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Are We There Yet?
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To date, the use of red blood cells (RBCs) produced from stem cells in vitro has 
not proved practical for routine transfusion. However, the perpetual and wide-
spread shortage of blood products, problems related to transfusion-transmitted in-
fections, and new emerging pathogens elicit an increasing demand for artificial 
blood. Worldwide efforts to achieve the goal of RBC production through stem cell 
research have received vast attention; however, problems with large-scale produc-
tion and cost effectiveness have yet to prove practical usefulness. Some progress 
has been made, though, as cord blood stem cells and embryonic stem cells have 
shown an ability to differentiate and proliferate, and induced pluripotent stem cells 
have been shown to be an unlimited source for RBC production. However, trans-
fusion of stem cell-derived RBCs still presents a number of challenges to over-
come. This paper will summarize an up to date account of research and advances 
in stem cell-derived RBCs, delineate our laboratory protocol in producing RBCs 
from cord blood, and introduce the technological developments and limitations to 
current RBC production practices. 
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INTRODUCTION

Transfusion of red blood cells (RBCs) is a standard and indispensable therapy for 
anemic conditions in current clinical practice. RBCs, comprised of hemoglobin and 
iron, are vital to sustaining life and functions to carry oxygen to cells and to transport 
CO2 out of the body through the lungs. Throughout history, the practice of blood 
transfusions progressed through many developments. During World War I, when 
many trauma related hemorrhages were prevalent, the necessity of transfusions 
brought about the identification of ABO groupings. During World War II, acid-ci-
trate-dextrose blood preservation solution was developed.1 Later, in 1990, the ABO 
gene was cloned and sequenced by Yamamoto, et al.2 However, despite its impor-
tance, blood transfusion has been challenged by infectious transmissions with variant 
Creutzfeldt-Jakob disease, West Nile Virus, H1N1 virus, hepatitis, HIV, and other 
emerging pathogens, which continually threaten patient safety. Additionally, the 
growing demand of transfusions in modern medicine has caused supply limita-
tions, which cannot be met by blood donations alone.3,4 
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body, the hematopoietic stem cell factors influence differ-
entiation into distinct lineages to produce stromal cells, en-
dothelial progenitor cells, lymphocytes, fibroblasts, and 
macrophages. The earliest RBC progenitor is the burst 
forming unit erythroid, which then differentiates into pro-
erythroblast cells, which are dependent on erythopoietin to 
prevent apoptosis. The availability of erythopoietin, which is 
produced in the kidney in response to hypoxic stimulation, 
regulates the amount of blood cell production. The hemo-
globin synthesis pathway continues by a step-wise reduction 
of cell size, differentiating from the proerythroblast phase to 
basophilic normoblasts to polychromatic normoblasts to or-
thochromatic normoblasts to reticulocytes and finally to ma-
ture RBCs. Enucleation occurs immediately before the for-
mation of the reticulocyte phase, which is thought to occur 
through macrophage contact with erythrocyte precursor. In 
addition to erythropoietin, 20 or more recombinant growth 
factors have been used for laboratory induction of bone mar-
row-derived cell differentiation including thrombopoietin  
and granulocyte colony stimulating factor (G-CSF). Cyto-
kines such as stem cell factor (SCF) and vascular endotheli-
al growth factor encourage promotion of cell production, 
while IL-6, TGF-beta, and INF-γ function to provide nega-
tive feedback to limit overproduction.14

RBC PRODUCTION FROM CD34 
POSITIVE HEMATOPOIETIC STEM 

CELLS

RBC production from hematopoietic stem cells begins with 
the use of CD34 marker, a glycoprotein found in the bone 
marrow and expressed on early hematopoietic stem cells.  
CD34+ cells can also be found in cord blood and small 
amounts of G-CSF mobilized peripheral blood stem cell 
concentrates in the peripheral blood.15 By using CD34+ 
cells from cord blood and peripheral blood, Giarratana, et 
al.6,7,16 showed that the hematopoietic process can be repro-
duced, to an extent, in vivo. In this study, 10 million RBCs 
(the equivalent of 2 mL of blood) used for the first-in-man 
administration were derived from autologous CD34+ cells 
mobilized by G-CSF.16 However, problems related to enu-
cleation, mass production, and high financial costs failed to 
produce conclusive evidence for practical use, warranting 
further studies. Following Giarratana’s publications, in vitro 
production of red blood cells has been attempted by various 
researchers. Nevertheless, each laboratory utilized similar 

Current practices that successfully treat chronic anemic 
conditions include recombinant erythropoietin stimulating 
agent therapy. In normal hematopoiesis, stem cell differentia-
tion and maturation to RBCs require erythropoietin, which is 
the most important growth factor. In states of low erythropoi-
etin production as in chronic kidney disease, recombinant 
erythropoietin stimulating agent therapy has been crucial in 
managing anemia. However, thrombotic and neoplastic risks 
limit its use in many cases.5 In more acute and emergent set-
tings such as hemorrhagic conditions and post surgical states, 
blood transfusion is currently the only option. Also, in cases 
of rare blood phenotypes such as the universal type O/D- or 
allo-immunized recipients, transfusion is difficult to achieve. 

Due to these challenges, RBC production from hemato-
poietic stem cells has been a focus in regenerative medi-
cine.6-8 Undifferentiated stem cells confer the advantage of 
lifelong production in bone marrow. Given the right condi-
tions, these stem cells have the potential to differentiate into 
mature RBCs after undergoing multiple steps in matura-
tion. Despite the novelty of this recent tactic, many studies 
have been optimistic toward this end, and clinical therapeu-
tic use may be possible sooner than previously predicted. If 
successful, this may be a solution to the worldwide short-
age of blood supply. Our paper aims to discuss the pros-
pects of the production of RBCs from stem cells based on 
our research experience.9-12

ERYTHROPOIESIS AND IN VIVO RBC 
PRODUCTION

 
Hematopoietic stem cell-derived blood cells undergo a num-
ber of differentiation steps prior to proliferation. Stem cells 
originate in early stages of embyronic fertilization in the 
yolk sac for 2 months and in the liver and spleen during the 
6th week of fetal development to 2 weeks after birth. From 
6-7 months following birth, hematopoiesis continues in the 
bone marrow through childhood and then throughout adult-
hood. During development, the blood producing totipotent 
stem cells have self regenerating ability, which allows for 
continued red cell production and differentiation, which then 
is regulated by negative feedback to control the number of 
RBCs in the body. Robust bone marrow is able to produce a 
daily RBC count of 2.5 billions/kg, platelets of 7 millions/
kg, and granulocytes of 850,000/kg. To differentiate into ma-
ture cells, RBCs require 5 days, platelets 7 days, and granu-
locytes 5-7 days.13 Depending on the cell type needed in the 
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factant known to be cytoprotective against hydrodynamic 
stress, was added. In the fourth step, 3 days of culture was 
performed with only poloxamer 188 without any cytokines 
in the final culture medium. All cultures were maintained at 
37°C in a humidified atmosphere of 5% CO2. In general, 
enucleation began after the 10th day, and mature cells were 
found starting day 17. Inexplicably, not all CD34+ cells 
achieved maturation (Fig. 2). However, previous studies 
showed that factors influencing the success of enucleation 
are correlated with the proper EPO concentration, compact 
optimal confluences of cells, and appropriate culture condi-
tions mimicking the bone marrow stromal cell microenvi-
ronment milieu.20,21

Since these promising studies have begun in 2005, several 
industries and governments have invested in large scale 
blood manufacturing. For example, in 2009, the Defense Ad-
vanced Research Projects Agency (DARPA) in the USA be-
gan the “Blood Pharming” program, which aimed to provide 
a self-contained, synthetic platform for cord blood stem cell-
derived RBCs in scale and quality that can meet the tremen-
dous demands of the battlefield.22 DARPA collaborated with 
Arteriocyte Inc. (Cleveland, OH, USA), a biotech company, 
to develop novel technologies for in vitro production of RBCs 
that are untainted, readily available, and free of storage le-
sions. The ultimate target of the program was the develop-
ment of an automated, fieldable cell culture, and packaging 
system capable of producing transfusable amounts of univer-
sal donor RBCs using human progenitor cells as starting 
material. Arteriocyte was awarded nearly $2 million to devel-

but different amounts and types of cytokines, culture me-
dia, and supplement concentrates.17-19

In this section, we discuss the methods used in our labo-
ratory.10,12 From cord blood CD34+ cells, the maturation pro-
cess of RBCs was divided into four steps (Fig. 1). In the first 
step, within 6 hours of post cord blood collection, mononu-
clear cells were separated using the Ficoll-Hypaque tech-
nique (density, 1.077; Pharmacia Biotech, Uppsala, Swe-
den) and subsequently using the MACS cell separation 
system (Miltenyi Biotech, Auburn, CA, USA) to isolate 
CD34+ cells. CD34+ cells were initially separated by Med-
iMACS and then again by MiniMACS to achieve over 
95% isolation purity. Sorted CD34+ cells were seeded in 24-
well plates at a concentration of 1×105 cells per well. CD34+ 
cells were then continually cultured for the first 7 days in 
serum-free conditioned erythrocyte culture medium (Stem-
Pro-34 SFM Complete Medium, Gibco, Grad Island, NY, 
USA) with three kinds of cytokines, SCF (Peprotech, Re-
hovo, Israel) 100 ng/mL, IL-3 (Peprotech) 10 ng/mL, and re-
combinant erythropoietin (EPO, Recormon Epoetin beta, 
Roche, Mannheim, Germany) 6 IU/mL, with a half-medium 
change twice a week. In the second step, serum free condi-
tioned medium with 3 IU/mL of recombinant EPO, 50 ng/
mL of SCF, and 10 ng/mL of IL-3 were used for expansion 
and differentiation for 7 days.  In the third step, 4 days of cul-
ture of only one cytokine (EPO 2 IU/mL) was used for eryth-
rocyte differentiation, and 0.05% of poloxamer 188 [Pluronic 
F68 (F68), Sigma Chemical Co., St Louis, MO, USA; MW 
8400], which is a nonionic block copolymer chemical sur-

Fig. 1. The protocol of RBC production from cord blood derived CD34+ cells. SCF, stem cell factor; RBC, red blood cell; EPO, erythropoietin.
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ESCs by Keller, et al.25 In their study, the embryonic body 
was disaggregated, and hematopoiesis was attempted in the 
setting of erythropoietin and c kit ligand containing medium. 
Although the primitive erythroid cells were derived, mature 
RBCs were not produced. In another lab, human embryonic 
stem cells were first cloned in 1998.26 As well, in the same 
lab, human hematopoietic colony formation and mature 
RBC formation from human ESCs replicated results from 
murine models, although complete success in full RBC mat-
uration was again unable to be seen.27 Despite this, these 
studies provided much information regarding the erythro-
poietic process, which was helpful in molecular studies, 
such as in defining the importance of transcription factor 
functions in erythropoiesis.  

Several groups showed that erythroblasts could be gener-
ated from ESCs, but the RBC yield was very low.28,29 In an 
industrial trial, Advanced Cell Technology (Worcester, MA, 
USA) first reported that ESCs differentiated into functional 
oxygen-carrying erythrocytes on a large scale (1010~1011 
cells/6-well plate hESCs) as a source for clinical grade mass 
production of RBCs from stem cells.30 However, final RBC 
products from ESCs must be thoroughly evaluated for enu-
cleation and overall safety. Meanwhile, such research faces 
further challenges, as ethical questions have arisen in re-
gards to the procurement of embryonic stem cells and stud-
ies have been halted. 

op this genetically engineered blood product and made the 
first shipment to the FDA in 2011, hoping that the regulators 
will approve it for use in nationwide trauma wards. They 
showed the ability to turn one unit of umbilical cord blood 
into 20 units of blood in about 3 days at a cost of about 
$5,000 per unit. The cost is somewhat steep; nevertheless, if 
the FDA approves the blood product and Arteriocyte can 
bring down the cost and scale the production method, 
pharmed blood is projected to replace donated blood within 
five years. The use thereof was expected to begin in 2013; 
however, it has not yet been made available. In addition, he-
moglobin-based oxygen carriers and perfluorocarbon emul-
sions have been studied as acellular artificial blood substi-
tutes, although they have not been clinically available for 
use.23 Hematopoietic induction of stem cells and artificial 
blood production have been studied worldwide including the 
USA, England, Japan, and Australia.15-19,24 When considering 
these options, the safety and cost effectiveness thereof are 
paramount. We feel that these issues can be overcome in the 
near future to replenish much needed supplies of RBCs. 

RBC PRODUCTION FROM hESCs AND 
hiPSCs

In 1993, erythroid colonies were separated from murine 

Fig. 2. The morphology of cells and flowcytometer analyses of the differentiated RBCs from cord blood derived CD34+ cells in vitro cul-
ture. RBC, red blood cell; GPA, glycophorin A.
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lenges must be overcome before the clinical usage of stem 
cell-derived RBCs, we are optimistic about the prospects of it 
becoming a reality.
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