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INTRODUCTION

Photodynamic therapy (PDT) is a therapeutic modality using 
light and light-sensitive chemicals (photosensitizers). Its appli-
cation has been successful in both neoplastic and non-neo-
plastic diseases.1 Recently, this therapy has been widely applied 
in various tissues and organs, including the retina, esophagus, 
stomach, skin, and colon. Krosl, et al.2 reported that the antitu-
mor effect of PDT was improved by the administration of gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF). In 
addition, certain gene transfections, such as Bcl-2 and IL-6, 

were reported to increase cellular sensitivity to PDT.3,4

Peroxisomal proliferator-activated receptor gamma (PPARγ) 
is a member of the nuclear receptor superfamily and plays a 
role in global cellular functions, including lipid and glucose 
metabolism, insulin sensitivity, adipocyte differentiation, pro-
liferation, and apoptosis.5 Similar to the binding of ligands, 
PPARγ heterodimerizes with retinoid X receptor alpha and un-
dergoes a conformational change that leads to the binding of a 
specific DNA sequence (peroxisomal proliferator response ele-
ment).6 Recent reports indicate that, in addition to adipocytes, 
PPARγ is expressed at a significant level in various kinds of tu-
mors, such as breast adenocarcinoma,7-9 colon adencarcino-
ma,10 liposarcoma,11 lung adenocarcinoma,12 and neuroblasto-
ma.13 Many reports have demonstrated that activation of PPARγ 
by its specific ligand causes cancer cells to undergo apoptosis. 
It was also reported that PPARγ ligands induce growth retarda-
tion14 and apoptotic or non-apoptotic cancer cell death.15-18 
However, the molecular mechanisms of PPARγ-induced apop-
tosis are currently under investigation.

Due to the limitation of the tolerable dose of PPARγ ligand in 
vivo, trials have been required to use a combination therapy 
with another cytotoxic drug. For example, the combination of 
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PPARγ ligand with TNF-related apoptosis-inducing ligand 
(TRAIL) demonstrated an improved killing effect on cancer 
cells.19,20 With this background, we asked whether treatment us-
ing troglitazone improves PDT tumor responsiveness and ad-
dressed this question by analyzing cell proliferation and apop-
tosis among DLD-1 colon cancer cells. Our results indicate en-
hanced tumoricidal activity when PDT is combined with the 
PPARγ ligand troglitazone.

MATERIALS AND METHODS

Cell lines and reagents
DLD-1, HCT-15, and HT-29 cells (human epithelial colon can-
cer cell lines, ATCC CCL 221) were cultured in RPMI 1640 me-
dium supplemented with 10% fetal bovine serum (Gibco BRL, 
Grand Island, NY, USA). Pyropheophorbide-a methyl ester 
(PPME) was solubilized in N, N-dimethyl formamide (DMF). 
Troglitazone was provided from SanKyo (Tokyo, Japan) and ad-
justed to 10 mM in 19% (w/v) bovine serum albumin (BSA) and 
5% (v/v) dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO, USA) 
and added to the cell culture in a final concentration of 1 to 100 
μM. Added to the control cultures was the same amount of 
DMSO with BSA, which was less than 0.2% (v/v) of the culture 
medium.

Reverse transcriptase-polymerase chain reaction 
(RT-PCR)
Total RNA was prepared using an RNeasy Kit (Qiagen Inc., 
Chatsworth, CA, USA). cDNA was synthesized from 5 μg of total 

Fig. 1. Inhibition of DLD-1 proliferation by troglitazone. DLD-1 cells were 
seeded in a 96-well plate at a concentration of 1×104 cells/mL, and 
growth was analyzed at the indicated day via MTT assay. The small box 
represents the mRNA expression level of DLD-1, and preadipocytes were 
used as positive controls. Results are presented as the mean±SD of 
three independent experiments performed with triplicate samples. 
*p<0.001. D, DLD-1 cells; P, preadipocyte.
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Fig. 2. Induction of DLD-1 cell death by PDT. (A) Cell death was induced 
by various doses of photosensitizer/PDT. DLD-1 cells (3×104 cells/mL) 
were placed in a 96-well plate, and PDT and MTT assays were performed 
as described in the Materials and Methods section. (B) Rapid uptake of 
photosensitizer in the cytoplasm of DLD-1. DLD-1 cells were loaded with 
200 nM PPME for 1 h and subsequently detected using a fluorescent mi-
croscope at 650 nm. (C) Morphological change of DLD-1 after PDT was 
observed using a light microscope. *p<0.01, †p<0.001. M, medium only; 
DMF, N, N-dimethyl formamide; Control, DMF plus 120 mJ light; PDT, pho-
tosensitizer in DMF plus 120 mJ; PDT, photodynamic therapy; PPME, py-
ropheophorbide-a methyl ester.
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RNA using 2 μg random hexamer (Amersham Pharmacia Bio-
thech Inc., Uppsala, Sweden), 1.25 mM dNTP (Boehringer-
Mannheim, Mannheim, Germany) and 200 U M-MLV reverse 
transcriptase (Gibco BRL). PCR was performed using 0.25 mM 
dNTP, 0.25 U Taq polymerase (Perkin Elmer, Norwalk, CT, 
USA), 10 pmole primer pair, and 3 μL cDNA with a thermal cy-

cler (Perkin Elmer). The primer sequences were as follows: 
PPARγ, 5’-TCCGTGATGGAAGACCACTC-3’ (sense, 190–209) 
and 5’-CCCTTGCATCCTTCACAAGC-3’ (antisense, 502–521; 
GeneBank U09138); and β-actin, 5’-TTGTAACCAACTGGGAC 
GATTGG-3’ (sense, 1552–1575) and 5’-GATCTTGATCTTCATG 
GTGCTAGG-3’ (antisense, 2967–2991; GeneBank J00691). PCR 
cycling conditions were as follows: 92°C for 30 sec, 55°C for 30 
sec, and 72°C for 1 min.

In vitro PDT using PPME and apoptosis assay
For photodynamic analysis, target cells (1×106 in a 35-mm2 
dish) were pre-incubated with 1.5 mL of RPMI added with var-
ied doses of PPME (0.1–1 μg/mL) for 1 h at 37°C. Following in-
cubation, the cells were exposed to light. The light source was a 
200-W halogen lamp (MVI, Micro Video Instruments Inc., 
Avon, MA, USA) attenuated by a 515-nm filter. The total power 
output for the irradiation of the cells was adjusted to 120 mJ/
cm2 as indicated by a Laser power meter (Metrologic Instru-
ments, Inc., Blackwood, NJ, USA). Then, cells treated with 
PPME/PDT were further incubated at 37°C for 24 h. Cells were 
stained with propidium iodide (PI) and annexin V-FITC (Bio-
source International, Camarillo, CA, USA), and cell death was 
analyzed via flow cytometry using the FACScan flow cytometer 
(Becton-Dickinson, CA, USA).

MTT assay
Cells (1×103 to 3×103) were cultured in 96-well plates with or 
without troglitazone for various concentrations. After incuba-
tion (1, 2, 4, and 6 days respectively), cells were washed in 
phosphate-buffered saline (PBS, pH 7.4), added to 50 μL of the 
1-mg/mL MTT solution in sterile PBS, and incubated for 4 h at 
37°C. Then, the plate was centrifugated at 3000 rpm for 10 min, 
supernatant was carefully removed, and remaining adhered 
cells were dissolved in 50 μL DMSO (Sigma). The plate was read 
at 570 nm using an ELISA reader (Softmax Pro, Biorad, Hercu-
les, CA, USA).

Western blot analysis
Cells were cultured in 6-well plates with or without 50 μM trogl-
itazone and PDT and then lysed with lysis buffer containing 50 
mM Tris-HCl (pH 7.4), 100 mM NaCl, 0.5 mM EDTA, 0.2% NP-
40, and 2 mM MgCl2 supplemented with protease inhibitor 
cocktail (Sigma). The samples were analyzed via 10% SDS-poly-
acrylamide gel electrophoresis. After transfer, membranes were 
blocked with 5% non-fat dry milk in PBS (w/vol)-0.05% Tween 
20 and incubated overnight at 4°C with anti-caspase-3 Ab 
(Transduction Lab., Lexington, KY, USA), anti-cytochrome-C 
Ab (Pharmingen, San Diego, CA, USA), and anti-α-tubulin Ab 
(Oncogene, Boston, MA, USA). Horseradish peroxidase-conju-
gated goat anti-mouse antibody (DAKO, Glostrup, Denmark) 
was used at a 1:1000 dilution as the secondary antibody, and 
reactive proteins were detected by incubation in SuperSignal 
substrate (Pierce, Rockford, IL, USA) followed by exposure to X-

Fig. 3. Enhancement of PDT-induced cell death by the pre-incubation of 
troglitazone. DLD-1, HCT-15, and HT-29 cells were treated with 20 μM tro-
glitazone for 24 h and then treated to 0.4 μg/120 mJ PDT. After incubation 
for 24 h, cell viability was detected via MTT assay. *p<0.01, †p<0.001. M, 
solvent control only; Tro (T), troglitazone only; PDT (P), PDT only; Tro+PDT 
(T+P), combination of PDT and troglitazone, PDT, photodynamic therapy.
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ray film (Eastman Kodak Company, Rochester, NY, USA). For 
quantification, densities of procaspase-3 bands were normal-
ized to the density of cytochrome C bands measured using Im-
age J software (developed by Wayne Rasband, National Insti-
tutes of Health, Bethesda, MD, USA; available at http://rsb.info.
nih.gov/ij/index.html).

Statistical analysis
Statistical analyses were performed using Student’s t-test to 
compare pairs of sample groups, and an ANOVA was used to 
determine differences among multiple groups. Statistical sig-
nificance was set at p<0.05.

RESULTS

Troglitazone inhibits the proliferation of DLD-1 cells
To test the mRNA expression of PPARγ in DLD-1 cells, we per-
formed RT-PCR. Consistent with previous reports,21 PPARγ 
mRNA was detected in DLD-1 (Fig. 1). To test whether trogli-
tazone influences the proliferation of DLD-1 cells, an MTT as-
say was performed. As shown in Fig. 1, the PPARγ agonist, tro-
glitazone, had almost no effect on the growth of DLD-1 cells 
during the first 2 days of the culture, although it significantly in-
hibited the expansion of DLD-1 cells after 4 days in a trogli-
tazone dose-dependent manner. A dose of 100 μM troglitazone 
reduced cell survival and induced a morphological change of 
DLD-1 (data not shown). The number of cells recovered from 
the group treated with 50 μM troglitazone on day 6 was three-
fold less than that of the control, suggesting that troglitazone ef-
fectively blocks the proliferation of DLD-1 cells.

PDT reduces the viability of DLD-1
To test the effects of PDT on the cell viability of DLD-1, cell via-
bility was measured via MTT assay 24 h after PDT with various 
concentrations of PPME. PDT reduced the viability of DLD-1 in 
a PPME dose-dependent manner (Fig. 2A). To determine the 
photosensitizer uptake in the cells, DLD-1 cells were incubated 
with 200 nM PPME for 1 h, and the uptake of PPME was detect-
ed via fluorescent microscopy. Fig. 2B showed a strong uptake 
of photosensitizer in the cytoplasm of DLD-1 cells. Using a light 
microscope, we observed floating and membrane blebbing of 
DLD-1 after 0.4 μg PPME/PDT, indicating that PPME/PDT in-
duced the cellular change of apoptosis (Fig. 2C).

Troglitazone enhances PDT-induced cell death
To test whether PPARγ enhances PDT-induced apoptosis, we 
examined the effect of PPARγ activation on the death of tumor 
cells using troglitazone and PDT. DLD-1 cells were pre-incubat-
ed with 10 mM troglitazone for 24 h and then treated with PDT. 
As shown in Fig. 3A, 0.4 μg/120 mJ PDT reduced cell viability by 
approximately 60%. This effect was augmented by pre-incubat-
ing cells with 20 mM troglitazone for 24 h. On using HCT-15 and 

HT-29 cells, we also observed a similar result of decreased cell 
viability in response to combination treatment (Fig. 3B). These 
results suggest that the PPARγ ligand, troglitazone, enhances the 
sensitivity of colon cancer cells to PDT-induced cell death.

Combination treatment induces apoptosis
PDT can induce either apoptotic or necrotic cell death. Gener-
ally, high-dose PDT induces cancer cell necrosis immediately, 
while low doses show delayed-type apoptosis, rather than ne-
crosis. In our system, cells treated with over 0.5 μg/mL photo-
sensitizer underwent necrotic cell death. To test whether com-
bination treatment induces apoptosis or necrosis, we performed 
a flow cytometric analysis using the Annexin V/PI staining 
method, which is commonly used to differentiate necrotic and 
apoptotic cell populations. As shown in Fig. 4, troglitazone plus 
PDT showed a drastic increase in apoptotic cell population 
compared to other treatments.

Combination treatment induces procaspase-3 
degradation
Caspase activation is an important event in the apoptotic path-
way and can serve as a marker of apoptosis. Given that cas-
pase-3 is a central executioner caspase, we performed a West-
ern blot analysis with anti-caspase-3 antibody. As shown in Fig. 
5, procaspase-3 was reduced in the combination treatment 
with PDT plus troglitazone. This result suggests that the combi-
nation of PDT and troglitazone significantly induces the degra-
dation of procaspase-3 and leads to apoptosis, in agreement 
with data in Fig. 4. It is tempting to speculate, therefore, that the 

Fig. 4. Combination treatment induced apoptosis. After treatment as indi-
cated, apoptotic cell death was detected with Annexin V/PI staining as 
described in the Materials and Methods section. The data represent 
three independent experiments. PDT, photodynamic therapy.
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combination of PDT and troglitazone is a potent killing modali-
ty in DLD-1.

DISCUSSION

PDT induces apoptosis in a variety of tumor cell lines yet does 
not induce apoptosis among most normal cells. It has been 
clinically applied in treatments of head and neck, brain, blad-
der, skin, and intrathoracic malignancies.1 PPARγ ligands in-
hibit the proliferation of colon cancer cells and induce apoptot-
ic or non-apoptotic cell death in various tumors. In this study, 
we investigated the effect of the PPARγ ligand troglitazone on 
the efficiency of PDT in DLD-1 colon cancer cells. Our data 
showed that troglitazone not only inhibited the proliferation 
but also sensitized DLD-1 to PDT-induced cell death. Whereas 
no direct cytotoxicity was observed in low-dose treatments of 
troglitazone (<50 μM), high-dose treatments resulted in a toxic 

effect on DLD-1 cells. The effect of PDT is presented in Fig. 3 
and we selected a PDT dose of 0.4 μg/120 mJ for IC50. Using a 
combination of PDT and low-dose troglitazone, we minimized 
immediate necrotic cell death. Although no inhibitory effect 
was shown in a single treatment, the combination of PDT with 
troglitazone effectively killed DLD-1 cells. DLD-1 underwent 
apoptosis rather than necrosis, as shown in Fig. 4, and caspase-3 
might also be involved in PDT/troglitazone-induced apoptosis 
(Fig. 5).

Although PDT has tumoricidal activity, the cellular mecha-
nism responsible for the tumor selectivity was not completely 
clarified. As a tumor killing mechanism, it is reported that PDT 
invokes the production of reactive oxygen species (ROS), and 
this kills tumor cells successfully.22-24 Other data indicate that 
certain kinds of photosensitizers directly target mitochondria, 
inducing apoptosis by releasing cytochrome C and activating 
various caspases.25-27 Recently, Matroule, et al.28 reported that 
HCT-116 underwent apoptosis via PDT and that mitochondria 
and ROS played a central role in PPME-mediated apoptosis. 
Tumoricidal activity of PDT has also been reported in many 
types of cancer cell lines as well as colon cancer cell lines.26 Ac-
cording to a previous report, PDT induces activation of NF-кB 
as well as an apoptotic pathway.28 It was suggested that the acti-
vation of NF-кB may involve restoration from a death pathway 
after PDT. Among the various effects of PPARγ ligands, they are 
particularly known to antagonize the activities of several tran-
scription factors including AP-1, STAT, and NF-кB.29-31 Our data 
demonstrate that combination of PDT and troglitazone in-
creases the degree of apoptosis and degradation of procas-
pase-3, raising the possibility that troglitazone effectively inhib-
its the activation of the survival pathway after PDT.

In addition, it has been reported that PPARγ regulates the ex-
pression of cyclin-dependent kinase inhibitors p18 and p21, in-
ducing growth arrest and differentiation.32,33 It may be possible 
that pretreatment of troglitazone may increase the susceptibility 
to PDT via disturbance in cell cycle regulation. However, the 
sensitizing mechanism of troglitazone in PDT-induced apopto-
sis remains to be determined.

PDT induces apoptosis as well as necrosis in cancer cells. 
Our data demonstrate for the first time that troglitazone treat-
ment enhances PDT-induced cytotoxicity in DLD-1 cells, and 
these results suggest a new therapeutic tool for combination 
treatment that is free of severe side effects. However, it must be 
further investigated whether a combination of PDT with PPARγ 
agonist is safe in animals, and many experiments will be re-
quired. In summary, our study resulted in a novel observation 
of troglitazone sensitizing PDT-induced apoptosis, which indi-
cates that this combination may be an effective modality for the 
treatment of colon cancer.
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