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INTRODUCTION

Modeling and simulation have developed as important tools for 
rational decision making in drug development and use. Appro-
priate models can predict the time course of drug exposure, re-
sponse, and adverse effects for different dose regimens. Of mod-
eling techniques, the widespread use of population modeling 
methods has provided a quantitative framework for under-
standing individual variability in drug exposure and response.

Population modeling is a tool for identifying relationships 
between observed drug exposure or response and a subject’s 
physiologic characteristics. It originated from the population 
pharmacokinetics (PK) modeling introduced in 1972 by Shein-
er, et al.1 Initially developed to analyze sparse PK data collected 
from routine clinics,2 this approach was expanded to modeling 
drug responses [e.g., pharmacodynamics (PD)] in order to in-
vestigate the relationship between PK and PD quantitatively.3 

Modeling, especially population modeling, has become an 
important tool in drug development. The method developed 
by Sheiner, et al.1 is based on a mixed effect modeling frame-
work that estimates population mean parameters and be-
tween-individual variability by pooling sparse data from many 
individuals. The method also estimates the covariate effects 
associated with variability in drug exposure and response. 
With such growing importance of modeling approaches in 
drug development, in recent years, pharmacokinetic-pharma-
codynamic (PKPD) modeling has also become a key tool for 
modernizing oncologic drug development through early iden-
tification and quantification of dose–response relationships.

One of the difficulties with oncologic drug development is 
that the full dose–response relationship is difficult to be char-
acterized as typically only one or two doses are given to patient 
population and a placebo group is rarely used. Also, the thera-
peutic index is typically narrow because drug concentrations 
causing tumor shrinkage can also cause adverse effects (AEs).

Given such practical difficulties, PKPD modeling could fa-
cilitate more efficient oncology drug therapy by systematically 
assessing various tumor metrics, which can be potential pre-
dictors for oncology drug trials.

This review summarizes works published on population PK 
PD modeling to describe the time course of tumor size, tumor 
marker and biomarker responses, and adverse effects, as well 
as model-based predicted tumor metrics which were then sub-
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sequently used in survival analyses as predictors of survival 
along with baseline patient factors.

DRUG TREATMENT IN CLINICAL 
ONCOLOGY 

Fig. 1 depicts a model-based framework for oncology drug de-
velopment. First, a PK model is developed to describe the rela-
tionship between dose and PK metrics, such as trough concen-
tration, area under concentration (AUC), and time course of 
concentration [C(t)]. Then, a PKPD model is developed to de-
scribe the relationship between PK and PD metrics, where PK 
metrics obtained from PK model are used as inputs in the 
PKPD model for various PD metrics, such as tumor size metrics 
{e.g., tumor size ratio [TSR], tumor size [SIZE(t)], time to tumor 
growth [TTG], tumor growth rate constant [Kgrow]}, tumor mark-
er or biomarker metrics, survival time [e.g., progression-free 
survival (PFS), overall survival (OS)], and AE metrics [e.g., de-
crease of white blood cell (WBC) count].

ENDPOINTS IN CLINICAL ONCOLOGY

Endpoints of clinical efficacy in anticancer drug treatment in-
clude objective response rate (ORR), PFS, and OS. Of these, 
early evaluation of antitumor activity is typically based on ORR, 
which is defined by Response Evaluation Criteria in Solid Tu-
mors (RECIST) categories:4 complete response, partial re-
sponse, stable disease, or progressive disease.

The above categorization is based on the following criteria: 
reduction in tumor size, measured as the sum of longest diam-
eters (SLD) of target lesions and assessment of non-target le-
gions and the appearance of new lesions. RECIST-based cate-
gorization of antitumor response may not be appropriate for 
drugs whose mode of action is to delay disease progression 

without noticeable tumor shrinkage, where disease stabiliza-
tion may be more related to survival benefit. Thus, ORR does 
not always reflect improvement in survival, and many clinical 
studies, which were effective as assessed by ORR in early-
stage of study, have failed to show efficacy in late stages. 

PFS is defined as the time from disease occurrence until diag-
nosis of progressive disease and is used in later stages of studies. 
This endpoint, which requires a shorter follow-up period than 
OS, is dependent on the assessment time of tumor response, not 
always used as a valid surrogate endpoint for OS. According to 
meta-analyses, while PFS improvement has translated into OS 
improvement in some cancers (e.g., colorectal),5,6 no such corre-
lation has been found in others (e.g., breast cancer).7,8 Both ORR 
and PFS reduce a set of time-course data of tumor response to a 
single summary measure of categorized tumor progression sta-
tus and survival time, thereby ignoring the time-varying longitu-
dinal nature of tumor response. OS represents the time from 
disease occurrence until death and remains the universally ac-
cepted gold standard.

MODELS FOR TUMOR SIZE

In solid-tumor clinical trials, imaging techniques, such as com-
puted tomography scan and X-ray, are typically used to mea-
sure tumor size, which is recorded according to the RECIST cri-
teria4 as SLD measured on a limited number of organs across 
targeted lesions. Then, according to RECIST, tumor size, origi-
nally measured on a continuous scale, is transformed into the 4 
categories defined above. Accordingly, this step of categoriza-
tion facilitates clinical interpretation of measured tumor sizes. 
However, this method of assessing drug effectiveness based on 
a point estimate of categorized response has its limitations:9,10 
first, transforming a continuous variable into a categorical vari-
able results in the loss of information. Second, RECIST criteria 
are evaluated at a set of discrete time points selected a priori, 
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Fig. 1. Model-based framework for oncology drug development and treatment. See text for symbols.



3https://doi.org/10.3349/ymj.2017.58.1.1

Kyungsoo Park

thereby all the dynamic characteristics related to tumor pro-
gression, including natural tumor growth, treatment-related tu-
mor shrinkage, and treatment-related resistance development, 
are ignored.

MODELS FOR TUMOR SIZE: 
ANALYTIC EQUATION APPROACH

Models of tumor dynamics are expressed in two different ap-
proaches. One approach uses an analytic model described as al-
gebraic equations, and the other uses a set of ordinary differen-
tial equations. For an analytic model, Stein, et al.11 proposed the 
following algebraic equation for tumor size y over time t, where 
the term “-1” is used due to the initial condition of y(0)=y0:12

y(t)=y0∙(exp(g∙t)+exp(-d∙t)-1)	 (1)

In the above equation, tumor size is assumed to increase ex-
ponentially with a net growth rate constant g and to decrease 
exponentially with the drug-induced decay rate constant d. 
Other models using algebraic equations are found elsewhere.

Analytical models present some advantages from an imple-
mentation point of view. Due to mathematical simplicity, they 
are easy to implement in classical software programs, and allow 
for very quick computations. However, they have several disad-
vantages. First, varying dosing information, such as dose de-es-
calation and modification, cannot be taken into account. Sec-
ond, the models are purely empirical in nature and thus cannot 
be extended to extrapolating the developed model to account 
for dosing regimen changes within the same study, as well as 
different dosing regimens in a different design and/or study. 
Lastly, they have limitations with formulating new hypotheses 
for mechanisms pertaining to tumor growth and response to 
drug treatments.

MODELS FOR TUMOR SIZE: 
DIFFERENTIAL EQUATION APPROACH

Models of tumor dynamics using ordinary differential equa-
tions are generally expressed as12

dy/dt=growth_net-decay_drug	 (2)

where “dy/dt” denotes the derivative of y with respect to t, that 
is, the change of tumor size over time; “growth_net” denotes a 
function of net growth, that is the difference between natural 
tumor growth and natural tumor death; and “decay_drug” de-
notes drug-induced decay processes.

The “growth_net” term can take different forms, including lin-
ear growth, exponential growth, and more complex forms, such 
as logistic and Gompertz growths that separate growth and 

natural (i.e., non-drug induced) decay as shown below:

growth_net=

α	 (linear growth)
α∙y	 (exponential growth)

α∙y∙(1-
y
θ)	 (logistic growth)

-α∙y∙log (
y
θ)	 (Gompertz growth)

	 (3)

The “decay_drug” term in Eq. (2) represents the effect of an anti-
cancer drug and is assumed to follow a first-order decay process 
as below, which ensures non-negativity of the solution for y.

decay_drug=effect∙y	 (4)

The “effect” term represents a constant or a function of a PK 
metric (e.g., plasma concentration), e.g.,

effect=β∙C(t)	 (5)

where C(t) denotes the drug plasma concentration. The “effect” 
term can also be nonlinearly related to C(t), say, through an 
Emax model. The “β” term can be a constant or a function of 
time to reflect the decay with time as below

β=exp(-λ∙t)	 (6)

This expression in Eq. (6) represents the loss of drug effect 
over time due to the emergence of “resistance.”

From 2008 up to 2014, 13 papers have been published in 
eight different therapeutic areas to propose models for the time 
course of tumor size in patients: colorectal cancer,13,14 non-
small cell lung cancer (SCLC),15,16 renal cell carcinoma,17-20 thy-
roid cancer,21 metastatic breast cancer,22 prostate cancer,11 gas-
trointestinal stromal tumor17,23 and low-grade glioma.24 See 
Ribba, et al.12 for a summary of these models.

MODELS FOR TUMOR SIZE: EXAMPLE

Claret, et al.25 developed the tumor growth inhibition (TGI) 
model using data collected from colorectal cancer patients who 
received capecitabine with a schedule of 2 weeks on followed 
by 1 week off or 5 fluorouracil daily for 5 consecutive days every 
4 weeks. This model has been applied to several cancer types 
and drugs by other investigators. The TGI model is described 
in Eq. (7) and (8).

dy(t)/dy=KL∙y(t)-KD(t)∙Exposure(t)∙y(t)     y(0)=y0	 (7)
KD(t)=KD,0∙exp(-λ∙t)	 (8)

In Eq. (7) and (8), y(t) is the tumor size (=SLD) at time t, y0 is 
the baseline tumor size, KL is the tumor growth rate, KD(t) is the 
drug-constant cell kill rate that decreases exponentially with 
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time (according to λ) from an initial value of KD,0 to account for 
the progressive development of resistance, and Exposure(t) is 
the drug exposure at time t. Due to no concentration data avail-
able in their work, daily dose was used as the driving force of 
drug effect.

The key to this model is that it accounts for three important 
clinical features of tumor progression in anticancer drug treat-
ment (the dynamics of tumor growth, antitumor drug effect, 
and resistance to drug effect) in one model, based on a previ-
ously published simulation model.26 Describing tumor size as a 
function of time and drug exposure, it accounts for the natural 
tumor growth and the drug action on the tumor (i.e., tumor cell 
kill driven by drug exposure). With a first-order tumor growth 
rate, the model incorporates a resistance process to describe 
the regrowth of tumor.

However, it should be noted that, because dose is not includ-
ed in the model, it cannot be used to predict tumor response 
under different dosing regimens.

MODELS FOR TUMOR MARKERS

Tumor markers are produced by cancer or other cells in the 
body in response to cancer. Examples are prostate specific anti-
gen (PSA) in prostate cancer, M-protein in myeloma, cancer 
antigen 125 (CA125) in ovarian cancer, and carcinoembryonic 
antigen (CEA) in colorectal cancer.27 Since these tumor markers 
can be readily measured in blood, they may represent the total 
body burden of cancer better than tumor SLD. According to 
RECIST 1.1, SLD measurements of tumor only assess a maxi-
mum of five target lesions,4 and conventional two dimensional 
scans, on which RECIST is based, do not capture changes in tu-
mor density.28 Also, tumor SLD measurements are not objec-
tive, costly, and the assessment is performed every 6 to 8 weeks.

Men with prostate cancer or with other prostate disorders 
often show elevated PSA levels. You, et al.29 used a bi-exponen-
tial model to describe in prostate cancer patients the decline 
in PSA levels with time after prostatectomy. They also described 
using mono-exponential models alpha fetoprotein and human 
chorionic gonadotropin levels in germ cell tumor patients re-
ceiving conventional chemotherapy.30

In multiple myeloma, monoclonal immunoglobulin proteins 
(called M-protein) are produced in excessive amounts by ma-
lignant plasma cells. Using a drug exposure-driven model with 
the same model structure as in the TGI model (equation 7), 
Jonsson, et al.31 described M-protein levels over time in multi-
ple myeloma patients receiving dexamethasone treatment.

MODELS FOR TUMOR MARKERS: 
EXAMPLE

Recently, Desmée, et al.32 using a simulation approach sh-

owed that joint modeling of PSA kinetics and survival time 
produces a precise estimation of PSA time-course and survival 
parameters, compared with two simplified alternatives, two-
stage and joint sequential models. They suggested the devel-
oped method as a way to improve treatment prediction and 
evaluation in oncology.

Fig. 2 depicts a schematic diagram of the model used in the 
work by Desmée, et al.32 In the absence of treatment, it is as-
sumed that prostatic cancer cells, C, proliferate with rate Kprol 
and eliminate with rate Kd. PSA is produced and secreted with 
rate Kp and eliminated from the blood with rate Ke. Then, it is 
supposed that a chemotherapy with time-varying effective-
ness, e(t), acts by blocking cell proliferation, and thus, the pro-
liferation rate under treatment is suppressed, becoming 
Kprol∙[1-e(t)] with 0 ≤ e(t)≤ 1. Mathematically,

dC/dt=Kprol∙[1-e(t)]∙C(t)-Kd∙C(t)	 (9)
dPSA/dt=Kp∙C(t)-Ke∙PSA(t)	 (10)

MODELS FOR BIOMARKERS

Kanefendt, et al.33 fitted indirect response (IDR) models to the 
time courses of soluble vascular endothelial growth factor re-
ceptor 2 (sVEGFR-2) and soluble vascular endothelial growth 
factor receptor 3 (sVEGFR-3) data in metastatic colorectal can-
cer patients treated with sunitinib.

Hansson, et al.23,34 used the IDR model to describe vascular 
endothelial growth factor (VEGF), sVEGFR-2, sVEGFR-3, and 
soluble stem cell factor receptor (sKIT) data in gastrointestinal 
stromal tumour (GIST) patients receiving sunitinib. Based on 
correlations between the biomarker responses analyzed, they 
proposed an analytical framework for investigating the rela-
tionships among model-predicted time courses of five met-
rics: drug exposure, biomarkers, tumor SLD, adverse effects, 

1−e(t)

Kprol

C
Kd

Kp

PSA

Ke

Fig. 2. Schema of the secretion of PSA by prostate and cancer cells. See 
text for symbols.
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and survival.
These approaches used in sunitinib analyses support using 

population PKPD modeling technologies for biomarkers to 1) 
examine which biomarkers are worthwhile to be investigated, 
2) better understand the action mechanism of the drug, 3) early 
evaluate treatment efficacy, and 4) predict long-term treatment 
outcomes.

MODELS FOR BIOMARKERS: EXAMPLE

Buil-Bruna, et al.35 modeled lactate dehydrogenase (LDH) and 
neuron specific enolase (NSE) concentrations in SCLC patients. 
In their work, a modeling framework was proposed that relates 
LDH and NSE, which are circulating biomarkers in the plasma 
and are easily obtained from patients, to tumor progression lev-
els assessed by RECIST categories. LDH and NSE are known to 
be independent prognostic factors for SCLC. In their model, an 
underlying latent variable representing unobserved “disease 
level,” corresponding to tumor size dynamics, was incorporated 
as a driving source of biomarker production influenced by ex-
posure to treatment. They showed that model-based unob-
served disease levels are strongly correlated with RECIST crite-
ria-based disease progression measurements, suggesting the 
feasibility of circulating biomarkers in predicting treatment 
outcomes as powerful tools to monitor disease.

A schematic diagram of the final model is described in Fig. 3 
and differential equations related to the model are as follows:

dC(t)/dt=-KDE∙C(t)	 (11)
dD(t)/dt=λ-α∙C(t)∙D(t)∙R(t)	 (12)
dLDH(t)/dt=KIN,LDH∙(1+θ∙GCSF)+KD,LDH∙D(t)-KOUT,LDH∙LDH(t) 
	 (13)
dNSE(t)/dt=KIN,NSE+KD,NSE∙D(t)-KOUT,NSE∙NSE(t)	 (14)

In the model diagram and equations, notations are as fol-

lows: C(t) is plasma drug concentration associated with che-
motherapy, D(t) is a latent variable that represents disease 
progression and drives LDH and NSE production, and R(t) is 
drug resistance, modeled by linking cumulative drug exposure 
with a decrease in the drug effect, i.e., R(t)=exp(-γ∙∫C(t)dt) and 
KIN,LDH and KIN,NSE are zero-order rate constants and KD,LDH, 
KOUT,LDH, KD,NSE and KOUT,NSE are first-order rate constants. Granu-
locyte colony-stimulating factor (GCSF) increases the physio-
logical LDH synthesis.

MODELS FOR ADVERSE EFFECTS

Neutrophils and platelets, which are essential for fighting infec-
tions and blood clotting, respectively, have the characteristics 
of rapid proliferation and therefore are easily affected by che-
motherapy. As a result, myelosuppression has been one of the 
most frequent drug adverse reactions encountered during che-
motherapy. Using leukocyte and neutrophil data obtained from 
several chemotherapy drugs, Friberg, et al.36 developed a my-
elosuppression model, which has been the most widely used 
myelosuppression model so far.

Other types of adverse drug effects induced by chemothera-
py that have been investigated using model-based approaches 
include the following:27 1) the work by Agoram, et al.37 in che-
motherapy-induced anemia on the hemoglobin time course 
whose production is stimulated by darbepoetin alfa; 2) the 
work by Fetterly, et al.38 in trabectedin-induced liver toxicity on 
the time course of alanine aminotransferase (ALT); 3) the works 
by Keizer, et al.39 in E7080 therapy and Hansson, et al.40 and 
Houk, et al.17 in sunitinib therapy on the time course of elevated 
diastolic blood pressure; 4) the work by Xie, et al.41 in irinotecan 
therapy on the occurrence of diarrhea; and 5) the works by Hé-
nin, et al.42 in capecitabine therapy and Hansson, et al.40 in suni-
tinib therapy on the occurrence of hand-and-foot syndrome.

Fig. 3. Schematic view of the final model and differential equations used to describe the model. See text for symbols.
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MODELS FOR ADVERSE EFFECTS: 
EXAMPLE

In the work by Friberg, et al.,36 chemotherapy-induced myelo-
suppression was described using a semi-mechanistic PKPD 
model, developed based on leukocyte and neutrophil data ob-
tained in patients after administration of docetaxel, paclitaxel, 
and etoposide, which was then applied to myelosuppression 
data obtained from 2’-deoxy-2’- methylidenecytidine, irinote-
can, and vinflunine administrations. The schematic diagram of 
the model is given in Fig. 4. In the model, Prol denotes a prolif-
erating compartment that represents stem cells and progeni-
tor cells sensitive to drugs; Kprol denotes a proliferation rate 
constant of cells in Prol, that is, rate constant of self-renewal or 
mitosis for generation of new cells in Prol, which was depen-
dent on the number of cells in the compartment; Ktr denotes a 
rate constant between transit compartments, which was incor-
porated to allow a time delay between drug administration and 
the observed effect; n is the number of transit compartments, 
which was chosen to be 3; Circ denotes a compartment of ob-
served circulating blood cells with Circ0 being the baseline val-
ue; Kcirc denotes an elimination rate constant for blood cells 
from the circulating compartment; and EDrug denotes drug ef-
fect, which was assumed to be either a linear (EDrug=Slope∙Conc) 
or an Emax model [EDrug=Emax∙Conc/(EC50+Conc)], where 
the drug concentration (Conc) was assumed to reduce the pro-
liferation rate or induce cell loss by the function EDrug. The as-
sumption Kprol=Ktr was used to guarantee dProl/dt=0 at steady 
state, and Kcirc=Ktr was used to minimize the number of pa-
rameters to be estimated.

The differential equations were written as

dProl/dt=Kprol∙Prol∙(1-EDrug)∙(Circ0/Circ)γ-Ktr∙Prol	 (15)
dTran1/dt=Ktr∙Prol-Ktr∙Tran1	 (16)
dTran2/dt=Ktr∙Tran1-Ktr∙Tran2	 (17)
dTran3/dt=Ktr∙Tran2-Ktr∙Tran3	 (18)
dCirc/dt=Ktr∙Tran3-Kcirc∙Circ	 (19)

MODELS FOR OVERALL SURVIVAL

As illustrated in Fig. 1, once models for tumor metrics, such as 
tumor size (or tumor size ratio or tumor growth rate, etc.), tumor 
markers [PSA, alpha fetoprotein (AFP), human chorionic go-
nadotropin (hCG), CA125, etc.], and biomarkers (LDH, VEGF-A, 
sVEGFR, etc.), are established, these tumor metrics can be im-
plemented into parametric time-to-event (TTE) models to pro-
vide a model-based prediction for PFS and OS.

Central to implementing TTE models is the proper choice of 
a hazard model, a general form of which is described as below:

h(t)=h0(t)∙exp(β1∙x1+β2∙x2+…+βn∙xn)	 (20)

h(t) in equation (20) is the hazard function for the Cox pro-
portional hazard model, representing the instantaneous rate 
at which an event (e.g., death) occurs. It consists of the baseline 
hazard function h0(t) and the explanatory variables xi, i=1,2,…, 
n. h0(t) is defined by a set of estimated parameters and de-
scribes how the risk of event changes over time at baseline 
levels of covariates. x1, x2,..., xn represent predictors (e.g., tu-
mor metrics mentioned above or patient covariates that were 
related to PFS or OS). These predictors can be a baseline met-
ric for each patient (e.g., baseline tumor size), an individual 
parameter estimate (e.g., tumor growth rate), or a time varying 
metric [e.g., tumor(t), tumor marker(t), or biomarker(t)]. Also, 
patient baseline characteristics (e.g., tumor stage, Eastern Co-
operative Oncology Group performance (ECOG) status, num-
ber of lesions, etc.) are used as predictors. The size of the coef-
ficients β1, β2, …, βn denotes the relevant importance of the 
corresponding predictor in the model.43

In the work by Claret, et al.,25 an OS model was described by 
baseline tumor size, denoting patient characteristics, and 
change in tumor size at week 7 relative to baseline, denoting 
drug effect. Poorer prognosis was associated with larger base-
line tumor size and smaller tumor shrinkage at week 7.

Fig. 4. Structure of the pharmacokinetic-pharmacodynamic model describing chemotherapy-induced myelosuppression. See text for symbols.
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MODELS FOR PROGRESSION FREE 
SURVIVAL

In the work by Buil-Bruna, et al.,35 based on the Cox propor-
tional hazards model in equation (20), PFS was found to be sig-
nificantly influenced by the predicted change in individual dis-
ease level (=latent tumor size), which was defined as

h(t)=h0(t)∙exp(δ∙Dji)	 (21)

Dji=
Dtji+1-Dtji	

(22)	 Dtji

where Dtji is the predicted disease level for j-th patient at i-th ob-
servation time point (i.e., the current CT scan), and Dtji+1 is the 
predicted disease level for j-th patient at (i+1)-th or subsequent 
observation time point (i.e., the following CT scan, approxi-
mately 8 weeks later).

CONCLUSION

The conventional approach of evaluating oncology drug re-
sponse based on RECIST criteria is limited in that it results in 
the loss of information by transforming a continuous variable 
into a categorical variable and allowing tumor size evaluation 
only at a set of discrete time points selected a priori. Through 
a review of published works, this report intended to suggest a 
model-based approach as a promising tool to be used in on-
cology drug therapy to overcome limitations with the tradi-
tional RECIST-based approach.
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