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INTRODUCTION

The genetic and molecular heterogeneity of tumors is a major 
obstacle for cancer therapy.1 Heterogeneity elicits variable re-
sponses to anti-cancer drugs. In some tumor types, pharma-
cological responses are not random but may be predicted by 
multi-featured molecular signatures. Thus, a molecular foot-
print of a common set of mechanisms may exist within a spe-
cific tumor subgroup.2

Based on the success of imatinib (Gleevec), a reductionist 
approach to inhibit the function of a single cancer-driving so-
matic mutation has been a major strategy in the development 

of anti-cancer drugs. These targeted anti-cancer therapies 
consist of small molecule inhibitors of the target protein or 
monoclonal antibodies targeted against various membrane-
associated receptors. Although targeted therapies may blunt 
cancer-driving signaling events, intrinsic and acquired resis-
tance generally occur due to a robust signaling network that 
can compensate for inhibition of a single perturbation.3 To 
overcome this challenge, a proper model system that embrac-
es the genetic heterogeneity and robust biological network of 
the original tumor is required.

Cancer cell lines traditionally serve as important models for 
oncology research, cancer drug discovery, and preclinical stud-
ies.4,5 The primary somatic alteration is generally preserved in 
a cancer cell line; further, cancer cell lines are usually able to 
form tumors in vivo. In addition, cancer cell lines demon-
strate pharmacological characteristics similar to those of the 
primary tumor of origin. For example, cancer cell lines that ex-
press mutant epidermal growth factor receptor (EGFR) show 
sensitivity to erlotinib treatment, similar to the tumor from 
which they were derived.6 Recent advances in genomic tech-
nologies provide unique opportunities to systematically iden-
tify predictive biomarkers. These advances involve the simul-
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taneous profiling of multi-omics features with drug responses 
or hypomorphic phenotypes in the same cell line. Steady-state 
multi-omics profiles include transcriptome abundance, single 
nucleotide variation, DNA copy number alteration, and pro-
tein abundance. These profiles can be measured with technol-
ogies, such as microarrays, next-generation sequencing (NGS), 
and reverse-phase protein arrays (RPPA). Profiles are often 
freely available from public domains. Due to advances in multi-
omics technologies, cell-based phenotypic drug discovery 
strategies have recently gained traction for addressing the af-
orementioned challenges.

In this review, we discuss the utility and caveats of establish-
ed cancer cell lines for companion discovery of therapeutic tar-
gets/drugs and enrollment biomarkers. In addition, we sum-
marize publically available multi-omics data sets for cancer 
cell lines from major tumor types. We also provide an up-to-
date summary of available computational algorithms and sta-
tistical tools for analyzing large-scale screening data and per-
forming further integrative genomics analyses for biomarker 
discovery. The identification of new therapeutic targets and 
agents linked to companion biomarkers may provide new op-
tions for cancers that have failed to respond to the current an-
ticancer drug discovery paradigm.7

HISTOLOGICAL PERSPECTIVE

A continuously growing cancer cell line is a critical resource 
for studying mechanisms of tumorigenesis and screening for 
antineoplastic agents. However, establishing such a line was a 
major challenge until the early 1950s. The first human cancer 
cell line, HeLa, was established from cervical cancer tissue 
isolated from a 30-year-old woman named Henrietta Lacks by 
the American scientist George Gey.8 Additional cancer cell 
lines from different lineages, including lung,9 breast,10 ovari-
an,11 melanoma,12 colorectal,13 pancreatic,14 and prostate, were 
subsequently established.15,16 A significant number of these 
cell lines are commercially available from several nonprofit 
biological resource centers, such as the American Type Culture 
Collection (ATCC).

These cancer cell lines have been assembled into panels, 
which span multiple tumor types, to facilitate disease-orient-
ed screening of anticancer drugs.17-20 These panels have also 
been useful for repositioning of cancer drugs.21-23 The most fa-
mous and widely used panel is the U.S. National Cancer Insti-
tute (NCI) 60, which represents nine distinct tumor types (leu-
kemia, melanoma, and cancers of the colon, lung, brain, kid-
ney, ovary, breast, and prostate).24 A similar derivative, the 
JFCR39 panel, replaced some of the lines in the NCI60 with six 
gastric cancer lines to represent one of the most common tu-
mor types in East Asia. These focused panels have successfully 
facilitated the screening and lineage selectivity of first-line 
chemotherapeutic agents. However, cancer genome sequenc-

ing efforts have increased our understanding of tumor hetero-
geneity. In addition, a novel class of anti-cancer agents that 
targets genuine somatic alterations has shown great success. 
Thus, a larger panel that embraces a significant portion of the 
recurrent genetic lesions and molecular diversity of cancer is 
needed. Several new panels have been developed to identify 
novel genetic and molecular enrollment biomarkers for che-
motherapeutic agents. These panels include the Cancer Cell 
Line Encyclopedia (CCLE; 947 cancer lines),21 Genomics of 
Drug Sensitivity in Cancer (GDSC; 639 cancer lines),22,25 Can-
cer Target Discovery and Development (CTD2; 242 cancer 
lines),23,26 Center for Molecular Therapeutics 1000 (CMT1000; 
1000 cancer lines),5,6 and GlaxoSmithKline (GSK) (311 cancer 
lines).27 The same approach has been extended to a concordant 
discovery of biomarkers and small molecule lead compounds 
using a lung cancer cell line panel.28

PROS AND CONS OF CANCER CELL LINE 
MODELS

Preclinical models of cancer typically include genetically en-
gineered mouse (GEM) models, tumor grafts, and in vitro cell 
line models.18 Each of these models has unique strengths and 
limitations. GEM models recapitulate the somatic alterations 
that drive human cancers; thus, these models are especially 
relevant for studying tumor initiation, progression, and vulner-
abilities. To generate a GEM model, cancer-driving genetic ch-
anges are introduced into the mouse germ line as a transgene 
or via mutagenesis. Xenograft tumor models are made by im-
planting primary tumor tissues (patient-derived xenograft, PDX) 
or by inoculating established cancer cell lines orthotopically 
or subcutaneously into immunodeficient mice. Despite their 
clinical relevance, in vivo models are not adequate for large-
scale studies. In addition, in vivo models cannot embrace the 
wide range of tumor diversity found in patients or for high-
throughput screening of antineoplastic agents. These challeng-
es can only be addressed by in vitro cell line models; however, 
recent controversy has surrounded the use of in vitro cell lines 
as a model system for cancer research. Specifically, cell lines 
are prone to artificial selection during prolonged culturing, 
which skews gene expression programs, including those relat-
ed to multidrug resistance.29 One study that compared muta-
tions, changes in DNA copy number, and mRNA expression 
profiles found significant differences between ovarian cancer 
cell lines and high-grade serous ovarian tumor samples.30 In 
contrast, a similar experimental approach revealed consistency 
between cell lines and primary samples in other studies of oth-
er tumor types.4,21 Another potential concern with established 
cell lines is cross-contamination.31 Further, the tumor microen-
vironment (TME) is completely absent in cell line models.32 Be-
cause the stromal cells and immune cells of the TME make sig-
nificant contributions to tumor development and metastasis, 
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the inability of cell lines to account for their effects is viewed 
as a limitation. There is also the potential for bias due to the un-
derrepresentation of tumor types from certain lineages or ge-
netic subtypes, such as prostate cancer lines and cancer lines 
expressing wild-type TP53.5 Finally, inconsistent data regard-
ing the response of a given cell line to a specific drug has been 
demonstrated across different platforms, raising concerns 
about reproducibility or reliability.33

Despite these caveats, a number of discoveries made from 
cell line models have clinical implications. For instance, the 
finding that the T790M mutation in EGFR underlies acquired 
resistance to EGFR inhibitors was made using a lung cancer 
cell line model.34 This information facilitated the recent devel-
opment of an irreversible second-generation EGFR inhibitor.35 
Similarly, the finding that upregulation of the platelet-derived 
growth factor receptor B or mutation of NRAS causes acquired 
resistance to BRAF (V600E) inhibition was made in melanoma 
cell lines and validated in patients.36 Most importantly, a num-
ber of studies show that cancer cell lines reproducibly display 
clinically validated correlations between biomarkers and drug 
sensitivity.5,21,22,25

EVOLUTION OF METHODS FOR 
ESTABLISHING AND CHARACTERIZING 
CANCER LINES

Due to the discrepancies between in vivo and in vitro condi-
tions, most primary cells are extremely difficult to grow directly 
in vitro. In addition, the in vivo growth environments required 
for tumors of different lineages are highly variable and general-
ly unknown; thus, approaches based on trial-and-error are em-
ployed until optimal growth conditions for cancer cells from 
each lineage are identified. Traditional methods for establish-
ing permanent cell lines from lung cancer have been relatively 
well-documented. Briefly, resected tumor tissues are mechan-
ically or enzymatically dissociated into single cells. These cells 
are then grown on collagen-coated tissue culture dishes in spe-
cialized media, such as ACL4 or HITES without fetal bovine 
serum (FBS), to remove contaminating normal cells. Cells are 
then grown on media with FBS to boost the growth of cancer 
cells.37 Unfortunately, this traditional approach has yielded 
relatively low rates of establishing cancer cell lines, with only 
4.5% and 9.7% success rates for lung and colon cancers, respec-
tively.38,39

New methods that significantly increase the efficiency of es-
tablishing cell lines have recently been introduced. One meth-
od involves establishing cancer cell lines from PDX tumor 
models. Although this method is indirect, the end result has a 
higher success rate.39 Conditionally reprogrammed cell cul-
ture (CRC) methods have also been used to selectively amplify 
non-fibroblast epidermal cells in a mixed cell population co-
cultured with irradiated feeder cells.40 Feeder cells together 

with a Rho-associated protein kinase (ROCK) inhibitor allow 
selective proliferation of epithelial cells. This method enables 
matched tumor/normal cell line models to be generated from 
a single patient in a relatively short period of time compared 
to that developed with the traditional transgenesis method.41 
Crystal, et al.42 recently applied the CRC method to effusions 
and biopsies from lung cancer patients and reported a suc-
cess rate of 50%. Using this CRC-generated cell line model, the 
investigators identified novel combinatorial therapeutic strate-
gies for non-small cell lung cancers (NSCLCs) that have ac-
quired resistance to targeted therapies. Three-dimensional or-
ganoid culture models, in which resected tumor specimens or 
biopsies are grown in Matrigel supplemented with required tis-
sue-specific growth factors, are another emerging method for 
establishing cell lines. This in vitro model mimics original tu-
mor growth more accurately than that of traditional two-di-
mensional culture methods. Further, organoids successfully re-
capitulate various features of primary tumors.43,44 Boj, et al.44 re-
cently established human pancreatic organoids from resected 
tumors with a success rate of approximately 80%.

To identify the factors underlying tumor diversity, initial ef-
forts focused on targeted sequencing of commonly mutated 
genes.15,45,46 Identified somatic DNA alterations from primary 
and metastatic tumors as well as from established cancer cell 
lines have been deposited in the Catalog of Somatic Mutations 
in Cancer database. The information in this database is pro-
fessionally curated with published literature regardless of the 
discovery platform.47 Recently innovated platforms in micro-
array and NGS technology have allowed more in-depth and 
high-resolution profiling of cancer variations, including gene 
expression changes in various cancer cell lines48,49 and genome 
and exome level deciphering of DNA variations at relatively 
low cost. In addition, epigenomic50 and proteomic profiles are 
also beginning to be employed for such analyses.51 These 
multi-omics characterizations of cancer cell lines have been 
pursued for various lineages of tumors, including breast,46,52-54 
lung,45,55-57 gastric,58 melanoma,12 pancreatic,14,59 colorectal,13,60 
glioblastoma,61 ovarian,11,30 prostate,15,16 and pan-cancer 
lines.19,21-23,25,49,62 The annotated established cancer cell lines for 
12 major solid tumor types have been surveyed and summa-
rized with respect to the type of assay and depth of corre-
sponding orthogonal data sets (Fig. 1).

Beyond in vitro cell line models, genomic technologies fu-
eled efforts to catalog somatic variations in thousands of tu-
mor tissue specimens from various tumor types.63 The Cancer 
Genome Atlas (TCGA) project began in 2005 following the 
success of imatinib and the invention of NGS technologies. 
The first round of the project sought to discover the most highly 
recurrent mutations by sequencing at least 500 cases for each 
cancer type, which initially included nine major tumor types. 
The TCGA has now expanded to more than 30 tumor types and 
has also begun to characterize hundreds of rare tumor types. 
These data led to high-resolution mapping of somatic altera-
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tions in major tumor types, including glioblastoma, ovarian 
carcinoma, colorectal cancer, lung squamous cancer, breast 
cancer, acute myeloid leukemia, endometrial cancer, kidney 

cancer, bladder cancer, lung adenocarcinoma, and gastric can-
cer (http://cancergenome.nih.gov). Importantly, all of the 
multi-level discoveries from the TCGA are publically available 

Fig. 1. A compendium of established cancer cell line models and the number of associated multi-omics data sets are represented as heatmaps for 
each of the 12 major tumor types. See Table 1 for the list of relevant studies that were used to generate this figure.
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and searchable through cBioPortal (http://www.cbioportal.
org).64

UTILITY OF CANCER CELL LINE PANELS: 
DRUG DISCOVERY AND REPOSITIONING

The Developmental Therapeutics Program (DTP; http://dtp.
nci.nih.gov) of the U.S. NCI employed the NCI60 cancer cell 
line panel in the early 1990s for the screening of anti-cancer 
drugs after experiencing failure with mouse model screening 
systems. More than 100000 compounds have been tested with 
this panel.4 Some of the candidate compounds were examined 
by secondary screening in xenograft tumor models. Initially, 
the screen was focused on cytotoxic agents that kill the major-
ity of cancers or a certain lineage of cancer. These early efforts 
with cancer cell lines helped position several cytotoxic agents 
as first-line treatment options for many tumor types.

There is a significant amount of inter- and intra-tumor het-
erogeneity. Thus, the identification of subtypes that share vul-
nerabilities to particular therapeutic agents and enrollment bio-
markers that predict anti-tumor responses are one of the top 
priorities in cancer research. Most cancer-driving genetic varia-
tions are found in only a small percentage of patients, with the 
exception of a few hotspot mutations. For example, response 
rates to gefitinib and crizotinib are only 15% and 6%, respec-
tively, in patients with lung cancer. These low response rates 
are based on the low incidence of EGFR and ALK mutations, 
which are predictive of sensitivity to these targeted agents. Th-
erefore, in vitro efforts to systematically identify this kind of 
precision vulnerability must have sufficient statistical power 
to address the low frequency of the target variations. During the 
past few years, several groups have attempted to implement 
systematic approaches to identify drug-biomarker relation-
ships for cytotoxic and targeted agents at various clinical and 
preclinical stages in hundreds of cell lines. The most impor-
tant projects include the CCLE, GDSC, CTD2, CMT1000, and 
GSK, which are all described in detail below.6,21-23,25,27

The CCLE project compiled multi-omics data from 947 can-
cer cell lines and included targeted deep sequencing of 1600 
genes and array-based determination of chromosomal copy 
number changes and mRNA expression levels.21 Among the 
included cell lines, 479 were analyzed with an eight-point dose 
response assay for 24 targeted and cytotoxic agents. Correla-
tion analyses between multi-omics profiles and pharmacolog-
ical profiles identified anti-cancer drugs that are associated 
with genetic-, lineage-, and gene expression-based predictors. 
As proof of concept, this analysis rediscovered known drug-
gene relationships, including PLX4720 (RAF inhibitor) and 
BRAF mutation, PD-0325901 (MEK inhibitor) and BRAF mu-
tation, erlotinib (EGFR inhibitor) and EGFR mutation, lapa-
tinib (HER2 inhibitor) and ERBB2 amplification, PF-2341066 
(MET/ALK inhibitor) and MET amplification, Nutlin-3 (inhib-

its p53-MDM2 interaction) and MDM2 overexpression, and 17-
AAG (Hsp90 inhibitor) and NQO1 expression. Known drug-lin-
eage relationships, such as the effect of panobinostat (HDAC 
inhibitor) in hematologic cell lineages, were also assessed as 
proof of concept. Importantly, these analyses identified previ-
ously unknown relationships, such as irinotecan (topoisom-
erase I inhibitor) sensitivity and SLFN11 expression, PD0325901 
and AHR expression in NRAS mutant cancer, and AEW541 
(IGF1 receptor inhibitor) and multiple myeloma. This CCLE 
approach was extended to 345 small molecule probes that 
modulate known target molecules and pathways important for 
cancer in a subset of CCLE cell lines (n=242) enriched for pre-
annotated genomic features.23 This group, which was a part of 
the NCI Cancer Target Discovery and Development Network 
(CTD2),26 identified mutations in β-catenin as predictors of sen-
sitivity to navitoclax, a BCL-2 inhibitor. Furthermore, this group 
built a web-based portal called the Cancer Therapeutics Re-
sponse Portal (http://www.broadinstitute.org/ctrp) to help 
researcher access to their discoveries.

The same strategy was employed by a collaboration effort 
between the Cancer Genome Project (CGP) at Wellcome Trust 
Sanger Institute and Cyril Benes’ group at Harvard.22 This 
project assembled 639 cancer lines and performed targeted 
exome-seq and microarray-based copy number analysis and 
mRNA profiling. The cell line panel was examined with a nine-
point dose response assay to generate pharmacological pro-
files for 130 drugs that are in clinical and preclinical stages of 
investigation. This project reproduced many preconceived drug-
biomarker relationships, such as PLX4720-BRAF mutation, 
lapatinib-ERBB2 amplification, PD-173074 (FGFR inhibitor)-
FGFR2 mutation, Nutlin-3-TP53 mutation, and PD-0332991 
(CDK inhibitor)-RB1 inactivation. Novel discoveries from this 
effort include drug-lineage relationships, such as obatoclax me-
sylate (MCL1 inhibitor)-melanoma, and drug-gene relation-
ships, such as ABT263-NOTCH1 mutation, 17AAG-STK11 in-
activation, MS275 (HDAC inhibitor)-FBXW7 loss, 681640 
(WEE1 and CHK1 inhibitor)-TET2 loss, and AZD2281 (PARP 
inhibitor)-EWS/FLI1 rearrangement. The GDSC web portal 
(http://www.cancerrxgene.org) provides a user-friendly inter-
face that enables gene or drug queries to identify matching re-
lationships.25

An earlier study from Jeffrey Settleman’s group at Harvard 
examined the oncogenotypes of 500 cancer cell lines by tar-
geted resequencing, genomic copy number variations, and 
mRNA expression levels using a microarray platform. Greshock, 
et al.27 at GSK used a similar approach to assess 311 cancer 
lines. These groups evaluated the genetic and molecular sub-
type-dependent vulnerabilities to 14 kinase inhibitors and 19 
targeted/anti-mitotic agents, respectively. The Settleman 
group utilized the CMT1000 panel to recapitulate known gen-
otype-drug sensitivity relationships including that of erlotinib 
with EGFR mutation, PHA665752 (MET inhibitor) and MET 
amplification, and AZ628 (BRAF inhibitor) with BRAF muta-
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tion.6 The GSK group found that PI3K/AKT and MEK inhibi-
tors are selective for the luminal and basal subtypes of breast 
cancer lines, respectively, and that IGF-1R inhibitors are se-
lective for colon cancer lines.27

Identical driver alterations do not necessarily behave the 
same in different tumor types. For example, most melanomas 
with BRAF (V600E) mutations respond to specific inhibitors 
of the BRAF oncoprotein, whereas colon cancers with the same 
mutation do not respond.65 Thus, in addition to feature-cen-
tric pan-cancer analyses, lineage-focused panels are important 
for the companion discovery of anti-cancer drugs and enroll-
ment biomarkers within a tumor type. For example, Ashraf, et 
al.66 found that the mutational status of KRAS/BRAF/PIK3CA 
exon 20/PTEN predicts the efficacy of cetuximab in a study of 
64 colorectal cancer cell lines. The highly annotated lung can-
cer cell line panel (n=84) created by Drs. Adi Gazdar and John 
Minna at UT Southwestern Medical Center has also been used 
to screen for predictive biomarkers of response to clinical 
compounds.67 Using this panel, the investigators re-discov-
ered that the gatekeeper mutation T790M in EGFR confers re-
sistance to EGFR inhibitors. Further, they discovered that can-
cers with KRAS mutations are sensitive to Hsp90 inhibition in 
vitro and in vivo.67 Recently, as part of the CTD2 network, our 
group utilized the same lung cancer cell line panel to simulta-
neously screen for small molecule drug candidates and enroll-
ment biomarkers anchored to a specific pair of cancer/normal 
cell lines from a single patient. For this project, 260000 synthetic 
small molecules were subjected to multiple rounds of single-
dose and confirmation screenings followed by 12-point dose 
response assays in the entire panel of lung cancer cell lines. 
We identified an indolotriazine compound that is selectively 
toxic in a subset of lung cancer lines. These lines share a com-
mon multi-gene expression signature. In addition, the indolo-
triazine compound induces a robust endoplasmic reticulum 
stress response.28 

The main discoveries made with these pan-cancer or lin-
eage-focused large-scale studies employing cancer cell line 
panels are summarized in Table 1.

UTILITY OF CANCER CELL LINE PANELS: 
TARGET IDENTIFICATION THROUGH 
FUNCTIONAL GENOMICS

Current techniques for sequencing-based discovery of thera-
peutic cancer targets have clear limitations. A significant frac-
tion of tumors do not harbor known druggable driver muta-
tions. Instead, these cancers often have mutated tumor sup-
pressor genes, the functions of which are difficult to restore th-
erapeutically. In addition, some of the major oncogenes, in-
cluding RAS and MYC, have been pharmacologically intrac-
table to date. Thus, overcoming the challenges of this so-called 
“dark matter” of current cancer therapeutics remains a priority.68

Reverse genetic loss-of-function screens provide powerful 
strategies for cell-based identification of genes that are respon-
sible for various phenotypes. RNA interference (RNAi) and 
the more recently described clustered regularly interspaced 
short palindromic repeats (CRISPR) and CRISPR-associated 
(Cas) genes (CRISPR-Cas) systems are examples of such strat-
egies. RNAi screens were the first to map the landscape of pu-
tative essential human genes via interruption of gene function 
at the mRNA level.69,70 CRISPR-Cas-mediated screens have al-
lowed the identification of bona fide essential genes by com-
pletely abrogating gene function at the DNA level.71,72 The ge-
nome-wide RNAi approach has been used in a variety of cancer 
cell line models to identify cancer-selective vulnerabilities and 
genes that exhibit synthetic lethality in response to anti-can-
cer drugs. Moreover, RNAi has been extended to lineage- or on-
cogene-dependent synthetic lethal targets (Table 1). Some of 
these genetic discoveries can be translated to pharmacological 
agents via the identification of actionable targets directly from 
the screen or from systems-level analysis of the hits.

RNAi screens are based on two different delivery platforms: 
short interference RNA (siRNA) and short hairpin RNA (shR-
NA). The most straight-forward and simplest method for de-
livering siRNA to cells is in complex with a lipid-based trans-
fection reagent, although this effect is transient. In contrast, 
shRNA enables stable knockdown during repeated cell divi-
sions due to the use of a chromosome-integrated vector con-
struct. Therefore, shRNA experiments usually require a few 
weeks before phenotypic outcomes can be assessed. The three 
most common platforms for shRNA screens are pLKO by The 
RNAi Consortium (TRC),73 pGIPZ from a collaboration be-
tween Gregory Hannon at Cold Spring Harbor Laboratory and 
Stephen Elledge at Harvard Medical School,74 and the open 
source DECIPHER libraries (http://www.decipherproject.
net/shRNA-libraries/), which were produced through com-
munity efforts. 

The first generation TRC library is based on a simple hairpin 
structure and was used to identify essential cancer genes using 
pooled hairpins; this method requires post-hoc deconvolution 
of the individual hairpins.73 Further screenings for lineage-se-
lective essential genes75,76 and selective vulnerabilities accord-
ing to genetic and molecular subtype have identified numer-
ous subtype-vulnerability relationships, including BRAF mu-
tant-BRAF/EGFR co-inhibition,65 KRAS mutant-TBK1 inhibi-
tion,77 KRAS mutant-BCL-xL/MEK co-inhibition,78 Myc over-
expression-SAE1/2 inhibition,79 RAS mutant-PLK1 inhibition,80 
and KRAS dependent cancer lines-STK33 inhibition.81 The 
TRC library is currently being employed for a large-scale sc-
reening for essential genes in a pan-cancer cell line panel as 
part of “Project Achilles” (http://www.broadinstitute.org/achil-
les). The second generation pGIPZ platform takes advantage 
of the stem-loop structure of endogenous miRNA and incor-
porates our understanding of natural miRNA processing74 to 
successfully identify cancer targets in vitro and in vivo.82-84 Fi-



http://dx.doi.org/10.3349/ymj.2015.56.5.11861192

Cancer Cell Line Panels for Drug Discovery

Table 1. Studies that Have Characterized the Genetic/Molecular Features or Sensitivity Profiles to Various Pharmacological/Genetic Perturbations 
Using Cancer Cell Line Panels

Type of cancer
 (number of cell lines)

Characterization 
method(s)

Pharmacological agent/
genetic perturbation

Discovered association
Ref.

Biomarker
Sensitivity

(drug or shRNA)

Pan-cancer (500)
Microarray 
  (mRNA, CNV), TS

14 kinase inhibitors

EGFRmut

METamp

BRAFmut

EGFRmut

Erlotinib
PHA665752
AZ628
AZD0530

6

Ovarian (39)
Microarray (mRNA), TS, WES, 
  FACS (protein markers)

8 chemotherapeutic agents CD44exp Taxanes 11

Melanoma (55) Microarray (mRNA), TS - - - 12
Colon (24) TS - - - 13

Pancreatic (10) Microarray (mRNA) 3 chemotherapeutic agents E-cadherin, Zeb-1
Gemcitabine, 5-FU, 
  cisplatin

14

Pan-cancer (947)
Microarray (mRNA, CNV), 
  TS (>1600 genes)

24 anticancer drugs

BRAFmut

BRAFmut

EGFRmut

ERBB2amp

METamp

MDM2up

NQO1exp etc.
Hematological origin
SLFN11exp

AHRexp in NRASmut

Multiple myeloma

PLX4720
PD-0325901
Erlotinib
Lapatinib
PF-2341066
Nutlin-3
17-AAG
Panobinostat
Irinotecan
PD-0325901
AEW541

21

Pan-cancer (639)
Microarray (mRNA, CNV), 
  WES

130 drugs

BRAFmut

TP53mut

RB1lof

Melanoma
NOTCH1mut

STK11lof

FBXW7lof

TET2lof

EWS/FLI1rearr

PLX4720
Nutlin-3
PD-0332991
Obatoclax mesylate
ABT263
17AAG
MS275
681640
AZD2281

22

Pan-cancer (242) - 345 small molecules CTNNB1mut Navitoclax 23

Pan-cancer (311) Microarray (mRNA, CNV) 19 cancer therapeutics
Breast cancer
Colon cancer

PI3K/AKT/mTOR inh.
IGF-IR inh.

27

NSCLC (2) WES, RS
260K small molecules
siRNA (21K genes)

E.S.
KRASmutSTK11mut

Indolotriazine
COPI

28

Lung (88) Targeted-seq (17 genes) 4 targeted agents - - 45
NCI60 Microarray (mRNA, CNV) 118 compounds ASNSlow L-asparaginase 49

NCI60 LC-MS/MS (10K proteins) 108 drugs
AIPup

GluD1exp, Rab5Bexp

SRCexp

Paclitaxel
Paclitaxel
Dasatinib

51

Breast (51)
Microarray (mRNA), aCGH, 
  protein level (49)

- - - 52

Breast (16) WES - Luminal AKT inhibitor 53
Breast (52) Microarray (mRNA), aCGH - - - 54
NSCLC (19) WGS, RS - - - 55
Lung (9) WGS, WES - - - 56
Lung (225) Microarray (mRNA), RPPA 4 compounds Mesenchymal SGI-7079 57
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nally, the DECIPHER library is the newest open-source reso-
urce that employs the pRSI lentiviral vector system and is av-
ailable to researchers as pooled collections with a minimum 
handling fee.

Genome-wide libraries of synthetic siRNA oligos are also 
commercially available and have been used typically in “one-
gene, one-well” high-throughput screen formats. In this con-
text, the outcome of transiently depleting an individual gene 
can be assessed in a relatively short period of time (i.e., within 
a few days). Discoveries made with siRNA platforms include 
lineage- and molecular subtype-dependent vulnerabilities, 
such as the KIF11 dependence of head and neck and lung can-
cers,85 proteasome addiction of triple-negative breast cancer,86 
CSNK1e dependence of MYC-overexpressing cells,87 and 
KRAS/STK11 dual mutation-driven addiction to lysosomal 
function in lung cancer.28 Synthetic lethality and mechanisms 
of resistance to anti-cancer drugs have also been investigated. 
These studies have revealed that microtubule and proteasome 
depletion are synthetic lethal for paclitaxel in lung cancer,88 
NF1 depletion leads to EGFR inhibitor resistance in lung can-
cer,89 CDK5 is a synthetic lethal for PARP inhibitor,90 RAS sup-
pression synergizes with MEK inhibitor in KRAS-mutant co-
lorectal cancer,91 and FAT1 is a negative regulator of TRAIL-
induced extrinsic apoptosis in glioblastoma.92

A new mammalian gene-knockout tool, the CRISPR-Cas 
system, is rapidly being adapted in a variety of fields, includ-
ing cancer functional genomics.93 For example, Tyler Jacks’ lab 
at M.I.T. recently employed CRISPR-Cas for the functional in-
vestigation of a panel of tumor suppressor genes in a Kras-
driven mouse lung cancer model.94 CRISPR-Cas and other ge-
nome editing tools, such as transcription activator-like effector 
nucleases (TALEN), should facilitate the identification of ad-

ditional cancer target genes and synthetic lethalities, especial-
ly ones that are not detectable by partial knockdown via RNAi 
methods.

DATA PROCESSING AND IN SILICO 
ANALYSIS METHODS

Typical cancer cell line-based drug or siRNA screens involve 
high-throughput assays that employ robotic liquid transfers 
and handling of thousands of barcode-tagged plates. These 
assays exhibit batch-to-batch or plate-to-plate variations in the 
degree of penetrance due to uneven evaporation within a plate 
or between plates during multiple days of incubation. There-
fore, statistical evaluations of screening quality and normaliz-
ation procedures for correcting these systematic errors are es-
sential. The most popular quality control metric is the Z-factor 
(Z’), which is a measure of statistical effect size using assay 
values of positive and negative controls within a plate.95 If the Z’ 
is small or negative, then the assay conditions are not optimal 
for detecting hits. Thus, these Z’ values indicate that those 
plates should be reconsidered and re-assayed if possible. The 
normalization step requires the identification of various sourc-
es of systematic errors followed by corrections using controls 
or samples on the plates. One of the most user-friendly tools 
we developed runs with Microsoft Excel, enabling informed 
and easy processing of the screening data by the investigators 
who perform the screens.96

Unlike siRNA or small molecule screens, typical shRNA 
screens are performed in a single tissue culture vessel per con-
dition. Cells are transduced with a pool of different hairpin 
molecules, which span the whole gene set. These molecules 

Table 1. Studies that Have Characterized the Genetic/Molecular Features or Sensitivity Profiles to Various Pharmacological/Genetic Perturbations 
Using Cancer Cell Line Panels (Continued)

Type of cancer
 (number of cell lines)

Characterization 
method(s)

Pharmacological agent/
genetic perturbation

Discovered association
Ref.

Biomarker
Sensitivity

(drug or shRNA)
Gastric (32) Microarray (CNV), WES, RS - - - 58
Colorectal (56) TS (TP53) - - - 60
Glioblastoma (10) Microarray (mRNA) - - - 61
NCI60 WES - - - 62

Colorectal (64) Microarray (mRNA), TS 4 ERBB1, 2 inhibition
ERBB2up, AREGup

KRASwt/BRAFwt/PIK3CAwt

ERBB1up

Lapatinib
Lapatinib
Cetuximab

66

NSCLC (84)
Microarray (mRNA, CNV), 
  WES

12 cancer therapeutics
KRASmut

ABL2amp, SRCamp

HSP90 inh.
Dasatinib

67

Pan-cancer (72) - shRNA (16K genes) - - 75
Pan-cancer (102) - shRNA (11K genes) PAX8up ovarian shPAX8 76
Colorectal (8) - 5-FU+Irinotecan Stem-like subtype FOLFIRI 100
Pan-cancer (216) - shRNA (11K genes) - - Achilles
TS, targeted sequencing; WGS, whole-genome sequencing; WES, whole-exome sequencing; RS, RNA sequencing; E.S., expression signature; mut, mutated; wt, 
wild-type; up, upregulated; low, low expression; exp, expressed; amp, amplified; lof, loss of function; inh., inhibitor; rearr, rearrangement.
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then compete against each other according to their impact on 
cell growth. Luo, et al.73 developed a statistical framework, the 
RNAi gene enrichment ranking (RIGER) score, to test the sig-
nificance of the effect of a group of hairpins that targeted a sin-
gle gene. This method is based on the Kolmogorov-Smirnov 
(KS) statistic, which examines the biased distribution of the 
hairpins for a gene toward the top of the list. The KS statistic is 
implemented in the Broad Institute’s GENE-E software pack-
age (http://www.broadinstitute.org/cancer/software/GENE-
E). Alternatively, classical Z score or robust Z score statistics 
can be adopted to identify individual hit shRNAs.83

Responses to anti-cancer agents vary among cancer lines, 
possibly due to heterogeneity of the target molecule or path-
way. Thus, the pharmacological profile obtained from many 
cancer cell lines may represent a footprint of the target mech-
anism of each drug, although the actual target molecule may 
be unknown. An important contribution of the NCI60 panel is 
the ability to infer the mode of action (MOA) of a drug based on 
similarity with a drug that has a known MOA. For example, if 
a small molecule compound exhibits a sensitivity profile that 
is very similar to that of erlotinib, it is reasonable to speculate 
that the compound may function as an inhibitor of EGFR. NCI 
researchers formulated this concept as a pattern recognition 
algorithm called COMPARE.24 This algorithm relies on a mean-
graph pattern created by plotting delta values, which are pan-
el-mean centered Log GI50 or LC50 values of the cell lines. A 
Pearson product moment correlation coefficient for each set of 
delta value pairs is then calculated and rank ordered for simi-
larity to a reference set of mean-graphs of chemical probes.97

To identify features that directly correlate with drug re-
sponse, simple statistical tests, such as multivariate analysis of 
variance, can be used in cases with two or more dependent 
variables; these variables may include tissue type, oncogeno-
type, chromosomal rearrangements, microsatellite instability, 
or gene expression.22 Identifying a predictive model from multi-
omics features is challenging because the number of features 
(i.e., >20000 in multi-omics dataset) is much larger than the 
number of observations (i.e., drug response from several hun-
dred cell lines). Therefore, a regularization and variable selec-
tion method called elastic net outperforms other similar meth-
ods, such as ridge regression and lasso.98 Elastic net achieves 
both sparsity of representation (ridge regression does not) 
and grouping effect (lasso does not).98 Elastic net has been suc-
cessfully implemented in recent studies involving large-scale 
cancer cell line panels.21,22 To summarize the method, the opti-
mal values for two parameters, alpha and lambda, are estimat-
ed using the Z score-converted input values by cross-valida-
tion to minimize error. Bootstrapping is then performed with 
the optimal parameters and the resampled data to estimate 
the weight and frequency of the significant features. Biomark-
ers that exceed the given thresholds for weight and frequency 
can then be selected.

Recently, the NCI-DREAM drug sensitivity prediction chal-

lenge evaluated 44 proposed algorithms for their predictive 
power based on the drug-response profiles of breast cancer 
cell lines that were randomly divided into training and test da-
tasets. This community effort identified Bayesian multitask 
multiple kernel learning (MKL) as the top-performing predic-
tion algorithm.99 The Bayesian multitask MKL is a machine-
learning method that integrates nonlinear regression, multi-
task learning, multiview learning, and Bayesian inference. MKL 
estimates the kernel weights for each of the multiple profiling 
data sets (genomic views). Further multitask learning steps 
estimate the drug-specific regression parameters for all drugs 
simultaneously with the shared kernel weights across drugs. 
Bayesian inference is then used to estimate all of the model 
parameters to leverage uncertainty from a small sample size.99

FUTURE PROSPECTS

The statistical power that is now possible due to the number 
of available cancer cell lines combined with recent advances 
in genomic technologies has led to a series of discoveries that 
were previously deemed impossible. Early efforts were focused 
on potential repositioning of a variety of anti-cancer drugs ac-
cording to associated predictive biomarkers. Although this 
may help to identify patients who are likely to benefit from spe-
cific anti-cancer drugs, current therapeutics are not capable of 
inhibiting all forms of cancer. Many cancer subtypes are resis-
tant to first-line chemotherapy options and do not harbor kn-
own targetable somatic mutations; examples include the triple-
negative subtype of breast cancer and stem cell-like subtype 
of colorectal cancer. In this respect, future endeavors should 
be expanded to include ab initio discovery of new drugs to fill 
existing gaps. The highest priority should be given to refracto-
ry subtypes. Specifically, established cancer cell lines must be 
properly classified according to tumor molecular subtype100 to 
allow more focused functional genomic screens or chemical 
screens for cancers that exhibit poor prognosis and/or drug 
resistance. However, a substantial number of cancer lines is re-
quired for each tumor type to yield robust hits within a subtype. 
Importantly, recent CRC-based methods promise a faster 
pace for the accumulation of cell lines.

Major bottlenecks occur when patient-derived cancer cells 
are used as guides for clinical therapeutic decisions. Recent 
CRC applications in patient-derived lung cancer tissues took 
2–6 months to establish cancer cells in sufficient amounts to 
perform drug screens.42 Overcoming the bottleneck in sample 
size, such as from core needle biopsies of lung cancer, and min-
imizing the time required to obtain a sufficient mass of tissue 
remain challenges that require further technical innovations.

Another obstacle in cell line-based modeling of drug resp-
onses is the poor correlation of drug-response measures am-
ong different studies.33 This discrepancy is unlikely to be due 
primarily to in vitro genetic drift of cell lines, because the ge-
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nomic features of the same cell lines were remarkably similar 
among the different studies.33 This difference is more likely to 
be the result of epistasis with different growth conditions or 
differences in cell culture practice. The same is true for the re-
lationship between cell line models and in vivo tumor models. 
Considering discrepancies in the growth conditions of cancer 
cell lines and original tumors, identifying the sources of the 
epistatic relationships between vulnerabilities and the TME is 
important. Thus, optimizing in vitro culture conditions may be 
necessary to minimize potential false positives and false nega-
tives. Nevertheless, it is almost impossible to completely mimic 
the physiological tumor setting on plastic. Therefore, discov-
eries made with cancer cell lines in vitro almost always require 
further validation in appropriate in vivo models. Traditionally, 
xenograft models of cancer cell lines in immune-compromised 
mice were the most popular option; however, accumulating 
PDX models with genomic annotations may be a better fit for 
this purpose, as these models maintain an intact TME.

Predictive biomarker(s) for a therapeutic regimen may indi-
cate the context in which sensitivity to an anti-cancer drug will 
occur; identification of these markers is often complicated by 
the lack of adequate variables. Therefore, the presence of more 
orthogonal dimensions of novel features provides an increased 
opportunity for capturing a more robust predictive model. In 
this respect, current advances in metabolomic and proteomic 
quantitative profiling technologies, such as mass spectropho-
tometry, have great potential. In addition, emerging function-
al genomic technologies, such as the CRISPR-Cas system, will 
also provide additional advances in the field by uncovering 
qualitative genetic vulnerabilities in a more stringent fashion 
than can be achieved with conventional RNAi-based hypo-
morphic screens.

CONCLUSION

Cancer cell lines have become a powerful tool for basic cancer 
research and anti-cancer drug development. Now empowered 
by various genomic tools, these cell lines offer utility as a plat-
form for the discovery of precision cancer medicine and for 
drug repositioning. An increasing number of studies employ-
ing this cancer cell line panel provide unprecedented oppor-
tunities for data-driven discoveries of novel anti-cancer thera-
peutic strategies. These strategies integrate multi-dimensional 
data sets of genetic/molecular profiles, drug responses, and 
molecular dependencies generated by different research lab-
oratories. To efficiently implement this strategy, we need to 
overcome challenges associated with differences in experi-
mental design and assay platforms. Development of commu-
nity-wide, consensus-based guidelines for good standard of 
practice for using cancer cell line panels should be considered. 
Further, a mechanism for central deposition of multi-dimen-
sional genomics and various cell-based assay data sets should 

be established.
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