
methylator phenotype might be a cellular strategy to escape
viral infection, and we are pursuing this hypothesis at
present.

Moreover, transfection of the JCV genome into the CRC
cell line RKO, which is near-diploid, induces CIN and

Gene Targets

Genes lost by LOH

JCV? —— CIN

Lynch syndrome\‘“x.\

APC, SMAD4, p53, etc.

N Genes lost by mutation
at repetitive sequences

MSI

A(Lm methylation

TGF 3-R2, BAX, caspase-5,
CHK3, CDX2, BLM, etc.

Genes silenced by
promoter methylation

JCV? ———

Cancer

CIMP

APC, MGMT, PTEN,
p16, HPP1, etc.

Fig. 5. An integrated model for different forms of genetic and epigenetic instability in CRC. Tumors can develop via chromosomal instability (CIN), microsatellite instability
(MSI), or CpG island methylator phenotype (CIMP) pathways. MSI may develop either from Lynch syndrome (the hereditary form), or via the CIMP pathway (a
presumably acquired form). Ultimately, all pathways converge pathologically as cancer. Based upon our current understanding, CIN and CIMP represent the two
primary processes of genetic and epigenetic instability respectively, in the colon. In essence, MSI in sporadic CRCs originates because of CIMP, and once MLH1
becomes methylated, the tumors acquire MSI. Thus far the molecular mechanisms for CIN and CIMP are not clear, however, there are data to suggest that JC virus
(JCV) may be a putative unifying mechanism for genetic and epigenetic instability in CRC.

CRC, colorectal cancers; MIMR, mismatch repair.
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aneuploidy.” This is not an unexpected result, as the simian
relative of JCV, SV40, regularly transforms cells in the
laboratory, in association with the induction of an aneuploid
phenotype. It remains to be proven whether JCV can induce
CIMP in a controlled laboratory setting, but this result
would add to the speculation that this common human virus
might play a role in inducing all of the “forms” of CRC. If
the mechanisms responsible for the generation of CIN and
CIMP were known, it would facilitate thinking about rational
strategies required to delay or prevent the development of
colorectal neoplasia.

SUMMARY AND CONCLUSIONS

In summary, there is convincing evidence that aberrant
methylation plays a pivotal role in human carcinogenesis. It
is becoming increasing clear that a distinct methylator
phenotype exists in the colon, and that as many as half of all
sporadic CRCs may evolve through a pathway involving
transcriptional silencing of several tumor suppressor genes.
Additionally, it would appear that CIMP and CIN constitute
the two major mechanisms of genomic instability in the
colon, and that sporadic MSI tumors represent a subset of
tumors with hypermethylation of the MLHI gene. Although
defining CIMP tumors is still a challenge, it is hoped that
efforts in the near future will resolve this issue and allow the
development of a uniform strategy to identify these tumors.
Although future studies are necessary to validate the role of
JCV in gastrointestinal carcinogenesis, it is likely that JCV
may be an answer to the elusive questions about the mole-
cular mechanisms responsible for CIMP and CIN. Although
it may seem that our current understanding of CIMP is
plagued with more questions than the answers, there is no
doubt that future studies hold the promise to elucidate the
terra incognita of CIMP in CRC.
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