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INTRODUCTION

Video-assisted thoracic surgery (VATS) in the supine position 
for lesions of the anterior mediastinum has become popular, 
and this procedure requires one-lung ventilation (OLV).1-3 

Surgical positions considerably influence the deterioration 
speed and nadir value of arterial oxygen tension (PaO2) after 
the start of OLV.4,5 In contrast to the lateral decubitus position, 
preferential redistribution of pulmonary perfusion to the ven-
tilated lung by gravity is absent during OLV in the supine posi-
tion, resulting in the more frequent development of danger-
ous hypoxemia.4,6

Hypoxemia during OLV develops mainly due to the involve-
ment of the intrapulmonary shunt (Qs/Qt) with blood flow 
through the capillaries of the non-ventilated lung and anes-
thesia-induced atelectasis in the ventilated lung, leading to a 
mismatch of the ratio of ventilation to perfusion (V/Q).7-9 Al-
veolar recruitment (AR) is an effective ventilatory maneuver 
that reverts alveolar collapse by increasing the transpulmo-
nary pressure. Positive end-expiratory pressure (PEEP) during 
OLV, by aiding AR and restoring functional residual capacity, 
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has been proposed to minimize atelectasis in the ventilated 
lung and thus improve oxygenation.10-15 On the other hand, 
the application of PEEP alone may paradoxically increase pul-
monary vascular resistance and the shift of blood flow to the 
non-ventilated lung, leading to an increase in Qs/Qt and im-
pairment of oxygenation.15-17 Therefore, considering that only 
slight gravity-dependent pulmonary shift takes place in the 
supine position, PEEP per se likely demonstrates both posi-
tive and negative effects on Qs/Qt and V/Q matching. Howev-
er, the effects of the AR maneuver and PEEP on oxygenation 
during OLV in the supine position have not been evaluated. 
We tested whether the AR maneuver with subsequent PEEP 
and PEEP alone could improve oxygenation during OLV in 
the supine position in patients undergoing VATS in a prospec-
tive and randomized trial. As secondary endpoints, the effects 
of the proposed treatment on Qs/Qt and physiologic dead 
space were also evaluated. 

MATERIALS AND METHODS

This study was approved by the Institutional Review Board 
(ref: 4-2011-0301) and registered at http://clinicaltrials.gov 
(NCT 01652612). After written informed consent was obtained 
from all patients, 99 patients of ages 20–70 years with America 
Society of Anesthesiologists physical status class II or III who 
were scheduled for VATS in the supine position were enrolled 
in this study. Exclusion criteria included an expected duration 
of OLV <30 min, uncompensated cardiac disease, chronic ob-
structive or restrictive pulmonary disease (preoperative 
forced expiratory volume in 1 second and forced vital capacity 
below 60% of the predicted value), and obesity (body mass in-
dex >30 kg/m2). Patients were randomly allocated to one of 
three groups using a computerized randomization table one 
day before surgery by an independent anesthesiology nurse 
who was not involved in this study (control group: n=33; PEEP 
group: n=33; AR group: n=33).

Patients were monitored by electrocardiography and pulse 
oximetry, as well as by monitoring for nasopharyngeal tem-
perature, invasive arterial pressure, and central venous pres-
sure. Anesthesia was induced with propofol (1.5 mg/kg), remi-
fentanil (0.5–1.0 μg/kg), and rocuronium (0.3–0.9 mg/kg) while 
monitoring for train-of-four stimulation. Anesthesia was main-
tained with sevoflurane (1.0–2.0 vol%) and remifentanil (0.1–0.3 
μg/kg/min). The trachea was intubated using a left-sided dou-
ble-lumen tube (Broncho-Cath®; Mallinckrodt Medical Inc., 
Athlone, Ireland); the correct position was confirmed using a 
fiberoptic bronchoscope after intubation and supine surgical 
positioning. A 7-Fr central venous catheter (Arrow Interna-
tional, Reading, PA, USA) was inserted via the right internal 
jugular vein. The insertion length of the central venous cathe-
ter was calculated using a height-based formula in order to 
place its tip near the right atrium,18 which was confirmed by 

portable chest X-ray. 
The lungs were initially ventilated using a constant-flow, 

volume-controlled ventilation mode (Zeus ventilator; Dräger 
Medical, Lübeck, Germany) with a tidal volume (VT) of 8 mL/
kg predicted body weight, an inspiratory:expiratory (I:E) ratio 
of 1:2, an inspiratory pause of 10%, and a respiratory rate of 12 
bpm in 100% oxygen without PEEP. After all patients were 
placed in the supine surgical position with pillows under each 
hemithorax allowing some degree of tilting (≤10°), the ventila-
tor was switched to the pressure-controlled mode, adjusting 
the peak inspiratory pressure to obtain the same VT as during 
the volume-controlled mode. In the PEEP group, a PEEP of 8 
cm H2O was applied. In the AR group, the AR maneuver was 
performed: the peak inspiratory pressure and PEEP were se-
quentially increased from 30/10 to 35/15 cm H2O in steps of 
five breaths and then to 40/20 cm H2O for ten breaths with an 
I:E ratio of 1:1. And then, the ventilator was set back to the 
baseline setting in the pressure-controlled mode at a PEEP of 
8 cm H2O.10,12 OLV was initiated at the moment of skin inci-
sion, and the tube lumen of the non-ventilated lung was 
opened to room air. During OLV, VT was reduced to 6 mL/kg, 
and the respiratory rate was adjusted to maintain an end-tidal 
CO2 tension (ETCO2) of 35–40 mm Hg.

During surgery, intrathoracic CO2 insufflation was accom-
plished at a set pressure of 8–10 mm Hg and was automatically 
controlled by a CO2 insufflator. During OLV, if SpO2 declined to 
<90%, surgery was temporarily interrupted to resume intermit-
tent two-lung ventilation (TLV) until SpO2 recovered to >95%. 
After the OLV period, both lungs were re-expanded by hand 
bagging in all patients. 

Arterial and central venous blood gas analyses, respiratory 
variables, and hemodynamic variables were recorded at the 
following points: 15 min into TLV (TLVbaseline), 15 and 30 min af-
ter OLV (OLV15 and OLV30), and 10 min after the re-establish-
ment of TLV (TLVend). Respiratory variables included the peak 
airway pressure (Ppeak), mean airway pressure (Pmean), and dy-
namic lung compliance, which was calculated as VT/(Ppeak-
PEEP). Physiologic (dead space to tidal volume ratio, VD/VT) 
was calculated according to the Hardman and Aitkenhead19 
equation: VD/VT=1.14×(PaCO2-E’CO2)/PaCO2-0.005. The 
shunt fraction (Qs/Qt) was determined using the formula: Qs/
Qt=(CcO2-CaO2)/(CcO2-CvO2), assuming that mixed venous 
O2 partial pressure was equal to central venous O2 partial 
pressure. Arterial and central venous blood samples were 
measured using an automated blood gas analyzer (Stat Pro-
file® CCX; Nova Biomedical, MA, USA). Hemodynamic mea-
surements included the heart rate, mean arterial pressure, 
and central venous pressure. 

Statistical analyses were performed using SPSS 18.0 (SPSS 
Inc., Chicago, IL, USA). Data are presented as mean±standard 
deviation, or numbers as appropriate. Based on the results of 
a previous study evaluating the effect of the AR strategy in the 
lateral decubitus position,11 we estimated that a sample of 31 
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patients per treatment group would be sufficient for detecting 
a 76-mm Hg mean difference of PaO2 between any two groups 
with a power of 0.8, a type I error of 0.05, and a standard devi-
ation of 108 mm Hg. Factoring in a drop-out rate of 5%, we cal-
culated that 33 patients would be required for each group. To 
assess for normality, the Kolmogorov-Smirnov (K-S) test was 
performed on the data set. Normally-distributed data were an-
alyzed with a one-way analysis of variance for continuous vari-
ables. If there was a significant difference among the groups, a 
post hoc analysis using Bonferroni’s test was performed. In 
cases where the K-S test demonstrated that data did not follow 
a normal distribution, comparisons between treatments were 
performed using the Kruskal-Wallis test, and Bonferroni cor-
rection was used for multiple comparisons. Categorical data 
were analyzed with a χ2 test. A p value less than 0.05 was con-
sidered to be statistically significant. 

RESULTS

One hundred six patients were assessed for eligibility; 99 of 
these patients consented to participate in the study and were 
randomly assigned to groups. Of the enrolled patients, seven 
patients were excluded from the study due to changes in the 
surgical plan during surgery; therefore, 92 patients completed 
the study (Fig. 1). Patients’ characteristics and clinical data 
were similar among the groups (Table 1). None of the patients 
demonstrated dangerous hypoxemia (SpO2<90%) for a 30-
min OLV period regardless of the side of surgical approach. 

The arterial and central venous blood gas data are shown in 
Table 2. PaO2 was higher at TLVend (p=0.027) in the AR group 
than in the control group. The PaCO2-ETCO2 difference at 

OLV15 (p=0.043) and the estimated VD/VT at OLV15 and TLVend 
(p<0.05) decreased more in the AR group than in the control 
group (Fig. 2). When compared with TLVbaseline, PaO2 de-
creased while PaCO2 increased during OLV in all groups 
(p<0.01). At TLVend, PaO2 did not return to baseline values only 
in the control group. Compared with TLVbaseline, the estimated 
VD/VT increased at OLV30 and TLVend (p<0.05), and the Pa-
CO2-ETCO2 difference increased during OLV and at TLVend 
(p<0.01) in the control group. Qs/Qt increased at OLV30 com-
pared with TLVbaseline in all groups (p<0.05). 

Lung mechanics and hemodynamic data are presented in 
Table 3 and 4. During OLV and at TLVend, Pmean (p<0.01) and 
dynamic lung compliance (p<0.01) were higher in the PEEP 
and AR groups than in the control group. At TLVend, Ppeak was 
higher in the PEEP and AR groups than in the control group 
(p<0.01). Compared with TLVbaseline, Ppeak, and Pmean increased 
during OLV and at TLVend (p<0.01) in all groups, whereas dy-
namic lung compliance decreased during OLV in all groups 
yet only in the control group at TLVend (p<0.01). No significant 
differences were found among the groups in terms of hemo-
dynamic variables throughout the study period. Compared 
with TLVbaseline, central venous pressure increased during OLV 
in all groups (p<0.01), and the mean arterial pressure de-
creased at TLVend in the control and AR groups (p<0.05). 

DISCUSSION

This study investigated the effects of AR with subsequent 
PEEP and PEEP alone on oxygenation during OLV in the supine 
position. We observed that bilateral lung recruitment before 
the start of OLV not only improved the efficiency of ventilation 

Fig. 1. The consort flow diagram. PEEP, positive end-expiratory pressure.
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but also increased arterial oxygenation with no significant 
change of Qs/Qt. Although dynamic lung compliance im-
proved in both treatment groups, PEEP without recruitment 

did not lead to improved oxygenation. 
The range of applications of VATS in treating mediastinal 

cysts and tumors has extended due to the evolution of surgi-
cal techniques; consequently, various patient positions re-
quire OLV.1,2,20 Minimally invasive techniques offer the advan-
tages of improved cosmesis, less surgical stress, shorter 
hospital durations, and efficacy equivalent to conventional 
open surgery.3,21 However, hypoxemia related to one-lung an-
esthesia occurs with an incidence of approximately 5–10%, af-
fecting postoperative outcomes such as cognitive dysfunction, 
renal failure, and pulmonary hypertension.22,23 Compared 
with the lateral decubitus position, semilateral and supine 
surgical positions during OLV are associated with less gravity-
induced redistribution of pulmonary perfusion to the venti-
lated lung, leading to higher Qs/Qt and more hypoxemia.4,6 
Additionally, anesthesia-induced atelectasis contributes to 
shunting in the ventilated lung regardless of the patient posi-
tion.8,9 In this study, two preventative ventilatory strategies in 
relation to atelectasis demonstrated increased dynamic lung 
compliance throughout the study period; however, only AR 
with subsequent PEEP resulted in improved efficiency of ven-
tilation and oxygenation by reducing the physiologic dead 
space. 

Dead space is the portion of ventilation that does not par-
ticipate in gas exchange, indicating the degree of ventilatory 
efficiency.24 OLV increases dead space and the PaCO2-ETCO2 
difference, thereby requiring a greater minute ventilation to 
maintain the same level of PaCO2.25 Our results are consistent 

Table 1. Demographic and Operative Data

Control group (n=31) PEEP group (n=31) AR group (n=30)
Age (yr) 44±14 49±14 46±14
Male/female 9/22 6/25 13/17
Body mass index (kg/m2) 23.3±3.0 22.7±2.5 23.0±3.3
Hypertension 1 4 1
Diabetes 3 2 0
FVC (%) 97±13 91±18 91±16
FEV1 (%) 106±14 97±17 99±17
FEV1/FVC (%) 83±5 80±8 84±7
DLCO (%) 111±19 105±16 107±21
Hemoglobin (g/dL) 12.2±1.1 12.0±0.9 12.3±1.1
Duration of anesthesia (min) 126±43 139±62 143±38
Duration of surgery (min) 82±42 83±48 95±37
Duration of one-lung ventilation (min) 67±39 60±33 74±29
Operation side (R/L) 5/26 4/27 8/22
Operative diagnosis

Myasthenia gravis with/without thymoma 7/6 6/8 7/7
Thymic cyst/tumors 4/10 11/6 2/11
Bronchial cyst 3 0 3
Intrathoracic chest wall lipoma 1 0 0

FEV1, forced expiratory volume in 1 second; FVC, functional vital capacity; DLCO, diffusion capacity of lung for carbon monoxide; PEEP, positive end-expiratory 
pressure; AR, alveolar recruitment.
Values are number of patients or mean±SD. 

Table 2. Blood Gas Analysis Data

Group TLVbaseline OLV15 OLV30 TLVend

PaO2 (mm Hg)
Control 419.3±70.5 284.5±67.3* 255.8±83.6* 351.6±60.7*
PEEP 392.0±70.8 258.1±69.7* 240.5±68.4* 398.4±73.4
AR 414.9±69.0 276.5±62.3* 258.2±84.6* 402.2±80.0†

PcvO2 (mm Hg)
Control 51.2±17.7 49.4±13.1 55.4±15.8 52.6±19.0
PEEP 48.8±16.2 45.8±10.1 48.6±11.0 49.7±12.3
AR 47.4±7.8 49.2±6.8 49.6±8.4 51.3±13.1

PaCO2 (mm Hg)
Control 31.1±4.4 40.0±4.6* 39.2±5.7* 34.6±4.9*
PEEP 30.7±3.4 39.2±5.3* 39.6±6.0* 37.1±7.0*
AR 32.8±5.0 41.0±7.5* 41.4±6.2* 36.0±5.7*

Qs/Qt (%)
Control 16.7±7.7 23.3±8.6 29.0±12.2* 22.9±11.4
PEEP 18.0±4.5 21.9±6.6 25.1±7.5* 18.1±7.7
AR 16.3±4.6 21.1±8.2 25.9±10.2* 17.1±6.4

PaO2, arterial oxygen tension; PcvO2, central venous oxygen tension; PaCO2, 
arterial carbon dioxide tension; Qs/Qt, intrapulmonary shunt fraction; TLVbase-

line, 15 min into TLV; OLV15 and OLV30, 15 min and 30 min after OLV; TLVend, 10 
min after TLV was re-initiated; PEEP, positive end-expiratory pressure; AR, al-
veolar recruitment.
Values are mean±SD. 
*p<0.05 vs. TLVbaseline in each group, †p<0.05 vs. control group.
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with previous findings that AR improved the efficiency of al-
veolar ventilation during OLV, resulting in a lower PaCO2-ET-
CO2 difference and a reduced alveolar component of dead 
space, which is directly related to atelectasis and Qs/Qt.10-12 In 
previous studies regarding AR, protocols were designed to ap-
ply a PEEP of 5–8 cm H2O in both treated and control patients 
undergoing thoracic surgery in the lateral position.10,11 Al-
though the application of PEEP has been known to be benefi-
cial to the atelectatic areas, it did not improve efficiency of 
ventilation without a preemptive recruitment maneuver.10-15 
Additionally, PEEP applied to the ventilated lung may cause a 
shift of pulmonary blood flow to the non-ventilated lung and 
thus increase Qs/Qt, especially in the supine position, in 

which there is a similar influence of gravitational force on 
both lungs.6,15-17 However, during OLV in the supine position 
in this study, Qs/Qt did not differ among the two treatments 
groups and the control group. Increased intrathoracic pres-
sure caused by CO2 insufflation in the non-ventilated lung 
could be one possible explanation of similar Qs/Qt, as such 
pressure diverts pulmonary perfusion to the ventilated lung. 
Another explanation may be that the pressure-controlled 
mode during OLV might be associated with lower airway 
pressure and less compression of perialveolar vessels.26 

Contrary to our expectations, OLV in the supine position 
was well tolerated, and SpO2 remained >90% during a 30 min-
study period of OLV in all patients, whether they received 
treatment or not. Two previous studies evaluating oxygen-
ation during OLV in the supine position have reported differ-
ent incidences of hypoxemia.4,6 In one previous trial, hypox-
emia (SpO2<90%) developed within 30 min of OLV in 82% of 

Table 3. Lung Mechanics

Group TLVbaseline OLV15 OLV30 TLVend

Tidal volume (mL)
Control 494±88 424±98* 413±81* 505±82
PEEP 477±73 376±76* 379±76* 498±113
AR 513±104 404±104* 403±109* 491±97

Ppeak (cm H2O)
Control 12.3±2.8 19.6±4.5* 20.8±5.7* 15.0±4.0*
PEEP 12.8±2.0 22.1±3.0* 23.0±3.2*  18.1±2.6*†

AR 12.8±2.3 21.9±5.0* 23.1±5.3*  18.6±3.2*†

Pmean (cm H2O)
Control 6.0±2.2 8.4±2.4* 8.6±2.2* 7.1±2.5*
PEEP 6.0±1.6  12.4±2.0*†  12.1±2.0*†  10.6±2.0*†

AR 5.6±1.8  12.8±1.7*†  13.1±1.8*†  11.1±2.3*†

Cdyn (mL/cm H2O)
Control 41.3±4.9 21.8±4.8* 20.3±5.0* 34.6±7.5*
PEEP 42.1±11.7  27.4±5.6*†  26.8±6.5*† 45.4±7.9†

AR 41.2±6.2  30.9±8.7*†  29.1±8.2*†  41.8±10.0†

Ppeak, peak airway pressure; Pmean, mean airway pressure; Cdyn, dynamic lung 
compliance; TLVbaseline, 15 min into TLV; OLV15 and OLV30, 15 min and 30 min af-
ter OLV; TLVend, 10 min after TLV was re-initiated; PEEP, positive end-expiratory 
pressure; AR, alveolar recruitment.
Values are mean±SD. 
*p<0.05 vs. TLVbaseline in each group, †p<0.05 vs. control group.

Table 4. Hemodynamic Changes

Group TLVbaseline OLV15 OLV30 TLVend

Heart rate (beats/min)
Control 67±14 71±14 69±10 69±12
PEEP 67±15 70±13 68±12 69±11
AR 68±13 70±12 72±9 68±10

MAP (mm Hg)
Control 83±13 90±12 86±11  79±11*
PEEP 89±18 90±13 87±11 81±14
AR 89±13 91±15 88±11   79±10*

CVP (mm Hg)
Control 10±4 16±3* 16±4* 11±3
PEEP 10±3 17±4* 16±4* 11±4
AR 10±3 17±3* 18±4* 12±3

MAP, mean arterial pressure; CVP, central venous pressure; TLVbaseline, 15 min 
into TLV; OLV15 and OLV30, 15 min and 30 min after OLV; TLVend, 10 min after 
TLV was re-initiated; PEEP, positive end-expiratory pressure; AR, alveolar re-
cruitment.
Values are mean±SD. 
*p<0.05 vs. TLVbaseline in each group.

Fig. 2. Changes in the PaCO2-ETCO2 difference (A) and estimated VD/VT (B). PaCO2-ETCO2, arterial to end-tidal carbon dioxide tension difference; esti-
mated VD/VT, physiologic dead space. *p<0.05 vs. TLVbaseline in each group, †p<0.05 vs. control group. 
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patients with normal preoperative pulmonary function un-
dergoing micro-coagulation therapy for hepatic tumors.4 In 
the other trial, although none of the patients developed hypox-
emia, significantly lower PaO2 values were observed in the su-
pine position than in the lateral position during a 15 min-
study period of OLV before the start of surgery.6 However, there 
were several differences between those studies and our study. 
First, the previous studies involved relatively small numbers 
of patients. Second, compared with a previous trial,4 minimal-
ly invasive techniques performed in this study may contribute 
better oxygenation by decreasing both pain and surgical stress 
responses, which influence the development of hypoxemia.27,28 
Third, intrathoracic CO2 insufflation into the non-ventilated 
lung to facilitate exposure of the surgical field may contribute 
in shifting pulmonary perfusion to the ventilated lung. 

The current study has several limitations. First, as this is the 
first study to compare the effects of the AR maneuver and PEEP 
during OLV in the supine position, we excluded patients with 
obesity or underlying pulmonary disease in order to avoid con-
founding factors. However, hypoxemia was observed in one 
patient of the control group using both side approaches in the 
second OLV episode. Therefore, the potential benefits of this 
ventilatory strategy could be more pronounced in patients 
with poor pulmonary function. Second, we included patients 
who underwent VATS using a bilateral approach, which may 
influence final PaO2 values after re-establishment of TLV. 
However, no difference was noted in the operative data among 
groups. Third, we calculated Qs/Qt based on right atrium 
blood samples instead of pulmonary arterial blood samples. 

In summary, recruitment of both lungs with subsequent 
PEEP improved arterial oxygenation and ventilatory efficiency 
in patients undergoing VATS in the supine position. This strat-
egy may reduce the risk of hypoxemia; however, it needs to be 
investigated further in high-risk patients. 
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