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The invariant (i) natural killer (NK)T cells represent a 
unique subset of T lymphocytes which express the Vɑ14 chain 
of the T cell receptor (TCR), that recognizes glycolipid antigens 
presented by the nonpolymorphic major histocompatibility 
complex (MHC) class I-like antigen presentation molecule 
CD1d, and they participate in protection against some micro-
bial pathogens. Although iNKT cells have originally been 
regarded as T cells co-expressing NKR-P1B/C (NK1.1: CD 
161), they do not seem to consistently express this marker, since 
NK1.1 surface expression on iNKT cells undergoes dramatic 
changes following facultative intracellular bacterial infection, 
which is correlated with functional changes of this cell popula-
tion. Accumulating evidence suggests that NK1.1 allows recog-
nition of "missing-self", thus controling activation/inhibition 
of NK1.1-expressing cells. Therefore, it is tempting to suggest 
that iNKT cells participate in the regulation of host immune 
responses during facultative intracellular bacterial infection by 
controlling NK1.1 surface expression. These findings shed 
light not only on the unique role of iNKT cells in microbial 
infection, but also provide evidence for new aspects of the 
NK1.1 as a regulatory molecule on these cells. 
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INTRODUCTION

Facultative intracellular bacteria comprise various 

pathogens such as Mycobacterium tuberculosis, M. 
leprae, Salmonella enterica, Brucella sp., Legionella sp., 
Listeria monocytogenes, and Francisella tularensis, all 
of which can survive in professional phagocytes 
such as macrophages.1 Although innate immu-
nity orchestrated by multiple cell populations, 
including granulocytes and macrophages, is pivotal 
for the elimination of these bacteria, conventional 
T cells are mandatory for sterile eradication of 
these pathogens (Fig. 1).1 Because the majority of 
facultative intracellular bacteria are trapped in the 
liver immediately after systemic infection, T cells 
that reside in and/or infiltrate the liver should 
play a decisive role in the following course of 
infection (Fig. 1). Experimental murine listeriosis 
models are instrumental in analyzing the role of 
T cells in the liver during facultative intracellular 
bacterial infection, not only because protection 
against L. monocytogenes strictly depends on T cells, 
but also because liver parenchymal cells serve as 
a reservoir for this bacterium (Fig. 1).1-3

The liver is a rich provenance of unconventional 
T cells, called natural killer (NK)T cells, co-expres-
sing NKR-P1B/C (NK1.1)(CD161) that are type II 
membrane glycoproteins of the C-type lectin 
superfamily.4 The majority of NKT cells express 
an invariant (i) T cell receptor (TCR), typically 
comprising Vɑ14/Jɑ18 combined with a highly 
skewed TCRVβ towards Vβ8.2 in mouse, and 
homologous chain Vɑ24/Jɑ18 paired with Vβ11 in 
human (iNKT cells).4 The liver iNKT cells have a 
great potential to secrete both type 1 and type 2 
cytokines.4-7 The high abundance of iNKT cells in 
the liver and their rapid and vigorous cytokine 
release in response to stimuli suggest participation 
of this cell population as an immunomodulator in 
the liver. 
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Fig. 1. Course of intracellular bacteria following systemic 
infection.

Fig. 2. Course of iNKT cells following ɑ-GalCer stimu-
lation or L. monocytogenes infection (A) ɑ-GalCer stimula-
tion; (B) L. monocytogenes infection.

iNKT cells have been shown to participate in 
the regulation of various immune responses; e.g. 
tumor rejection8,9 and prevention of the develop-
ment of autoimmune diseases.10-12 Although iNKT 
cells have been suggested to participate in elimi-
nation of various microbial pathogens,13-26 recent 
studies argue against the crucial role of this cell 
population in some microbial infections.27-32 More-
over, new studies have shed light on the intriguing 
aspects of the NKR-P1 family, including NKR- 
P1B/C (NK1.1), in controlling immune responses. 
33-40 Thus, iNKT cells appear to play more com-
plicated roles than originally thought. Here, we 
focus on the unique aspects of iNKT cells as 
regulatory cells during murine listeriosis and the 
role of NK1.1 expressed on these cells.

 
Is NK1.1 a reliable marker for iNKT cells?

Although iNKT cells were originally regarded 
as T cells co-expressing NK1.1, this cell population 
does not seem to consistently express this marker. 
41-44 Immature iNKT cells lack surface expression 
of NK1.1, but they acquire the marker expression 
during ontogeny, suggesting that the NK1.1- 
subset is a precursor of NK1.1+ subpopulation.43, 

44 Yet, substantial numbers of iNKT cells lacking 
NK1.1 have been identified in the periphery.28,41,42 
This suggests that NK1.1 is not merely a marker 
for mature iNKT cells and raises the possibility 
that NK1.1 surface expression on iNKT cells is 
fluctuated under various conditions. 

iNKT cells become undetectable upon activation. 
6,7,42,45-61 Although the disappearance of iNKT cells 
had been considered to be caused by activation- 
induced cell death/apoptosis (Fig. 2A),48,51,53,61 recent 
studies suggest that iNKT cells robustly expand in 
situ rather than undergoing apoptosis.57-59: i.e. the 
failure of iNKT cell detection is caused by the loss 
of NK1.1 and TCR, which were previously con-
sidered reliable markers for the detection of iNKT 
cells (Fig. 2A).57-59 Yet, the loss of surface expres-
sion of NK1.1 and TCR, and subsequent re-expres-
sion of marker(s) have thus far been observed 
only in iNKT cells stimulated with their agonist, 
ɑ-galactoceramide (ɑ-GalCer).57-59

Fluctuation of liver iNKT cells during 
L. monocytogenes infection

Cells stained with monoclonal antibodies (mAbs) 
against surface markers, including NK1.1 and 
TCR, become transiently undetectable in the liver 

A

B
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of mice following L. monocytogenes infection.6,46 This 
dynamic fluctuation of iNKT cells during L. 
monocytogenes infection has recently been verified 
using ɑ-GalCer-loaded CD1d tetramers (ɑ-GalCer/ 
CD1d tetramers): the numbers of ɑ-GalCer/CD1d 
tetramer-reactive T cells co-expressing NK1.1 
(NK1.1+ iNKT cells) are markedly reduced in the 
liver during the early stages of L. monocytogenes 
infection, whereas those of ɑ-GalCer/CD1d tetramer- 
reactive T cells lacking NK1.1 (NK 1.1- iNKT cells) 
rise following infection and become dominant 
among the iNKT cell population (Fig. 2B).28 Similar 
kinetics of iNKT cells are seen in Vβa mice, which 
are devoid of iNKT cells expressing TCRVβ8,28 
implying that the curtailment of the NK1.1+ subset 
and subsequent expansion of NK 1.1- subpopula-
tion occur independently from TCRVβ usage. 
Hence, iNKT cells are markedly influenced by L. 
monocytogenes infection, and the NK1.1+ and NK1.1- 
subsets of iNKT cells show differential kinetics 
during listeriosis.

Participation of endogenous interleukin-12 in 
fluctuation of liver iNKT cells during L. 
monocytogenes infection

Interleukin (IL)-12 secreted mainly from macro-
phages, dendritic cells, and granulocytes is a 
heterodimeric cytokine which is composed of a 
covalently linked 35-kDa light chain (p35) and a 40- 
kDa heavy chain (p40).62 IL-12 stimulates type 1 
immune effector functions (e.g. promotion of IFNγ 

secretion from Th1 cells and NK cells),62 and hence, 
are mandatory for protection against intracellular 
microorganisms including L. monocytogenes.2,63 

Neutralization of endogenous IL-12 (p40) reverses 
the curtailment of the NK1.1+ subset and the sub-
sequent expansion of the NK1.1- subpopulation of 
iNKT cells during listeriosis.28,46 The kinetics of 
NK1.1+ and NK1.1- iNKT cells in the liver fol-
lowing L. monocytogenes infection is paralleled by 
numerical changes of IL-12 producers in the 
liver.28,64,65 It is thus conceivable that fluctuation of 
iNKT cells during listeriosis is determined by IL- 
12 (p40) levels in the hepatic microenvironment. 

Although IL-12 (p40) had been considered a 
useful tool for determination of the role of IL-12 
in vivo, the p40 subunit of IL-12 has been demon-
strated to be shared by IL-23, a cytokine which is 

a disulfide-bridged complex of a p19 subunit and 
the p40 subunit of IL-12.62,66 It is therefore possible 
that IL-23 rather than IL-12 participates in the 
fluctuation of iNKT cells during L. monocytogenes 
infection. Yet, similarly to L. monocytogenes infec-
tion, numbers of NK1.1+ subset are markedly 
diminished following in vivo administration of 
recombinant (r)IL-12, and the NK1.1- subpopu-
lation expands thereafter (Fig. 2B).28 Thus, it is 
tempting to assume that endogenous IL-12 plays 
a central role in the fluctuation of iNKT cells 
during listeriosis, although it cannot completely 
be excluded that IL-23 also, at least in part, par-
ticipates in this mechanism.

Fluctuation of iNKT cells is differentially controlled 
by signaling through TCR and IL-12R

iNKT cells become undetectable after stimula-
tion with their agonist, ɑ-GalCer.42,49,50,54,56-59 In 
contrast to L. monocytogenes infection, this change 
is not prevented by IL-12 neutralization (Fig. 
2A).64 Thus, endogenous IL-12 is involved in the 
disappearance of NK1.1+ iNKT cells during L. 
monocytogenes infection (Fig. 2B),28,46 whereas the 
disappearance of NK1.1+ iNKT cells by ɑ-GalCer 
treatment apparently occurs independently from 
IL-12 (Fig. 2A).64 

The TCR surface expression on iNKT cells is 
down-modulated after ɑ-GalCer stimulation (Fig. 
2A),57-59 whereas that on iNKT cells is not affected 
by Salmonella infection.58 Similar to L. monocyto-
genes infection, fluctuation of iNKT cells during 
salmonellosis is also controlled by endogenous 
IL-12 [Emoto, unpublished observation]. It is there-
fore assumed that disappearance of NK1.1+ subset 
and subsequent expansion of NK1.1- subpopula-
tion are differentially controlled by signalling 
though TCR and IL-12R.

Origin of NK1.1- iNKT cells which emerge in the 
livers of mice following L. monocytogenes infection 

The numerical increase of liver NK1.1- iNKT 
cells after L. monocytogenes infection is prevented 
by NK1.1+ cell depletion.28 This suggests that 
NK1.1+ cells are a prerequisite for the emergence 
of NK1.1- iNKT cells. Because NK1.1+ cells com-
prise not only iNKT cells, but also NK cells, it is 



iNKT Cells during Intracellular Bacterial Infection 15

Yonsei Med J Vol. 50, No. 1, 2009

possible that the numerical increase of NK1.1- 

iNKT cells following L. monocytogenes infection is 
controlled by NK cells. However, because nu-
merical increase of NK1.1- iNKT cells following L. 
monocytogenes infection is further increased by NK 
cell depletion (anti-asialo GM1 Ab treatment),28 this 
possibility is unlikely.

In addition to NK and iNKT cells, NK1.1+ cells 
comprise nonclassical NKT cells. Although iNKT 
cells comprise cells expressing CD4 but lacking 
CD8 (CD4+ cells), and those lacking CD4 and CD8 
(CD4-8- (double negative: DN) cells), a small but 
distinct NKT cell population expressing CD8 has 
been identified.67-71 Moreover, in contrast to iNKT 
cells which express TCRα/β as an antigen receptor, 
some NKT cells expressing TCRγ/δ have also 
been identified.70,72-75 Because both cell popula-
tions are also abundant in the liver70,75 and are 
depleted by NK1.1+ cell depletion, it is possible 
that the prevention of the emergence of NK1.1- 
iNKT cells by NK1.1+ cell depletion is caused by 
the depletion of these cells. However, because 
numerical increase of liver NK1.1- iNKT cells fol-
lowing L. monocytogenes infection is not prevented 
by CD8α+ or TCRγ/δ+ cell depletion,28 this possibility 
is also unlikely. Thus, the NK1.1- subset, which 
emerges in the liver of L. monocytogenes-infected 
mice, is primarily derived from the NK1.1+ sub-
population of iNKT cells.

Do iNKT cells propagate in situ following 
L. monocytogenes infection?

Recent studies suggest that iNKT cells expand 
in situ robustly in response to α-GalCer.57-59 It is 
possible that a similar mechanism exists in listerial 
infection, because total numbers of iNKT cells are 
increased, though transiently reduced, following 
L. monocytogenes infection compared to preinfection. 
28 However, because (i) numbers of NK cells are 
increased in the liver following L. monocytogenes 
infection,27,28 (ii) expansion of iNKT cells is im-
paired in the presence of NK cells,76,77 and (iii) ex-
pansion of liver iNKT cells is promoted by NK 
cell depletion, which is caused by increased local 
concentrations of IL-1528,76 (IL-15 is prerequisite 
for the proliferation of not only NK cells but also 
iNKT cells78), it is conceivable that iNKT cells 
increased in the liver following L. monocytogenes 

infection are supplied from other organs. Hence, 
it is likely that stimulation by a specific antigen 
(i.e. α-GalCer) and by the cytokine IL-12 have 
differential outcomes.

Infiltration of iNKT cells in the liver following 
L. monocytogenes infection occurs independently 
from thymus

Although thymus is essential for the develop-
ment of iNKT cells (Fig. 3),5,70,79-81 comparable num-
bers of those cells are detected in adult thymec-
tomized mice.28,82 Similar to euthymic mice, num-
bers of the NK1.1+ subset are markedly dimi-
nished in adult thymectomized mice following L. 
monocytogenes infection, and the NK1.1- subpopu-
lation is numerically increased.28 Thus, numerical 
alterations in NK1.1+ and NK1.1- iNKT cell popu-
lations in response to L. monocytogenes infection 
occur independently from a functional thymus. 
The NK1.1+ subset in the periphery has been 
found to be derived from a thymic NK1.1- sub-
population of iNKT cells.43,44 In this study, NK1.1 
surface expression on iNKT cells is acquired in the 
periphery after the cells have left the thymus 
during ontogeny. However, the NK1.1- subset that 
emerges in the liver following L. monocytogenes in-
fection develops from the NK1.1+ subpopulation 
of iNKT cells.28 Because the disappearance of liver 
iNKT cells after TCR stimulation has been shown 
to be followed by repopulation of these cells due 
to homeostatic proliferation of an iNKT-cell reser-
voir in the bone marrow,48 it is conceivable that 
some NK1.1+ iNKT cells, which re-emerge at later 
stages of listeriosis, are derived from the bone 
marrow, although in situ expansion of iNKT cells 
cannot completely be excluded (Fig. 3). Hence, 
accumulation of iNKT cells in the liver is differ-
entially regulated under physiological and inflam-
matory conditions.48

Functional alterations of liver iNKT cells during 
listeriosis

Substantial numbers of IFN-γ and IL-4 producers 
are detected among liver iNKT cells from unin-
fected mice after in vitro stimulation with TCR/ 
CD3 ligation5,6 or with phorbol myristate acetate 
and ionomycine28 (Fig. 4). High numbers of IFN-γ 
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Fig. 4. Cytokine profile of CD4+ and DN iNKT cells fol-
lowing L. monocytogenes infection.

Fig. 5. NKR-P1 as a "missing-self" recognition molecule.

Fig. 3. Accumulation of iNKT cells under physiological 
and inflammatory conditions.

producers are detected among liver iNKT cells 
from L. monocytogenes-infected mice, whereas IL- 
4-producing cells are virtually undetectable (Fig. 
4).6,28,46 Because the vast majority of iNKT cells in 
the liver of L. monocytogenes-infected mice lack 
surface expression of NK1.1, these findings 
suggest that NK1.1- iNKT cells, which emerge in 
the L. monocytogenes-infected liver, fail to produce 
IL-4 and hence express a Th1-like phenotype. 

In mouse, the iNKT cells segregate into 2 popu-
lations on the basis of CD4 expression; i.e. CD4+ 
and DN cells.4,5,83 Before infection, the majority of 
liver iNKT cells co-express CD4 and only a 
minority lack this marker.5,28 The CD4+ iNKT cells 
are numerically reduced after L. monocytogenes in-
fection, whereas DN iNKT cells are virtually unaf-
fected (Fig. 4).6,28,46 Hence, L. monocytogenes infec-
tion primarily compresses the CD4+ rather than 
DN iNKT-cell population. 

Since the CD4+ and DN iNKT cells are differ-
entially influenced by L. monocytogenes infection, it 

is possible that each cell subset plays a different 
role during L. monocytogenes infection. In uninfected 
mice, frequencies of IL-4-producing iNKT cells are 
markedly reduced by CD4+ or NK1.1+ cell deple-
tion, whereas numbers of IFN-γ producers are 
virtually unaffected.5,28 In contrast, frequencies of 
IFN-γ-producing iNKT cells are markedly higher 
in CD4+ cell-depleted mice after infection as com-
pared to nondepleted mice.28 These findings sug-
gest that NK1.1- iNKT cells with IFN-γ-producing 
activity in the L. monocytogenes-infected liver are 
preferentially DN (Fig. 4).

DN iNKT cells differ from CD4+ iNKT cells in 
their cytokine production profile.69,84-88 In general, 
CD4+ rather than DN iNKT cells are responsible 
for IL-4 production albeit at varying levels in 
different organs. Since (i) CD4+ cells dominate DN 
cells among liver iNKT cells,4,5,28 (ii) IL-4-produ-
cing cells in the liver are markedly reduced by 
NK1.1+ cell depletion,6,46 (iii) large numbers of IL-4 
producers are detected among purified liver CD4+ 

NK1.1+ cells after TCR ligation,6 and (iv) numbers 
of IL-4-producing iNKT cells from CD4+ or NK1.1+ 
cell-depleted mice are minute,6,28 it appears that 
the CD4+NK1.1+ subset under physiological 
conditions is mainly responsible for IL-4 produc-
tion in the liver although iNKT cells express both 
IL-4 and IFN-γ mRNA upon stimulation.89,90 Dif-
ferential stimulation (i.e. specific antigen versus 
IL-12) is probably responsible for distinct cytokine 
production with inflammation, thus driving IFN-γ 

production from iNKT cells.5,28,46 

NK1.1- iNKT cells re-express NK1.1 at later stages 
of listeriosis 

Numbers of iNKT cells reach levels comparable 
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to those in uninfected animals at later stages of 
listeriosis.46,64 In parallel, the NK1.1+ subset is pro-
portionally increased and NK1.1- subpopulation is 
reduced. It is thus possible that NK1.1 is re-ex-
pressed on iNKT cells even if the marker was lost. 
Substantial numbers of donor-derived NK1.1+ 
iNKT cells are detected in the liver of recipient 
re-arrangement gene-1-/- mice lacking all T cells, 
including iNKT cells, which was reconstituted 
with NK1.1+ cell-depleted hepatic leukocytes from 
mice that had been infected with L. monocyto-
genes.28 These findings suggest that NK1.1 can be 
re-expressed on iNKT cells, even in spite of 
previous loss of the marker (Fig. 2B), although it 
cannot completely be excluded that NK1.1- iNKT 
cells fail to accumulate in the liver of recipient 
mice. It is conceivable that at least NK1.1+ iNKT 
cells, which re-emerge during late stages of 
listeriosis, express functional activities similar to 
those in naive mice, because NK1.1+ iNKT cells 
that re-emerged in the liver have a potential to 
secrete IL-4.64

Re-expression of NK1.1 on liver iNKT cells from 
mice, which had been infected with L. monocytogenes, 
is not found after in-vitro culture even in the 
presence of IL-12-neutralizing mAb [Emoto et al., 
unpublished observation]. This is consistent with 
previous findings showing that TCR, but not 
NK1.1, becomes detectable on α-GalCer-stimulated 
iNKT cells after in-vitro culture.58 These findings 
suggest that different mechanisms exist in the 
disappearance/re-emergence of NK1.1 and TCR, 
and that some factor(s) other than IL-12 also parti-
cipate in down-modulation of NK1.1 on iNKT 
cells.

Is down-modulation of NK1.1 on iNKT cells 
essential prerequisite for combat L. monocytogenes?

The NKR-P1 family comprises activatory and 
inhibitory receptors. Whereas NKR-P1A, NKR- 
P1C, and NKR-P1F are activatory receptors, NKR- 
P1B and NKR-P1D are inhibitory receptors.33-40,91 
Lectin-like transcript 1 or C-type lectin-related 
molecules have been identified as ligands for NKR- 
P1A, NKR-P1B, NKR-P1D, and NKR-P1F.38-40 

Thus, NKR-P1 family members allow recognition 
of "missing-self", thus controlling activation/inhi-
bition of NK1.1+ cells in a MHC class I-independent 

manner. Because cross-linking of NKR-P1C by anti- 
NK1.1 mAb induces IFN-γ production from NK1.1+ 
cells,33 it is possible that NKR-P1C participates in 
immunosurveillance such as the elimination of cells 
lacking hither-to-unknown antigen(s) expressed on 
infected cells (Fig. 5). It is therefore possible that 
NK1.1 participates in surveillance of infection, and 
that the loss of NK1.1 counteracts excessive 
inflammatory responses.

Detrimental role of iNKT cells against L. monocyto-
genes infection 

IFN-γ plays an essential role in resistance against 
L. monocytogenes infection,2,92-95 whereas IL-4 exacer-
bates disease.96-99 Since considerable numbers of 
IFN-γ, but not IL-4-secreting iNKT cells, are found 
in the liver of L. monocytogenes-infected mice, it is 
possible that iNKT cells participate in protection 
against L. monocytogenes infection. Yet, Jα18-/- 

mice, which are entirely devoid of iNKT cells, are 
more resistant to L. monocytogenes infection than 
control mice.28 These findings suggest that iNKT 
cells do not participate in antilisterial resistance 
and may even exacerbate disease, although contri-
bution of iNKT cells in protection against enteric 
listeriosis has been suggested.100 Because iNKT 
cells comprise a heterogeneous population, it is 
speculated that the IFN-γ-producing NK1.1- subset 
of iNKT cells ameliorates, whereas the IL4-pro-
ducing NK1.1+ subpopulation exacerbates disease 
(see Fig. 4).

At first sight, the finding that listeriosis in mice 
lacking total iNKT cells is ameliorated could be 
taken as an argument against a pivotal role of the 
iNKT cells in protection against L. monocytogenes 
infection. However, 2 subsets of iNKT cells exist: 
(i) The CD4+NK1.1+ subset which produces IL-4 
and hence should be of detriment in listeriosis. At 
early stages of infection, exacerbation by this 
subset seems to dominate because depletion of the 
total iNKT cell population ameliorates listeriosis. 
This notion is consistent with previous findings 
showing that listeriosis is improved by anti-CD1 
mAb treatment.29 (ii) The CD4-NK1.1- subset pro-
duces IFN-γ suggesting its beneficial role in lister-
iosis. Yet, contribution of the NK1.1- subset to 
resistance occurs later and seems supportive but 
not essential. 
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CONCLUSION

NK1.1 surface expression and functional acti-
vities of iNKT cells are markedly influenced by 
listerial infection. Despite the designation of NKT 
cells, the NK1.1 surface molecule is not a reliable 
marker of this cell population. Although iNKT 
cells produce both IFN-γ and IL-4 in naive mice, 
the majority of this cell population produces IFN-
γ during listeriosis, but not IL-4 due to abundant 
IL-12 in microenvironment. It is therefore tempting 
to assume that distinct iNKT-cell populations play 
different roles in intracellular bacterial infection. 
Of these, the NK1.1+ subset seems ineffectual or 
even harmful, whereas the NK1.1- subset appears 
to contribute to antilisterial protection by means 
of IFN-γ. NK1.1 surface expression on iNKT cells 
in the liver fluctuates during L. monocytogenes in-
fection in a reversible manner. This dynamic 
fluctuation of NK1.1 expression on iNKT cells 
suggests a unique role of the NK1.1 molecule on 
this cell population during intracellular bacterial 
infection.
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